
Running Calculations on GPUs with Gaussian 16

As a result of a fruitful, ongoing collaboration between the Gaussian Inc., NVIDIA and its PGI compiler team and Hewlett-Packard
Enterprise, Gaussian 16 supports running calculations using NVIDIA GPUs. The first phase of this work is complete, and NVIDIA
Tesla K40 and Tesla K80 GPUs can be used in Hartree-Fock and DFT calculations, including energies, optimizations and frequencies,
for ground and excited states (TD), and for closed shell and open shell molecules. ONIOM, SCRF solvation and all major properties
are supported, as are all DFT functionals available in Gaussian 16. The most frequently-run Gaussian calculations will be applicable to
execution with GPUs.

Ongoing development is taking place on HPE Apollo 6500 systems containing NVIDIA Tesla P100 (Pascal) GPUs. The work takes
advantage of PGI Accelerator compilers supporting OpenACC.

Results for Example Calculations
The following table provides some example performance data for this initial version of GPU support. All calculations were run on a
server system with 32 Haswell cores and 4 NVIDIA K80 2-GPU boards. The timings compare running on all of the 32 CPU cores alone
vs. running on all 8 GPUs and the remaining available 24 CPU cores (with 8 cores used as GPU controllers).

Molecule Calculations
Speedup

with GPUs
Alanine 25 APFD/6-31G(d) Freq 1.45

TD APFD/6-31G(d) Freq 1.39
APFD/6-311+G(2d,p) NMR SCRF 1.34

Valinomycin wB97xD/6-311+(2d,p) Freq 2.25

GFP ONIOM(APFD/6-311+G(2d,p):Amber)=Embed Freq 1.60
TD ONIOM(APFD/6-311+G(2d,p):Amber)=Embed Freq 2.07

NVIDIA Tesla P100 GPUs use the NVIDIA Pascal GPU architecture
to achieve ~5 TFlops peak performance (double precision), and have
12-16GB Chip-on-Wafer-on-Substrate HBM2 memory.
NVIDIA Tesla K40 & Tesla K80 GPUs have 12GB 5GHz GDDR5 VRAM
and achieve peak performance of ~1.5 TFlops (double precision), with
1 and 2 GPUs per board (respectively).

HPE Apollo 6500 Systems contain dual Intel Xeon
E5-2600 v4 (Broadwell) processors and 4 or 8 NVIDIA
Tesla P100 (Pascal) GPUs per CPU. They can be
configured with SSD 12G SAS storage and 1024 GB
DDR4 2400MHz memory.

Server: dual Intel Xeon E5-2698 v3 CPUs (2.30GHz ; 16 cores/chip), 256GB memory and 4 Tesla K80 dual GPU boards (boost clocks: MEM 2505 and
SM 875). Gaussian source code compiled with PGI Accelerator Compilers (16.5) with OpenACC (2.5 standard).

http://www.nvidia.com/object/tesla-p100.html
http://www.nvidia.com/object/tesla-k80.html
https://www.hpe.com/us/en/product-catalog/servers/proliant-servers/pip.hpe-apollo-6500-system.1008862555.html

Parallelization Strategy
Within Gaussian 16, GPUs are used for a small fraction of code that consumes a large
fraction of the execution time. The implementation of GPU parallelism conforms
to Gaussian’s general parallelization strategy. Its main tenets are to avoid changing
the underlying source code and to avoid modifications which negatively affect CPU
performance. For these reasons, OpenACC was used for GPU parallelization.

The Gaussian approach to parallelization relies on environment-specific parallelization
frameworks and tools: OpenMP for shared-memory, Linda for cluster and network
parallelization across discrete nodes, and OpenACC for GPUs.

The process of implementing GPU support involved many different aspects:

 Identifying places where GPUs could be beneficial. These are a subset of areas which
are parallelized for other execution contexts because using GPUs requires fine grained
parallelism.

 Understanding and optimizing data movement/storage at a high level to maximize
GPU efficiency.

Gaussian, Inc.
340 Quinnipiac St. Bldg. 40
Wallingford, CT 06492 USA
custserv@gaussian.com

Gaussian is a registered trademark of Gaussian, Inc. All other trademarks and registered trademarks are
the properties of their respective holders. Specifications subject to change without notice.
Copyright © 2017, Gaussian, Inc. All rights reserved.

Roberto Gomperts
NVIDIA

Michael Frisch
Gaussian

Brent Leback
NVIDIA/PGI

Giovanni Scalmani
Gaussian

Project Contributors

PGI Accelerator Compilers with OpenACC
PGI compilers fully support the current OpenACC
standard as well as important extensions to it.
PGI is an important contributor to the ongoing
development of OpenACC.
OpenACC enables developers to implement
GPU parallelism by adding compiler directives
to their source code, often eliminating the need
for rewriting or restructuring. For example, the
following Fortran compiler directive identifies a
loop which the compiler should parallelize:
!$acc parallel loop

Other directives allocate GPU memory, copy data
to/from GPUs, specify data to remain on the GPU,
combine or split loops and other code sections,
and generally provide hints for optimal work
distribution management, and more.
The OpenACC project is very active, and the
specifications and tools are changing fairly
rapidly. This has been true throughout the
lifetime of this project. Indeed, one of its major
challenges has been using OpenACC in the midst
of its development. The talented people at PGI
were instrumental in addressing issues that arose
in one of the very first uses of OpenACC for a
large commercial software package.

Specifying GPUs to Gaussian 16
The GPU implementation in Gaussian 16 is sophisticated and complex but using it is simple and straightforward. GPUs are specified with
1 additional Link 0 command (or equivalent Default.Route file entry/command line option). For example, the following commands tell
Gaussian to run the calculation using 24 compute cores plus 8 GPUs+8 controlling cores (32 cores total):
%CPU=0-31 Request 32 CPUs for the calculation: 24 cores for computation, and 8 cores to control GPUs (see below).
%GPUCPU=0-7=0-7 Use GPUs 0-7 with CPUs 0-7 as their controllers.

Detailed information is available on our website.

PGI’s sophisticated profiling and performance evaluation tools were vital to the success of the effort.

https://www.pgroup.com/resources/accel.htm
http://gaussian.com/gpu

