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Preface

New Program Features in HLM 8 for Windows

Estimating HLM from incomplete data

- A completely automated approach that generates and analyzes multiply imputed data sets
from incomplete data.

- The model is fully multivariate and enables the analyst to strengthen imputation through
auxiliary variables.

Here the user specifies the HLM; the program automatically searches the data to discover which
variables have missing values; it then estimates a multivariate hierarchical linear model
“imputation model” in which all variables having missing values are regressed on all variables
having complete data; it then uses the resulting parameter estimates to generate M imputed data
sets; it then analyzes each of these in turn and combines the results using the “Rubin rules.”

Flexible Combinations of Fixed Intercepts and Random Coefficients

- Included in HLM2, HLM3, HLM4, HCM2, and HCMS3.

- Two-level examples: a) a longitudinal study with fixed child effects and random
treatment effect; and b) a study in which children are randomly assigned to treatments
within pre-school centers with fixed center intercepts and a random coefficient for
treatment.

- A three-level study in which children are nested within classrooms within schools; we
have fixed school intercepts and a randomly varying treatment effect and randomly
varying classroom intercepts.

A concern that can arise in multilevel causal studies is that random effects may be correlated
with treatment assignment. For example, suppose that treatments are assigned non-randomly to
students who are nested within schools. Estimating a two-level model with random school
intercepts will generate bias if the random intercepts are correlated with treatment effects. The
conventional strategy is to specify a fixed effects model for schools. However, this approach
assumes homogeneous treatment effects, leading possibly to biased estimates of the average
treatment effect, incorrect standard errors, and inappropriate interpretations. Our tools allow the
analyst to combine fixed intercepts with random coefficients in models that address these
problems and to facilitate a richer summary including an estimate of the variation of treatment
effects and empirical Bayes estimates of unit-specific treatment effects. This approach was
proposed in Bloom, Raudenbush, Weiss, and Porter (2017).
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1 Conceptual and Statistical Background for Two-Level Models

Behavioral and social data commonly have a nested structure. For example, if repeated
observations are collected on a set of individuals and the measurement occasions are not
identical for all persons, the multiple observations are properly conceived as nested within
persons. Each person might also be nested within some organizational unit such as a school or
workplace. These organizational units may in turn be nested within a geographical location such
as a community, state, or country. Within the hierarchical linear model, each of the levels in the
data structure (e.g., repeated observations within persons, persons within communities,
communities within states) is formally represented by its own sub-model. Each sub-model
represents the structural relations occurring at that level and the residual variability at that level.

This manual describes the use of the HLM computer program for the statistical modeling of two-,
three- and four-level data structures, respectively. It should be used in conjunction with the text
Hierarchical Linear Models: Applications and Data Analysis Methods (Raudenbush, S.W. &
Bryk, A.S., 2002: Newbury Park, CA: Sage Publications):. The HLM programs have been
tailored so that the basic program structure, input specification, and output of results closely
coordinate with this textbook. This manual also cross-references the appropriate sections of the
textbook for the reader interested in a full discussion of the details of parameter estimation and
hypothesis testing. Many of the illustrative examples described in this manual are based on data
distributed with the program and analyzed in the Sage text.

We begin by discussing the two-level model below and the use of the HLM2 program in
Chapter 2. Building on this framework, Chapters 3 and 4 introduce the three-level model and the
use of the HLM3 program. The four-level model and the use of the HLM4 program are discussed
in Chapters 5 and 6. Chapters 7 and 8 discuss use of hierarchical modeling for non-normal level-
1 errors. Chapters 9 and 10 consider multivariate models that can be estimated from incomplete
data. Chapter 11 describes several special features of HLM2 and HLM3, including analyses
involving latent variables, multiply-imputed data, and known level-1 variances, as well as the
procedure for graphing data and equations. Chapters 12 and 13 introduce two-level cross-
classified random effects that are applicable for analyses of models that do not have a strictly
hierarchical data structure, and Chapters 14 and 15 discuss three-level cross-classified random
effects models. Hierarchical linear models with cross-classified random effects are considered in
Chapters 16 and 17. Chapter 18 illustrates HLM's ability to produce data- and model-based
graphs. Flexible combinations of Fixed Intercepts and Random Coefficients (FIRC) is introduced
in Chapter 19. In Chapter 20, a completely automated approach that generates and analyzes
multiply imputed data sets from incomplete data is discussed.

1 Also available from SSI.
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1.1 The general two-level model

As the name implies, a two-level model consists of two submodels at level 1 and level 2. For
example, if the research problem consists of data on students nested within schools, the level-1
model would represent the relationships among the student-level variables and the level-2 model
would capture the influence of school-level factors. Formally, there are i=1,...,n; level-1 units

(e.g., students) nested within j=1,..., J level-2 units (e.g., schools).
1.1.1 Level-1 model

We represent in the level-1 model the outcome for case i within unit j as:
Yiy = Boj + By Xu + By Koy 40004 By Koy 1
=B+ iﬂqj Xaij + B
(0.0) i
where

B, (4=0,1,...,Q) are level-1 coefficients;
X . is the level-1 predictor q for case i inunit j;

qt)
r; is the level-1 random effect; and
o’ is the variance of r;, that is the level-1 variance.

Here we assume that the random term r; ~ N (0, c’).

1.1.2 Level-2 model

Each of the level-1 coefficients, g, defined in the level-1 model becomes an outcome variable
in the level-2 model:

Bii = Va0 + 7qWaj + 75 Wo +"'+7qqusqj T Ug;

S, (1.02)
:7q0 +Zl}/qswsj +qu’

where
7e (@=0,1..., S, ) are level-2 coefficients;

W_. is a level-2 predictor; and

s)

Ug; is a level-2 random effect.

We assume that, for each unit j, the vector (uoj,ulj,...,qu) is distributed as multivariate normal,
with each element of u,; having a mean of zero and variance of

Var(u,;) =7,,- (0.03)
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For any pair of random effects q and q’,

Cov(Uy;,Uyy) = 7yq- (0.04)

aq

These level-2 variance and covariance components can be collected into a dispersion matrix, T,
whose maximum dimension is (Q+1)x(Q+1).

We note that each level-1 coefficient can be modeled at level-2 as one of three general forms:

1. afixed level-1 coefficient; e.g.,
ﬂqj =740, (0-95)

2. anon-randomly varying level-1 coefficient, e.g.,

Sq
ﬁqj = 7/q0 +27qsvvsj’
s=1
(1.06)
3. a randomly varying level-1 coefficient, e.g.,

ﬂqj = Va0 TUg; (1.07)

or a level-1 coefficient with both non-random and random sources of variation,

Sq
Iqu = 7qo + quswsj + qu (198)
s=1

The actual dimension of T in any application depends on the number of level-2 coefficients
specified as randomly varying. We also note that a different set of level-2 predictors may be used
in each of the Q +1 equations of the level-2 model.

1.2 Parameter estimation

Three kinds of parameter estimates are available in a hierarchical linear model: empirical Bayes
estimates of randomly varying level-1 coefficients; generalized least squares estimates of the
level-2 coefficients; and maximum-likelihood estimates of the variance and covariance
components.

1.3 Empirical Bayes (“EB”) estimates of randomly varying level-1
coefficients, g,

These estimates of the level-1 coefficients for each unit j are optimal composites of an estimate

based on the data from that unit and an estimate based on data from other similar units.
Intuitively, we are borrowing strength from all of the information present in the ensemble of data
to improve the level-1 coefficient estimates for each of the J units. These “EB” estimates are
also referred to as “shrunken estimates” of the level-1 coefficients. They are produced by HLM as
part of the residual file output (see Section 2.5.4, Model checking based on the residual file).
(For further discussion see Hierarchical Linear Models, pp. 45-51; 85-95.)

13




1.4 Generalized least squares (GLS) estimates of the level-2
coefficients, y,

Substitution of the level-2 equations for Pay into their corresponding level-1 terms yields a
single-equation linear model with a complex error structure. Proper estimation of the regression
coefficients of this model (i.e., the »'s) requires that we take into account the differential

precision of the information provided by each of the J units. This is accomplished through
generalized least squares. (For further discussion see Hierarchical Linear Models, pp. 38-44.)

1.5 Maximum likelihood estimates of variance and covariance
components

Because of the unbalanced nature of the data in most applications of hierarchical linear models
(i.e., n; varies across the J units and the observed patterns on the level-1 predictors also vary),

traditional methods for variance-covariance component estimation fail to yield efficient
estimates. Through iterative computing techniques such as the EM algorithm and Fisher scoring,

maximum-likelihood estimates for o® and T can be obtained. (For further discussion, see
Hierarchical Linear Models, pp. 51-56; also Chapters 13, 14).

1.6 Some other useful statistics

Based on the various parameter estimates discussed above, HLM2 and HLM3 also compute a
number of other useful statistics. These include:

1. Reliability of £,..

The program computes an overall or average reliability for the least squares estimates of each
level-1 coefficient across the set of J level-2 units. These are denoted in the program output as
RELIABILITY ESTIMATES and are calculated according to Equation 3.58 in Hierarchical Linear
Models, p. 49.

2. Least squares residuals, (G, ).

These residuals are based on the deviation of an ordinary least squares estimate of a level-1
coefficient, ,qu , from its predicted or “fitted” value based on the level-2 model, i.e.,

A

Sq
Uy = B _L?qo +Z_l:7qswsj J (0.09)

These ordinary least square residuals are denoted in HLM residual files by the prefix oL before
the corresponding variable names.
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3. Empirical Bayes residuals (uy;)

These residuals are based on the deviation of the empirical Bayes estimates, ,8; ;» of a randomly
varying level-1 coefficient from its predicted or “fitted” value based on the level-2 model, i.e.,

Sq
u;] :ﬁ;i _Lj;q0+27;qswst' (OQ-]:Q)
s=1

These are denoted in the HLM residual files by the prefix EB before the corresponding variable
names. (For a further discussion and illustration of OL and EB residuals see Hierarchical Linear
Models, pp. 47-48; and 76-95).

1.7 Hypothesis testing

Corresponding to the three basic types of parameter estimates based on a hierarchical linear
model (EB estimates of random level-1 coefficients, GLS estimates of the fixed level-2
coefficients, and the maximum-likelihood estimates of the variance and covariance components),
are single-parameter and multi-parameter hypothesis-testing procedures. (See Hierarchical
Linear Models, pp. 56-65). The current HLM programs execute a variety of hypothesis tests for
the level-2 fixed effects and the variance-covariance components. These are summarized in
Table 1.1.

1.8 Restricted versus full maximum likelihood

By default, two-level models are estimated by means of restricted maximum likelihood (REML).
Using this approach, the variance-covariance components are estimated via maximum
likelihood, averaging over all possible values of the fixed effects. The fixed effects are estimated
via GLS given these variance-covariance estimates. Under full maximum likelihood (ML),
variance-covariance parameters and fixed level-2 coefficients are estimated by maximizing their
joint likelihood (see Hierarchical Linear Models, pp. 52-53). One practical consequence is that,
under ML, any pair of nested models can be tested using a likelihood ratio test. In contrast, using
REML, the likelihood ratio test is available only for testing the variance-covariance parameters, as
indicated in Table 1.1.

Table 1.1 Hypothesis tests for the level-2 fixed effects and the variance-covariance
components

Type of hypothesis | Test statistic | Program output
Fixed level-2 effects
Single Parameter: t-ratio’ Standard feature of the Fixed Effects
Hy 7y =0 Table for all level-2 coefficients
H, 7, #0
Multi-parameter: general linear hypothesis | Optional output specification (see
H,:C'y=0 test (Wald test), chi- | Section 2.8)
H,:C'y %0 square test’
L
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Table 1.1 Hypothesis tests for the level-2 fixed effects and the variance-covariance
components (continued)

Type of hypothesis | Test statistic | Program output
Variance-covariance components

Single-Parameter: Chi-square test® Standard feature of the Variance
Ho 7 =0 Components Table for all level-2
H, 7, >0 random effects

Multi-parameter: Difference in deviances, | Optional output specification (see
H,:T=T, likelihood ratio test.® Section 2.8)

H :T=T,

'See Equation 3.83 in Hierarchical Linear Models.
2See Equation 3.91 in Hierarchical Linear Models.
$See Equation 3.103 in Hierarchical Linear Models.

*Here T, is a reduced form of T,.

1.9 Generalized Estimating Equations

Statistical inferences about the fixed level-2 coefficients, y ., using HLM are based on the

assumption that random effects at each level are normally distributed; and on the assumed
structure of variation and covariation of these random effects at each level. Given a reasonably
large sample of level-2 units, it is possible to make sound statistical inferences about y, that are

not based on these assumptions by using the method of generalized estimating equations or
“GEE” (Zeger & Liang, 1986). Comparing these GEE inferences to those based on HLM provides
a way of assessing whether the HLM inferences about y, . are sensitive to the violations of these

assumptions. The simplest GEE model assumes that the outcome Y, for case i in unit j is
independent of the outcome Y, for some other case, i', in the same unit; and that these

outcomes have constant variance. Under these simple assumptions, estimation of the y

coefficients by ordinary least squares (OLS) would be justified. If these OLS assumptions are
incorrect, the OLS estimates of y,. will be consistent (accurate in large samples) but not

efficient. However, the standard error estimates produced under oLS will generally be
inconsistent (biased, often badly, even in large samples).

Version 7 of HLM produces the following tables, often useful for comparative purposes:

e Atable of OLS estimates along with the OLS standard errors.

e A table including the OLS estimates, but accompanied by robust standard errors, that is,
standard errors that are consistent even when the OLS assumptions are incorrect.

e A table of HLM estimates of y,, based on GLS, and standard errors based on the
assumptions underlying HLM.
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e A table of the same HLM estimates, but now accompanied by robust standard errors, that
IS, standard errors that are consistent even when the HLM assumptions are mistaken.

By comparing these four tables, it is possible a) to discern how different the HLM estimates and
standard errors are from those based on OLS; and b) to discern whether the HLM inferences are
plausibly distorted by incorrect assumptions about the distribution of the random effects at each
level. We illustrate the value of these comparisons in Chapter 2 (for further discussion, see
Hierarchical Linear Models, pp. 276-280). The GEE approach is very useful for strengthening
inferences about the fixed level-2 coefficients but does not provide a basis for inferences about
the random, level-1 coefficients or the variance-covariance components. Cheong, Fotiu, and
Raudenbush (2001) have intensively studied the properties of HLM and GEE estimators in the
context of three-level models. GEE results are also available for three-level data.
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2 Working with HLM2

Data analysis by means of the HLM2 program will typically involve three stages:

1. construction of the “MDM file” (the multivariate data matrix);
2. execution of analyses based on the MDM file; and
3. evaluation of fitted models based on a residual file.

We describe each stage below and then illustrate a number of special options. Data collected
from a High School & Beyond (HS&B) survey on 7,185 students nested within 160 US high
schools, as described in Chapter 4 of Hierarchical Linear Models, will be used for
demonstrations.

2.1 Constructing the MDM file from raw data

We assume that a user has employed a standard computing package to clean the data, make
necessary transformations, and conduct relevant exploratory and descriptive analyses. We also
recommend exploratory graphical analyses within HLM prior to model building as described in
detail in Section 18.1 of this manual.

The first task in using HLM2 is to construct the Multivariate Data Matrix (MDM) from raw data or
from a statistical package. We generally work with two raw data files: a level-1 file and a level-2
file. Both files must be sorted by the level-2 ID (It is possible, however, to build the MDM file
from the level-1 file above, though this option is not suggested when the level-1 file is very
large. The level-1 file must be sorted by level-2 ID. The level-1 file name will be selected as both
the level-1 and level-2 file).

For the HS&B example, the level-1 units are students and the level-2 units are schools. The two
files are linked by a common level-2 unit ID, school id in our example, which must appear on
every level-1 record. In constructing the MDM file, the HLM program will compute summary
statistics based on the level-1 unit data and store these statistics together with level-2 data.

The procedure to create a MDM file consists of three major steps. The user needs to

e Inform HLM of the input and MDM file type.

e Supply HLM with the appropriate information for the data, the command and the MDM
files.

e Check if the data have been properly read into HLM.

2.2 Executing analyses based on the MDM file

Once the MDM file is constructed, all subsequent analyses will be computed using the MDM file
as input. It will therefore be unnecessary to read the larger student-level data file in computing
these analyses. The efficient summary of data in the MDM file leads to faster computation. The
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MDM file is like a “system file” in a standard computing package in that it contains not only the
summarized data but also the names of all of the variables.

Model specification has three steps:

e Specifying the level-1 model, which defines a set of level-1 coefficients to be computed
for each level-2 unit.

e Specifying a level-2 structural model to predict each of the level-1 coefficients.

e Specifying the level-1 coefficients to be viewed as random or non-random.

The output produced from these analyses includes:

e Ordinary least squares and generalized least squares results for the fixed coefficients
defined in the level-2 model.

e Estimates of variance and covariance components and approximate chi-square tests for
the variance components.

e A variety of auxiliary diagnostic statistics.

Additional output options and hypothesis-testing procedures may be selected.

2.3 Model checking based on the residual file

After fitting a hierarchical model, it is wise to check the tenability of the assumptions underlying
the model:

e Are the distributional assumptions realistic?
e Are results likely to be affected by outliers or influential observations?
e Have important variables been omitted or non-linear relationships been ignored?

These questions and others can be addressed by means of analyses of the HLM residual files. A
level-1 residual file includes:

e The level-1 residuals (discrepancies between the observed and fitted values).

e Fitted values (FV) for each level-1 unit (that is, values predicted on the basis of the
model).

e The observed values of all predictors included in the model.

e Selected level-2 predictors useful in exploring possible relationships between such
predictors and level-1 residuals.

A level-2 residual file includes:

e Fitted values for each level-1 coefficient (that is, values predicted on the basis of the
level-2 model).

e Ordinary least squares (OL) and empirical Bayes (EB) estimates of level-2 residuals
(discrepancies between level-1 coefficients and fitted values).

e Empirical Bayes coefficients, which are the sum of the EB estimates and the fitted values.

o Dispersion estimates useful in exploring sources of variance heterogeneity at level 1.
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e Expected and observed Mahalanobis distance measures useful in assessing the
multivariate normality assumption for the level-2 residuals.

e Selected level-2 predictors useful in exploring possible relationships between such
predictors and level-2 residuals.

e Posterior variances (PV).

For HLM2 FML analyses, there is an additional set of posterior variances. See Chapter 9 in
Hierarchical Linear Models for a full discussion of these methods.

2.4 Windows, interactive, and batch execution

Formulation and testing of models using HLM programs can be achieved via Windows,
interactive, or batch modes. Most PC users will find the Windows mode preferable. This draws
on the visual features of Windows while preserving the speed of use associated with a command-
oriented (batch) program. Non-PC users have the choice of interactive and batch modes only.
Interactive execution guides the user through the steps of the analysis by posing questions and
providing a menu of options. In this chapter, we employ the Windows mode for all the examples.
Descriptions and examples on how to use HLM2 in interactive and batch modes are given in
Appendix A.

2.5 An example using HLM2 in Window mode

Chapter 4 in Hierarchical Linear Models presents a series of analyses of data from the HS&B
survey. A level-1 model specifies the relationship between student socioeconomic status (SES)
and mathematics achievement in each of 160 schools; at level-2, each school's intercept and
slope are predicted by school sector (Catholic versus public) and school mean social class. We
reproduce one analysis here (see Table 4.5 in Hierarchical Linear Models, p. 82).

2.5.1 Constructing the MDM file from raw data

PC users may construct the MDM file directly from different types of input files including SPSS,
ASCII, SAS, SYSTAT, and STATA, or indirectly from many additional types of data file formats
through the third-party software module included in the HLM program.

Non-PC users may construct the MDM file with one of the following types of input files: ASCII
data files, SYSTAT data files, or SAS V5 transport files.

In order for the program(s) to correctly read the data, the IDs need to conform to the following
rules:

1. For AscIl data the ID variables must be read in as character (alphanumeric). These IDs
are indicated by the A field(s) in the format statement. For all other types of data, the ID
may be character or numeric.

2. The level-1 cases must be grouped together by their respective level-2 unit ID. To
assure this, sort the level-1 file by the level-2 1D field prior to entering the data into HLM2.

3. If the ID is numeric, it must be in the range —(10° +1) to +(10° +1) (i.e. 12 digits).

Although the ID may be a floating point number, only the integer part is used.

4. If the ID variable is character, the length must not exceed 12 characters. Furthermore,
the 1Ds at a given level must all be the same length. This is often a cause of problems.
For example, imagine your data has IDs ranging from “1” to “100”. You will need to
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recreate the IDs as “001” to “100”. In other words, all spaces (blank characters) should be
coded as zeros.

5. For non-Ascli files, the program can only properly deal with numeric variables (with
the exception of character ID variables). Other data types, such as a “Date format”, will
not be processed properly.

6. For non-Ascil files with missing data, one should only use the “standard” missing
value code. Some statistical packages (SAS, for example) allow for a number of missing
value codes. The HLM modules are incapable of understanding these correctly, thus these
additional missing codes need to be recoded to the more common “.” (period) code.

SPSS file input

We first illustrate the use of SPSS file input and then consider input from ASCII data files. Data
input requires a level-1 file and a level-2 file.

Level-1 file. For our HS&B example data, the level-1 file (HSB1.SAV) has 7,185 cases and four
variables (not including the SCHOOL ID). The variables are:

MINORITY, an indicator for student ethnicity (1 = minority, O = other)

FEMALE, an indicator for student gender (1 = female, 0 = male)

SES, a standardized scale constructed from variables measuring parental education,
occupation, and income

MATHACH, a measure of mathematics achievement

Data for the first ten cases in HSB1.SAV are shown in Fig. 2.1.

Note: level-1 cases must be grouped together by their respective level-2 unit ID. To assure this,
sort the level-1 file by the level-2 unit ID field prior to entering the data into HLM2.

Figure 2.1

id rinarity fermale ses mathach
11224 a 1 -1.528 5.876
2]1224 a 1 -.585 19.705
J|1224 a a -.525 20.345
411224 a a -.BEG §.7G81
811224 a a -.15G 17.8598
B]1224 a a 022 4 583
71224 a 1 -B18 -2.832
81224 a a -.9595 523
11224 a 1 -.565 1.827
10f1224 a a -.458 21.521

First ten cases in HSB1.SAV

Level-2 file. At level 2, the illustrative data set HSB2.SAV consists of 160 schools with 6 variables
per school. The variables are:

SIZE (school enrollment)
SECTOR (1 = Catholic, 0 = public)
PRACAD (proportion of students in the academic track)
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e DISCLIM (a scale measuring disciplinary climate)

e HIMNTY (1 = more than 40% minority enrollment, O = less than 40%)

e MEANSES (mean of the SES values for the students in this school who are included in the
level-1 file)

The data for the first ten schools are displayed in Fig 2.2.

id size | sectar | pracad | disclim | himinty | meanses
111224 842 0 .350 1.597 0 - 425
2|1288 1855 1] 270 74 1] 128
31296 1719 1] 320 =137 1 -420
411308 716 1 960 -.B22 1] 534
511317 455 1 950 -1.684 1 381
6| 1358 1430 1] 250 1.535 1] -014
71374 2400 1] .A00 2016 1] -.0a7
81433 859 1 960 - 321 1] 718
911436 185 1 1.000 -1.141 1] 569
10114861 1672 1] 780 2.0596 1] B33

Figure 2.2 First ten cases in HSB2.SAV

As mentioned earlier, the construction of an MDM file consists of three major steps. This will
now be illustrated with the HS&B example.

To inform HLM of the input and MDM file type

1. At the WHLM window, open the File menu.

2. Choose Make new MDM file...Stat package input (see Figure 2.3). A Select MDM
type dialog box opens (see Figure 2.4).

3. Select HLM2 and click OK. A Make MDM - HLM2 dialog box will open (see Figure
2.5).

{8 HLM for Windows -

| File  BasicSettings: Other Settings  Rum Analysis  Help
Create a new model using an existing MDM file

Edit/Run old command{. hlmj.mim} file
Manually edit cornmand{himy . mim) file

Save model a5, emf

Save mixed model a5 emf:

Make new MDM file ASCIT input
Make new MDM from old MDM template(.mdmt) file Stat package input
Display MDY stats

View Output
Graph Equations »
Graph Data »

Preferences

Exit

Figure 2.3  WHLM window
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Figure 2.4

Select MDM type

—Nested Models
* HLM2  HLM3

" HLMA

—Hierarchical Multivariate Linear Models —
" HMLM ¢ HMLMZ2

~Cross-classified Models

" HCM2 ¢ HLM-HCM " HCM3
| 0K I Cancel

Select MDM type dialog box

To supply HLM with appropriate information for the data, the command, and the MDM files:

=

Select SPSS/Windows from the Input File Type pull-down menu (see Figure 2.5).

2. Specify the structure of data. The three choices are cross-sectional, longitudinal, and
measures within groups. The data in HSB1.SAV are cross-sectional.

3. Click Browse in the Level-1 Specification section to open an Open Data File
dialog box.

4. Open a level-1 spPss system file in the HLM folder (HSB1.SAV in our example). The
Choose Variables button will be activated.

Click this button to open

a level- file

Click this button (enabled
when a level-1 file is open)

to open the Choose Variables

Click this button to open an
already existing MDMT file

|

Make MDM - HLM2

~ MDM tempjlate file

Click this button to save the
input info to an MDMT file

Click this button to change
an existing MDMT file

Open mdmt file

Savemdmtﬁlel Editmdmtﬂle'

— Structure of Data - this

+ cross sectional (persons within groups)

Enter the name of
the MDM file here

Select the input file type
from this drop-down list box

MPM File Name {use .mdm sufiix)

Input File Type | SPSSWindows =l

affects the notation only!

¢ longitudinal (occasions within persons)

¢~ measures within groups

~Level-1 Specification

|| Browse I Level-1

File Name:

Chiooge Vatiabies

dialog box

Select the options for missing
data here

~Missing Data? ——

Click this button to open

—Delete missing level-1 data when:

@« No ( Yes

 making mdm

" running analyses

—Level-2 Specification

a level-2 data file

Click this button (enabled
when a level-2 file is open)

to open the Choose Variables
dialog box

Figure 2.5

Browse | Level-2 File Name:

Choose Yariahles

Spatial

Brawse

— Spatial Dependence Specification

I~ Include spatial dependence matrix

Dep. File Name:

ChooseYariables

Make MDM I

Check Stats |

Done |

Make MDM - HLM2 dialog box

23



Figure 2.6

10.

11.

12.

Click Choose Variables to open the Choose Variables - HLM2 dialog box and
choose the ID and variables by clicking the appropriate check boxes (See Figure
2.6). To deselect, click the box again.

Select the options for missing data in the level-1 file (there is no missing data in
HSB1.SAV; see Section 2.6 for details).

Click the selection button for measures within persons for the type of nesting of
input data if the level-1 data consist of repeated measures or item responses. With
this selection, wHLM will use in its displays and output model notations that match
those used in Hierarchical Linear Models for studies on individual change and latent
variables (Chapters 6 and 11). The default type is persons within groups. It is
generally used when the level-1 data are comprised of cross-sectional measures. With
this option, WHLM will use model notations that correspond to those used for
applications in organization research (Chapters 4 and 5).

Click Browse in the Level-2 specification section to open an Open Data File dialog
box.

Open a level-2 sPss system file in the HLM folder (HSB2.SAV in our example). The
Choose Variables button below Browse will be activated.

Click Choose Variables to open the Choose Variables - HLM2 dialog box and
choose the ID and variables by clicking the appropriate check boxes (see Figure 2.7).
Check the box include spatial dependence matrix to specify spatial dependence, if
applicable (see Section 11.4 for details). The Spatial Dependence Specification
box should only be used if you have spatial dependence data and wish to run this
kind of model.

Enter a name for the MDM file in the MDM file name box (for example, HSB.MDM).

Choose variables - HLM2
[ ForCaww [ FDE inho
[MmorTy MMM [ DT ko
[Femae T oMmwom [ o mnmo
EE A I—I_IDI_inMDM
[MATHACH [ ID [V i WiDH: ™ D in DN
[ Clol mwo I—l_IDl_lnMDM
[ cerawes [ FIDE inhon
[ Fiefmwew [ B ik
[ relmwem [ FoE nmo
[ Felawew [ B oy
[ Ferawes [ FDEinhoy
[ Fefmws [ FoEnhoy
Page 1 of 1 Al G| ok | cencel |
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Figure 2.7

13.

Choose yariables - HLM2

[0 Mol nuo
[sze I oW invo
[sEcTor I~ 10 innow
[FRacap 7 D inMoM
[Dscom 0 invow
[HrTe ™ 10 W in MM
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Cancel |

mdmt file button.

14.

CREATMDM.MDMT when the MDM is created.

15.

creation will appear.

Choose variables - HLM2 dialog box for the level-2 file, HSB2.SAV

Click Save mdmt file in the MDM template file section to open a Save MDM
template file dialog box. Enter a name for the MDMT file (for example,
HSBSPSS.MDMT). Click Save to save the file. The command file saves all the input
information entered by the user. It can be re-opened by clicking the Open mdmt file
button (see Figure 2.5). To make changes to an existing MDMT file, click the Edit

Note that HLM will also save the input information into another file called

Click the Make MDM button. A screen displaying the prompts and responses for MDM

% HLMZMDM.STS - Notepad =10l x|
File Edit Format Wiew Help
Y
LEVEL-1 DESCRIPTIVE STATISTICS —
VARTABLE NAME N MEAN ] MINIMUM MAIMUM
MINORITY 7185 0.27 0.45 0.00 1.00
FEMALE 7185 0.53 0.50 0.00 1.00
SES 7185 0.00 0.78 -3.76 2.69
MATHACH 7185 12.75 6.88 -2.83 24.99
LEVEL-2 DESCRIPTIVE STATISTICS
VARTABLE NAME N MEAN D MINIMUM MAXIMUM
SIZE 160 1097.83 629.51 100.00 2713.00
SECTOR 160 0. 44 0.50 0.00 1.00
PRACAD 160 0.51 0.26 0.00 1.00
DISCLIM 160 -0.02 0.98 -2.42 2.76 =
HIMINTY 160 0.28 0.45 0.00 1.00
MEANSES 160 -0.00 0.41 -1.19 0.83 &
< 2
| Lr 1, Cal 1 v
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Figure 2.8 Descriptive Statistics for the MDM file, HSB.MDM

To check whether the data have been properly read into HLM

3 When the screen disappears, the level-1 and level-2 descriptive statistics will
automatically be displayed (See Figure 2.8). Pay particular attention to the N column. It is
not an uncommon mistake to forget to sort by the ID variable, which can lead to a lot (or
most) of the data not being processed. Close the Notepad window when done. Use the
Save As option to give it a new name if later use of this file is anticipated. The file can
also be opened by clicking on the Display Stats button.

4  Click Done. The WHLM window displays the type and name on its title bar (him2 &
HSB.MDM) and the level-1 variables on a drop-down menu (See Figure 2.9).

B4 WHLM: him2 MDM File: hsb.mdm -0l x|
Eile EBasic Sethings  Other Settings Rumn Snalysis Help
Qutcome
»» Level-1 <<
Lewvel-2

INTRCPT!
MIMNORITY
FEMALE

SES
MATHACH

Mixedl

Figure 2.9 WHLM: him2 MDM File window for HSB.MDM
2.5.1.2 ASCII file input

Below is the procedure for creating a multivariate data matrix file with input from AScCIl files.
To inform HLM of the input and MDM file type

1. At the WHLM window, open the File menu.

2. Choose Make new MDM file...ASCII input. A Select MDM type dialog box opens.

3. Select HLM2 (see Figure 2.4) and click OK. A Make MDM File — HLM2 will open (see
Figure 2.10).

To supply HLM with appropriate information for the data, the command, and the MDM files

1. Click Browse in the Level-1 specification section to open an Open Data File dialog
box. Open a level-1 AScCIl data file in the HLM examples folder (HSB1.DAT in our
example). The file name (HSB1.DAT) appears in the Level-1 File Name box.

2. Enter the number of variables into the Number of Variables box (4 in our example)
and the data entry format in the Data Format box (A4,4F12.3 in our example).

Note that the ID is included in the format statement, but excluded in the Number of Variables
box. Rules for input format statements are given in Section A.2 in Appendix A.
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Figure 2.10

w

8.
9.

Make MDM - HLM2

DM template name:

MDM File Mame (you will wantto use a .mdm suffix) ||

—Mesting of input data

f* persons within groups = mesasures within persons

—Level-1 Specification

Leveld File Name | HEB1.0AT Browse | Oen e

Number of Wariables I 4 Ml Save mdt il |

RN | —
~Level-2 Specification

Level-2 File Name | HEBZ.DAT Browse | Ml

MNumber of Yariahles |5— Check Stats |

Data Format I (A4 6F12.3) Lahals |

(FORTRAN-Style) r—

Make MDM — HLM2 dialog box

. Click Labels to open the Enter Variable Labels dialog box.
. Enter the variable names into the boxes (MINORITY, FEMALE, SES, MATHACH for our

example, see Figure 2.11). Click OK.

. Click the Missing Data button to enter level-1 missing data info (there is no missing

data in HSB1.DAT; see Section 2.6 for details).

. Click Browse in the Level-2 specification section to open an Open Data File dialog

box. Open a level-2 AscClI data file in the HLM folder (HSB2.DAT in our example). The
file name (HSB2.DAT in our example) will appear in the Level-2 File Name box.

. Enter the number of variables into the Number of Variables box (6 in our example)

and the data entry format in the Data Format box (A4,6F12.3 in our example).

Click Labels to open the Enter Variable Labels dialog box for the level-2 variables.
Enter the variable names into the Variable boxes (SIZE, SECTOR, PRACAD, DISCLIM,
HIMINTY, MEANSES in our example, see Figure 2.12). Click OK.

10. Enter an MDM file name in the MDM File Name box (for example, HSB.MDM).
11. Click Save mdmt file in the MDM template file section to open a Save MDM

template file dialog box. Enter a name for the MDMT file (for example,
HSBASCIL.MDMT). Click Save to save the file. The command file saves all the input
information entered by the user. It can be re-opened or changed by clicking either the
Open mdmt file or the Edit mdmt file button (see Figure 2.10).
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Enter Yariable Labels

variable 1: [MINORTY  vanablets: |
variable 2  [FEMALE  Variable1d: [
Variable 31 | SES vaaplets: [
Variable 4 [MATHACH  varablets: |
vanaes: | vahawein: [
vasbled [ vansblets: [
vaable 7. [ vanablets: [
vanaes: | vanawezo: |
Yariable 9 I— Yariable 21: I—
vaable 10: [ vanable2z: [
Yariable 11: I— Yariable 23: I—
Yariable 12: I— Yariable 24: I—

0k | Cancel |

Figure 2.11 Enter Variable Labels dialog box for level-1 file, HSB1.DAT

Enter ¥ariable Labels

vaiable 1. [SZE  vanabet1s [
variable 2 [SECTOR  varabe1s: [
Variable 3 [PRACAD  vanablels [
Variable & [DISCLM  variaplets: |
Variable 5 [HMINTY  variable1n [
Variable f:  [MEANSES]  varablets [
variable 7. [ variabets [
vaiales: [ vanaezn: [
varawles: [ varaplezt [
variable10: [ varabe2z [
varawle 11 [ varaplezs [
variable1z. [ variabe2s [

6]78 | Cancel |

Figure 2.12 Enter Variable Labels dialog box for level-2 file, HSB2.DAT

28



To check whether the data have been properly read into HLM

The procedure is the same as for SPSS file input (see Section 2.5.1.1 for a complete description).

2514

SAS transport, SYSTAT, STATA file input and other formats for raw data

For SAS transport, SYSTAT or STATA file input, a user selects either SAS 5 transport, SYSTAT
or STATA from the Input File Type drop-down menu as appropriate to open the Open Data File
dialog box. With the third-party software module included in the current version, HLM will read
data from EXCEL, LOTUS and many other formats. Select Anything else from the Input File
Type drop-down menu before clicking on the Browse button in the input file specifications
sections. If the data type is set on the File, Preferences screen, the program will default to your
selected type for both input data and residual files.

2.5.2 Executing analyses based on the MDM file

Once the MDM file is constructed, it can be used as input for the analysis. As mentioned earlier,
model specification has three steps:

Specification of the level-1 model. In our example, we shall model mathematics
achievement (MATHACH) as the outcome, to be predicted by student SES. Hence, the
level-1 model will have two coefficients: the intercept and the SES-MATHACH slope.
Specification of the level-2 prediction model. We shall predict each school's intercept by
school SECTOR and MEANSES in our example. Similarly, SECTOR and MEANSES will
predict each school's SES-MATHACH slope.

Specification of level-1 coefficients as random or non-random. We shall model both the
intercept and the slope as having randomly varying residuals. That is, we are assuming
that the intercept and slope vary not only as a function of the two predictors, SECTOR and
MEANSES, but also as a function of a unique school effect. The two school residuals
(e.g., for the intercept and slope) are assumed sampled from a bivariate normal
distribution.

The procedure for executing analyses based on the MDM file is described below.

Step 1: To specify the level-1 prediction model

1. From the HLM window, open the File menu.

2. Choose Create a new model using an existing MDM file to open an Open MDM File
dialog box. Open an existing MDM file (HSB.MDM in our example). The name of the
MDM file will be displayed on the title bar of the main window. A list box for level-1
variables (>>Level-1<<) will appear (see Figure 2.13).

3. Click on the name of the outcome variable (MATHACH in our example). Click
Outcome variable (see Figure 2.13). The specified model will appear in equation
format.
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) WHLM: him2 MDM File: -

i.FiIe Basic Settings  Other Settings  Run Analysis Help
| Outcome
>> Level-1 <<
Level-2
INTRCPT1
MINORITY
FEMALE
SES
MATHACH

Outcome variable

add variable uncentered
add variable group centered
add variable grand centered
Delete variable from model

Add additional cutcome variable

Figure 2.13 Model window for the HS&B example

4. Click on the name of a predictor variable and click the type of centering (SES and add
variable group centered, see Figure 2.14). The predictor will appear on the equation

screen and each regression coefficient associated with it will become an outcome in
the Level-2 model (see Figure 2.15).

[E] WHLM: him2 MDM File: HSB.MDM
File Basic Settings Other Settings Run Analysis Help
Outcome

> Level-1 <<
Level-2 MATHACH = ﬂa +r

INTRCPT1

LEVEL 1 MODEL (bold: group-mean centering; bold italic: grand-mean centering)

MINORITY LEVEL E MODEL (bold italic: grand-mean centering)
FEMALE By = iggt Yy
SES

MATHA Qutcome variable

add variable uncentered
add variable group centered
add variable grand centered
Delete variable from model

Add additional cutcome variable

MixedI S
Figure 2.14 Specification of model predictor, SES, for the HS&B example

30



& WHLM: him2 MDM File: hsb.mdm

File Basic Settings Other Settings Run Analysis Help
Qutcome

22 Levebl <C1 \(ATHACH = §, + b, (SES) +
Level-2 = By tBy(SESy

=10l x|

LEVEL 1 MODEL (bold: group-mean centering; bold ttalic: grand-mean centering) ﬂ

INTRCPT1 LEVEL 2 MODEL (bold ttalic: grand-mean centering)
MINORITY By = 7, U

FEMALE 0 00 0

SES B 4= tgp T

MATHACH t

The highlighted equation is currently selected for modeling

Mixed | v]

Figure 2.15 Model window for the HS&B example

Step 2: To specify the level-2 prediction model

1. Select the equation containing the regression coefficient(s) to be modeled by clicking on the
equation ( S, (intercept) and f, (SES slope) in our HS&B example). A list box for level-2
variables (>>Level-2<<) will appear (see Figure 2.16).

2. Click to select the variable(s) to be entered as predictor(s) and the type of centering. For our
example, select SECTOR and add variable uncentered, and MEANSES and add variable
grand-mean centered to model g, and £, , see Figure 2.16.

3. HLM allows the model to be displayed in three alternative forms. Figure 2.17 displays the

model specified in the default notation familiar to users of previous versions of HLM.

=] WHLM: him2 MDM File: HSB.MDM

|| File Basic Settings Other Settings Run Analysis Help
Outcome
Level-1

MATHACH = g, + £,(SES) +r

INTRCPT2

LEVEL 1 MODEL (bold: group-mean centering; bold italic: grand-mean centering)

S

| »

SIZE LEVEL 2 MODEL (bold italic: grand-mean centering)
gggé ' add variable uncentered

DISCLI add variable grand centered

HIMIN Delete variable from meodel

MEAN Add as additional outcome variable

Figure 2.16 Specification of the level-2 model
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[ wHLM: him2 MDM File: HSB.MDM

File Basic Settings Other Settings Run Analysis Help

=10l x|

Outcome LEVEL 1 MODEL (bold: group-mean centering; bold italic: grand-mean centering) ﬂ
Level-1
5> Level2 << MATHACH = ,80 +,81 (SES) +r
INTRCPT2 LEVEL 2 MODEL (bold talic: grand-mean centering)
SIZE —
SECTOR ,80 = Y00 +7m(SECTOR) +-y02(M'EANSES) + U,
PRACAD ,81 = Y49 +7“(SECTOR’) +'y?2(II4EANSE$)
DISCLIM
HIMINTY
MEANSES
Mixedl v|

Figure 2.17 Model window for the HS&B example

4. In addition, the model can also be displayed in a mixed model formulation and with complete
subscripts for all coefficients present in the model as illustrated in Figure 2.18. The mixed
model is obtained by clicking the Mixed button at the bottom of the main window. The
model is shown as a single equation, obtained by substituting the equations for £, and g, in

the level-1 equation. This notation shows the model in a familiar linear regression format,
and also draws attention to any cross-level interaction terms present in the combined model.
By using the Preferences dialog box accessible via the File menu (see details in Section 2.8)
both the mixed model formulation and the model with subscripts for all coefficients can be
displayed automatically. The model can also be saved as an EMF file for later use in reports
or papers.

H WHLM: him2 MDM File: HSB.MDM N

File Basic Settings Other Settings Run Analysis Help

=101 x|

Outcome | pyE| 1 MODEL :‘:I
el |\ aack = SES, - SES
>> Level-2 << § = B+ By (SES,- Sy
g;ECPTQ LEVEL 2 MODEL
S Boj = Too * 16y (SECTOR ) + 7,,(MEANSES , - MEANSES, ) + 1,
PRACAD 87 = T +19,(SECTOR ) +,,(MEANSES, - MEANSES )
DISCLIM
HIMINTY
MEANSES
Mixed|'|

MATHACH,; = 1, +15,*SECTOR, + 1, *(MEANSES, - MEANSES ) +,,+(SES; - SES_Jj
+17,*SECTOR #(SES; - SES ) +
7, MMEANSES, - MEANSES J+(SES ;- BES, ) + uy + 1,
=

Figure 2.18 Alternative model window for the HS&B example

Step 3: To specify level-1 coefficients as random or non-random

The program begins by assuming that only the intercept ( 3,) is specified as random. The u, at
the end of the S, equation is grayed out and constrained to zero (See Figure 2.15), i.e. this level-
1 coefficient is specified as “fixed”. In the HS&B example, both level-1 coefficients, £, and /3,
are to be specified as random. To specify the SES slope as randomly varying, click on the
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equation for g, so that the error term u, is enabled. Note that one can toggle the error term in
any of the three following ways:

Click on the error term, u, .

Type u.
Right-click on the yellow box, which will bring up a single-item menu toggle error
term. Click on the button.

Steps 1 to 3 are the three major steps for executing analyses based on the MDM file. Other
analytic options are described in Section 2.9. After specifying the model, a title can be given to
the output and the output file can be named by the following procedure:

w N

. Select Basic Settings to open the Basic Model Specifications — HLM2 dialog box.

Enter a title in the Title field (for example, Intercept and slopes-as-Outcomes Model)
and an output file name in Output file name field (see Figure 2.19). Click OK. See
Section 2.8 for the definitions of entries and options in Basic Model Specifications —
HLM2 dialog box.

. Open the File menu and choose Save As to open a Save command file dialog box.
. Enter a command file name (for example, HSB1.MDM).
. Click Run Analysis. A dialog box displaying the iterations will appear (see Figure

2.20).

Note: If you wish to terminate the computations early, press the Ctrl-C key combination once.
This will stop the analysis after the current iteration and provide a full presentation of results
based on that iteration. If you press Ctrl-C more than once, however, computation is terminated
immediately and all output is lost.
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P

*Basic Model Specifications - HLM2

| —Distribution of Outcome Variable

0

Normal (Continuous)
Bernoulli (0 or 1)
Poisson (constant exposure)

Poisson (variable exposure)

=
=
7" Binomial (number of trials) [None |
=
=
2

Multinomial
Ordinal Number of categories I
rdina

I Over dispersion

Level-1 Residual File | Level-2 Residual File |

Title | no title

Output file name |C:\HLM Examples\Chapter2\him2_html

(See File-=Preferences to set default output type)
v Make graph file

Graph file name | C:\HLM| Examples\Chapter2\grapheq.geq

Cancel | OK

Figure 2.19 Basic Model Specifications — HLM2 dialog box for the HS&B example

o | CAHLM\HLM2.EXE

value likelihood function iteration
value likelihood function iteration
value likelihood function at iteration
value likelihood function iteration
value likelihood function iteration
value likelihood function iteration
value likelihood function iteration
value likelihood function iteration
value likelihood function iteration
value likelihood function iteration
value likelihood function at iteration
value likelihood function iteration
value likelihood function iteration
value likelihood function iteration
value likelihood function iteration
value likelihood function iteration
value likelihood function iteration
value likelihood function iteration
value E likelihood function iteration
value likelihood function iteration
value likelihood function iteration
value likelihood function iteration
value likelihood function iteration
value the likelihood function iteration

~2.325094E 084
—2.325094E+864
-2 .325094E+884
~2.3250941E+0894
—2.325094E+864
~2.3256894E +004
-2 .3250941E+884
—2.325894E+864
~2.325094E 004
—2.325094E+864
-2.325694E+884
~2.325094E+084
2.325894E+804

2.325694E 604
-2.3258941E+884
—2.325894E+804
~2.325094E 004
—2.325894E+864
—2.325094E+884
~2.325094E+004
—2.325094E+804

LI LR I L IO UL I LR I (IR B U L B )

nnwEunwwEn

—2.325894E+804

Figure 2.20 Iteration screen

2.5.3 Annotated HLM2 output

The output file will automatically be displayed in the format specified via the Preference menu.
It can also be opened by selecting the View Output option from the File menu. Here is the
output produced by the Windows session described above (see example HSB1.MDM).
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Specifications for this HLM2 run

Problem Title: Intercepts and Slopes-as-outcomes Model
The data source for this run = HSB.MDM

The command file for this run = HSB1.MLM

Output file name = him2.html

The maximum number of level-1 units = 7185

The maximum number of level-2 units = 160

The maximum number of iterations = 100

Method of estimation: restricted maximum likelihood

The outcome variable is MATHACH
Summary of the model specified
Level-1 Model

MATHACH; = Bo; + By*(SES;) + 1

Level-2 Model

Boj = Yoo * Yor*(SECTOR)) + y2*(MEANSES)) +
Bi = V10 + Y11 (SECTOR)) + y1*(MEANSES)) + uy;

SES has been centered around the group mean.
MEANSES has been centered around the grand mean.

Mixed Model

MATHACHU =Yoot Vo]_*SECTORj + VOZ*MEANSES]

+ VlO*SESij + V]_]_*SECTOR]'*SESij + Vlz*MEANSESj*SESij

+ Ugj + Ulj*SES+ fjj

The information presented on the first page or two of the HLM2 printout summarizes key details
about the MDM file (e.g., number of level-1 and level-2 units, whether weighting was specified),
and about both the fixed and random effects models specified for this run. In this particular case,
we are estimating the model specified by Equations 4.14 and 4.15 in Hierarchical Linear

Models.

Level-1 OLS Regressions

Level-2 Unit INTRCPT1 SES slope
1224 9.71545 2.50858
1288 13.51080 3.25545
1296 7.63596 1.07596
1308 16.25550 0.12602
1317 13.17769 1.27391
1358 11.20623 5.06801
1374 9.72846 3.85432
1433 19.71914 1.85429
1436 18.11161 1.60056
1461 16.84264 6.26650
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When first analyzing a new data set, examining the oL equations for all of the units may be
helpful in identifying possible outlying cases and bad data. By default, HLM2 does not print out
the ordinary least squares (OL) regression equations, based on the level-1 model. The OLS
regression equations for the first 10 units, as shown here, were obtained using optional settings

on the Other Settings menu.

The average OLS level-1 coefficient for INTRCPT1 = 12.62075

The average OLS level-1 coefficient for SES = 2.20164

This is a simple average of the OLS coefficients across all units that had sufficient data to permit

a separate OLS estimation.

Least Squares Estimates
6 = 39.03409

Least-squares estimates of fixed effects

. - Standard . Approx.
Fixed Effect Coefficient error t-ratio d. fp-)p p-value
For INTRCPTL, B
INTRCPTZ2, yoo 12.083837 0.106889 113.050 7179 <0.001
SECTOR, yo;  1.280341 0.157845 8.111 7179 <0.001
MEANSES, vy, 5.163791 0.190834 27.059 7179 <0.001
For SES slope,
INTRCPT2, y1p 2.935664 0.155268 18.907 7179 <0.001
SECTOR, y11  -1.642102 0.240178 -6.837 7179 <0.001
MEANSES, y;, 1.044120 0.299885 3.482 7179 <0.001
Least-squares estimates of fixed effects
(with robust standard errors)
. - Standard . Approx.
Fixed Effect Coefficient error t-ratio df p-value
For INTRCPTL, Bo
INTRCPTZ2, yoo 12.083837 0.169507 71.288 7179 <0.001
SECTOR, Y01 1.280341 0.299077 4.281 7179 <0.001
MEANSES, yp, 5.163791 0.334078 15.457 7179 <0.001
For SES slope,
INTRCPTZ2, yio 2.935664 0.147576 19.893 7179 <0.001
SECTOR, y11 -1.642102 0.237223 -6.922 7179 <0.001
MEANSES, y1, 1.044120 0.332897 3.136 7179 0.002

The first of the fixed effects tables are based on OLS estimation. The second table provides
robust standard errors. Note that the standard errors associated with y,,, »,,, and y,, are smaller

than their robust counterparts.

The least-squares likelihood value = -2.336211E+004
Deviance = 46724.22267
Number of estimated parameters = 1

Starting Values

6%(0) = 36.72025
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1)

INTRCPT1,8, 2.56964 0.28026

SES,B: 0.28026 -0.01614
New 1)

INTRCPT1,8, 2.56964 0.28026

SES,B: 0.28026 -0.01614

The initial starting values failed to produce an appropriate variance-covariance matrix (t)). An

automatic fix-up was introduced to correct this problem (New ().

Estimation of fixed effects
(Based on starting values of covariance components)

Standard

Approx.

Fixed Effect Coefficient t-ratio p-value
error d.f.

For INTRCPTL, B
INTRCPT2, yoo 12.094864 0.204326 59.194 157 <0.001
SECTOR, yo1  1.226266 0.315204 3.890 157 <0.001
MEANSES, yo, 5.335184 0.379879 14.044 157 <0.001

For SES slope,
INTRCPT2, y1o 2.935219 0.168674 17.402 157 <0.001
SECTOR, y;;  -1.634083 0.260672 -6.269 157 <0.001
MEANSES, y;, 1.015061 0.323523 3.138 157 0.002

Above are the initial estimates of the fixed effects. These are

substantial conclusions.

The value of the log-likelihood function at iteration 1 = -2.325199E+004
The value of the log-likelihood function at iteration 2 = -2.325182E+004
The value of the log-likelihood function at iteration 3 = -2.325174E+004
The value of the log-likelihood function at iteration 4 = -2.325169E+004
The value of the log-likelihood function at iteration 5 = -2.325154E+004

The value of the log-likelihood function at iteration 57 = -2.325094E+004
The value of the log-likelihood function at iteration 58 = -2.325094E+004
The value of the log-likelihood function at iteration 59 = -2.325094E+004
The value of the log-likelihood function at iteration 60 = -2.325094E+004

not to be used in drawing

Below are the estimates of the variance and covariance components from the final iteration and

selected other statistics based on them.

6’ = 36.70313
T
INTRCPTL, B, 2.37996 0.19058
SES.B: 0.19058 0.14892
T (as correlations)
INTRCPT1, B, 1.000 0.320
SES.B: 0.320 1.000
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Random level-1 Reliability These are average reliability

coefficient estimate estimates for the random

INTRCPTL,8, 0.733 level-1 coefficients
SES,B: 0.073

The value of the log-likelihood function at iteration 61 = -2.325094E+004

The next three tables present the final estimates for: the fixed effects with GLS and robust
standard errors, variance components at level-1 and level-2, and related test statistics.

Final estimation of fixed effects:

Standard Approx.

Fixed Effect Coefficient error t-ratio daf p-value
For INTRCPTL, B
INTRCPT2, yoo 12.095006 0.198717 60.865 157 <0.001
SECTOR, Yoz 1.226384 0.306272 4.004 157 <0.001
MEANSES, y,,  5.333056 0.369161 14.446 157 <0.001
For SES slope,
INTRCPT2, y1o 2.937787 0.157119 18.698 157 <0.001
SECTOR, y11 -1.640954 0.242905 -6.756 157 <0.001
MEANSES, y;,  1.034427 0.302566 3.419 157 <0.001
Final estimation of fixed effects
(with robust standard errors)
. - Standard - Approx. ;
Fixed Effect Coefficient error t-ratio df. p-value
For INTRCPT1, B,
INTRCPT2, yoo 12.095006 0.173688 69.637 157 <0.001
SECTOR, Vo1 1.226384 0.308484 3.976 157 <0.001
MEANSES, vo2 5.333056 0.334600 15.939 157 <0.001
For SES slope,
INTRCPT2, y10 2.937787 0.147615 19.902 157 <0.001
SECTOR, y11 -1.640954 0.237401 -6.912 157 <0.001
MEANSES, yi 1.034427 0.332785 3.108 157 0.002

The first table provides model-based estimates of the standard errors while the second table
provides robust estimates of the standard errors. Note that the two sets of standard errors are
similar. If the robust and model-based standard errors are substantively different, it is
recommended that the tenability of key assumptions should be investigated further (see Section
4.3 on examining residuals).

Final estimation of variance components

Standard Variance 2

Random Effect Deviation Component d.f. X p-value
INTRCPT1, ug 1.54271 2.37996 157 605.29503 <0.001
SES slope, u; 0.38590 0.14892 157 162.30867 0.369
level-1, r 6.05831 36.70313
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Statistics for current covariance components model

Deviance = 46501.875643
Number of estimated parameters = 4

2.5.4 Model checking based on the residual file

HLM2 provides the data analyst with a means of checking the fit and distributional assumptions
of the model by producing residual files for the level-1 and level-2 models. These files may be
requested using the Basic Model Specifications — HLM2 dialog box (see Fig. 2.19). The level-1
and level-2 residual files will be written as SPSS, SAS, STATA, SYSTAT or ASCII data files. In the
case of SPSS and STATA, the residual files will be written out so that the respective packages
may use them immediately. The other forms of raw data will require submitting them as
command streams.

2.5.44 The level-1 residual file
2.5.4.1.1 Structure of the level-1 residual file

The level-1 residual file will contain level-1 residuals (the differences between the observed and

fitted values), the fitted values, the square root of o, the values of the level-1 and level-2
predictors entered in the model, and those of other level-1 and level-2 variables selected by the
user. To illustrate, we show how to prepare SPSS residual files.

To create the SPSS level-1 residual file type

1. Select Basic Settings to open the Basic Model Specifications — HLM2 dialog box.

2. Click Level-1 Residual File to open a Create Level-1 Residual File dialog box (see
Figure 2.21).

3. For the level-1 and level-2 variables, the box displays two columns of variables. The
predictor variables in the model are in the Variables in residual file column. Others
are listed in the Possible choices column. To include any of them in the residual file
for exploratory purposes, double-click on their labels.

4. Select SPSS residual file type (default).

. Enter a name for the residual file in the Residual File Name box (for example,

RESFIL1.SAV, see Figure 2.21). Click OK.

o1
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Create Level-1 Residual File

¥ Create Residual File Daouble-click to move vatiables between calumns
~Lewal-1 ~Level-2
“ariables in YYariables in
Possible choices residual file FPossible choices residual file
FEMALE MATHACH DI=CLIR MEAMNSES
MIMORITY SES HIMAIMTY SECTOR
PRACAD
SIFE
~Residual File Type Qe
f¥ SPSS SAS 0 Stata © SYSTAT © Free Format
Residual File Mame resfill. sav Cancel
Figure 2.21 Create Level-1 Residual File dialog box
= resfill.sav - SPSS Data Editor -|O] x|
File Edit Wew Data Transform Analyze Graphs  Utilities  Add-ons  Window  Help
Z|H|S| B <] =k @l £ BlEE %
|1 s I2id |1224
[Zid resid fitval sigma 585 mathach sector MEanses Iﬂ
111224 -1.516 7,392 B.080 -1.094 5876 .0oo - 428
211224 10,245 9 452 B.080 - 184 19.7083 .0oo - 428
31224 10.755 9594 6080 -.094 20.349 .ooo =428
411224 -.805 9286 B.080 234 8.781 .0oo - 428
al1224 7.489 10.409 B.080 276 17.893 .0oo - 428
Bl1224 5223 10.805 6080 AAE 4 583 .ooo -428
71224 -12.228 9 395 B.080 - 184 -2.832 .0oo - 428
gl1224 -3.036 8554 B.080 -4 F23 .0oo - 428
9f1224 72T 8.801 B.050 -84 1.6827 .0oo -428
1011224 11.772 9749 B.080 -.024 2182 .0oo - 428 -
4 | v [ Data View £ ‘arisble View f L4 | r
|5PSS Processor s ready | | .

Figure 2.22

Level-1 Residual File

Data for the first ten cases in RESFIL1.SAV are shown in Figure 2.22. The file consists of the

level-2 ID, L2ID, and the following variables:

e L1RESID: the difference between the fitted and observed value for each level-1 unit.
e FITVAL: the fitted value for each level-1 unit.
e SIGMA: the square root of o°.
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The variables SES, MATHACH, SECTOR, and MEANSES are described in Section 2.5.1.1.
2.5.4.1.2 Some possible residual analyses

We illustrate a possible use of a residual file in examining the tenability of the assumption of
normal distribution of level-1 errors, whose violations could adversely influence the estimated
standard errors for the estimates of the fixed effects and inferential statistics (see Hierarchical
Linear Models p. 266). Figure 2.23 displays a normal Q-Q plot of the level-1 residuals for the
7,185 students based on the final fitted model. The plot is approximately linear, suggesting there
is not a serious departure from a normal distribution and that the assumption is tenable.
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Figure 2.23 Q-Q plot of level-1 residuals
2.5.4.5 The level-2 residual file

This file will contain the EB residuals (see Equation 1.10 above), OL residuals (see Equation 1.9
above), and fitted values, i.e.,

7q0 +27qswsj

for each level-1 coefficient. By adding the OL residuals to the corresponding fitted values, the
analyst can also obtain the OL estimate of the corresponding level-1 coefficient 4, ;. The file also

produces the EB estimate ﬂ;j of each level-1 coefficient, ;.

In addition, the file will contain Mahalanobis distances (which are discussed below), estimates of
the total and residual standard deviations (log metric) within each unit, the values of the
predictors used in the level-2 model, and any other level-2 prediction variables selected by the
user.
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To create the SPSS level-2 residual file type

=

Select Basic Settings to open the Basic Model Specifications — HLM2 dialog box.

Click Level-2 Residual File to open a Create Level-2 Residual File dialog box.

3. Double-click the variables to be entered into the residual file (for our example, select
DISCLIM, PRACAD, HIMINTY and SIZE, see Figure 2.24).

4. Select SPSS as Residual File Type. Note that SYSTAT, STATA or SAS file type can

be created as well, or the residuals written to file in free format. By default, a SYSTAT

file will be created. To set the default file type created to one of the other formats, the

Preference dialog box (see Section 2.8) can be used.

N

¥ Create Residual File

“ariables in
Possible choices residual file

DISCLIM
HIMINTY
MEANSES
FRACAD
SECTOR
SI7E

Double-click to move variables between columns

Residual File Type
& SPES (0 SAS (C Stata

 SYSTAT  Free Format

Residual File Mame | resfilZ. sav

)24 Cancel |

Figure 2.24 Create Residual File dialog box

5. Enter a name for the residual file in the Residual File Name box (for example
RESFIL2.SPS, see Figure 2.24). Click OK.

An example of an SPSS version of a level-2 residual file is shown in Figure 2.25. Only the data
from the first ten units and the first 8 variables are reproduced here. This file can be used to
construct various diagnostic plots.

2.5.4.2.1 Structure of the level-2 residual file

The residual file contains a single record per unit. The first variable in this file contains the unit
ID, followed by the number of level-1 units within that level-2 unit (denoted by nj), and various
summary statistics (chipct through mdrsvar). These are followed by the two EB residuals; the two
oL residuals; and the fitted or predicted values of the level-1 coefficients based on the estimated
level-2 models. Next are the EB coefficients ecintrcp and ecses, which are the sum of the fitted
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values plus the EB residuals. The posterior variances and covariances of the estimates of the
intercept and the SES slopes are given next (pv0o to pvc10). Finally, the level-2 predictors used in
the analysis plus those additional level-2 predictors requested by the user for inclusion in the file
are given (not shown in Figure 2.24).

While most of this is straightforward, the information contained in the first set of variables for
each unit merits elaboration. nj is the number of cases for level-2 unit j. It is followed by two

variables, chipct and mdist. If we model g level-1 coefficients, mdist would be the Mahalanobis

distance (i.e., the standardized squared distance of a unit from the center of a v-dimensional
distribution, where v is the number of random effects per unit). Essentially, mdist provides a

single, summary measure of the distance of a unit's EB estimates, ,8;, from its “fitted value,”
7q0 +Z7/q0Wsj )

= resfilz.say - P55 Data Editor I [ m] S
File Edit Yiew Data Transform Analyze Graphs  Utilities  Add-ons  Window Help
(68| B| || =k sl Fe= Bl&F %2
|‘I :l2id |‘I 224
[2id hj chipct mdist Intatvar olsrevar rndrsvar ehintrep [ =
11224 47 08 003 2027 20MB 2.005 -073
2(1238 25 18 148 1.949 1.920 1.899 56
3[1296 43 2738 2.460 1.678 1.680 1.684 -1.710
4(1305 20 256 396 1.811 1.833 1.820 031
51317 43 1.392 1.341 1.6593 1.701 1.691 -1.531
61355 30 1.711 1.824 1.771 1.595 1.613 - 452
71374 20 1.821 1.880 2123 2087 2072 -1.478
g(1433 35 1.987 2.009 1.356 1.328 1.314 1.776
9(1436 44 1.031 1.037 1.515 1.506 1.485 1.292
1011461 33 3.567 3.136 1.939 1.707 1.745 814 -
4 | ¥ |\, Data view £ ‘Variable ‘iew [ |4 | _>|_I
|5F‘SS Processor is ready | | E

Figure 2.25 SPSS version of residual file

If the normality assumption is true, then the Mahalanobis distances should be distributed
approximately ;g(zv). Analogous to univariate normal probability plotting, we can construct a Q-Q
plot of mdist vs. chipct. chipct are the expected values of the order statistics for a sample of size J
selected from a population that is distributed ;(fv). If the Q-Q plot resembles a 45 degree line, we

have evidence that the random effects are distributed v-variate normal. In addition, the plot will
help us detect outlying units (i.e., units with large mdist values well above the 45 degree line). It
should be noted that such plots are good diagnostic tools only when the level-1 sample sizes, nj,
are at least moderately large. (For further discussion see Hierarchical Linear Models, pp. 274-
280.)

After mdist, three estimates of the level-1 variability are given:
e The natural logarithm of the total standard deviation within each unit, Intotvar.
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e The natural logarithm of the residual standard deviation within each unit based on its
least squares regression, olsrsvar. Note, this estimate exists only for those units that have
sufficient data to compute level-1 OLS estimates.

e The mdrsvar, the natural logarithm of the residual standard deviation from the final fitted
fixed effects model.

The natural log of these three standard deviations (with the addition of a bias-correction factor
for varying degrees of freedom) is reported (see Hierarchical Linear Models, p. 219). We note
that these statistics can be used as input for the V-known option in HLM2 in research on group-

level correlates of diversity (Raudenbush & Bryk, 1987; also see Sections 2.8.9 and 9.3).

2.5.4.2.2 Some possible residual analyses

We illustrate below some of the possible uses of a level-2 residual file in examining the
adequacy of fitted models and in considering other possible level-2 predictor variables. (For a
full discussion of this topic see Chapter 9 of Hierarchical Linear Models.) Here are the basic
statistics for each of the variables created as part of the HLM2 residual file.

N Minimum Maximum Mean Std. Deviation
nj 160 14 67 44.91 11.855
chipct 160 .006 11.537 1.99115 1.967047
mdist 160 .003 13.218 2.00727 2.144775
lntotvar 160 1.265 2.138 1.82057 .150434
olsrsvar 160 1.272 2.087 1.78983 .137449
mdrsvar 160 1.314 2.072 1.79039 .134968
ebintrcp 160 -3.718 4.162 .00000 1.312584
ebses 160 -.378 .438 .00000 .141577
olintrcp 160 -7.714 5.545 -.01079 1.847386
olses 160 -3.560 3.803 -.01823 1.460555
fvintrcp 160 5.760 17.754 12.63155 2.490807
fvses 160 .515 3.650 2.21987 .775690
ecintrcp 160 4.710 18.928 12.63155 2.815492
ecses 160 .288 3.845 2.21987 .788504
pv00 160 .486 1.255 .66785 .140621
pvl10 160 .036 .098 .05033 .011378
pvll 160 .121 .138 .12900 .003583
pvec00 160 L4409 1.257 .63936 .147741
pvcl0 160 .030 .097 .04682 .011911
pvcll 160 .138 .247 .16255 .017345
size 160 100.000 2713.000 1097.82500 629.506431
sector 160 .000 1.000 .43750 .497636
pracad 160 .000 1.000 .51394 .255897
disclim 160 -2.416 2.756 -.01513 .976978
himinty 160 .000 1.000 .27500 .447916
meanses 160 -1.188 .831 .00000 .413973
Valid N (listwise) 160

Examining OL and EB residuals. Figure 2.26 shows a plot of the OL vs EB residuals for the
SES slopes. As expected, the EB residuals for the slope are much more compact than the oL
residuals. While the latter ranges between (—4.0,4.0), the range for the EB residuals is only (

—0.5,0.5). (For a further discussion see Hierarchical Linear Models, pp. 87-92.)
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OLSES

EBSES

Figure 2.26 OL versus EB residuals for the SES slopes

Exploring the potential of other possible level-2 predictors. Figure 2.27 shows a plot of EB
residuals against a possible additional level-2 predictor, PRACAD, for the intercept model.
Although the relationship appears slight (a correlation of 0.15), PRACAD will enter this model as
a significant predictor. (For a further discussion of the use of residual plots in identifying
possible level-2 predictors see Hierarchical Linear Models, pp. 267-270.)
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Figure 2.27 EB residuals against a possible additional level-2 predictor, PRACAD, for the

intercept model

Next, in Figure 2.28, we see a plot of the OL vs EB residuals for the intercepts. Notice that while
the EB intercepts are “shrunk’ as compared to the OL estimates, the amount of shrinkage for the
intercepts as shown in Figure 2.28 is far less than for the SES slopes as shown in Figure 2.26.
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Figure 2.28 OL versus EB residuals for the intercepts

Examining possible nonlinearity of a level-2 predictor's relationship to an outcome. Next,
in Fig. 2.29, is an example of a plot of EB residuals, in this case the SES slope, against a variable
included in the model. This plot suggests that the assumption of a linear relationship between the
SES slope and MEANSES is appropriate. (That is, the residuals appear randomly distributed
around the zero line without regard to values of MEANSES.)

[
0.400
[}
o = = []
[
- = | = - .
‘l.--'.. "
= PR : - =
» " apgg " [
1] " .'.- iy "gm I )
] . 30", % "a =
L 0.000+ - L] -y
) u . = =
= u s 1 n
x = .' L I -
. L w: UEB
S = L Rt
[ ] - " - . a
™ & L ] L
H LTS i
[
[
-0.400 2
T T T T
-1.000 -0.500 0.000 0.500
meanses

Figure 2.29 EB residuals for SES slope against MEANSES

2.6 Handling of missing data

HLM2 provides three options for handling missing data at level 1: listwise deletion of cases when
the MDM file is made, listwise deletion of cases when running the analysis (See Figure 2.3), and
analysis of multiply-imputed data (see Section 11.2). A set of level-1 variables to be used as
basis for runtime deletion for a series of models based on the same MDM can also be selected via
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the Other Settings, Estimation Settings menu by using the Level-1 Deletion Variables
option. These follow the conventional routines used in standard statistical packages for
regression analysis and the general linear model. Listwise deletion of cases when the MDM file is
made is based on the variables selected for inclusion in the MDM file, while listwise deletion
when running the analysis only takes the variables included in the model into account.

At level 2, HLM2 assumes complete data. If you have missing data at level 2, you should either
impute a value for the missing information or delete the units in question, or preferably use
methods described in Section 11.2. Failure to do so will cause the automatic listwise deletion
of level-2 units with missing data when the MDM file is created.

For AscCIl file input, click Missing Data in the Make MDM — HLM2 dialog box. The dialog box
displayed in Fig. 2.30 will open.

Missing Dakta
~Mizsing Data? Delete missing data when:
" Yes  making mdm
% Mo " running analyses

If the missing value is the same far all variables,
click the Same button, otherwise click Differemnt.

The missing values then need to be entered on Careel |
the level-1 Labels screen.

i~ Same = Different

Figure 2.30 Missing Data dialog box

Assuming you have missing data, you should click Yes in the Missing Data? box, and select
deletion when making the MDM file or when running analyses. Then, if you have coded all of
your missing values for all of the variables to the same number, click the Same button. When
you specify the variable names, enter this number in the box to right of the first variable in the
Enter Variable Labels dialog box (see Fig. 2.31). If you have more than one missing value
code, check the Different button, and enter these codes for each respective variable on the Enter
Variable Labels screen.
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Missing Yalue Missing Yalue
variable 1: | | 0.000000 Variable 13 | |
variable 2: | | 0.000000 variable 14: | |
Variable 3: I I 0.000000 Variahle 15: I I
variable 4: | | variable 16: | |
Variable 5: | | Variable 17 | |
Variable 6: | | variable 18: | [
variable 7. | | Variable 19: | |
Variable 8: | | Variable 20: | I
Variable 9: | | Variable 21: | |
Variable 10: | | Variahle 22: | |
variable 11: | | variable 23 | |
Variable 12: | | variable 24 | |
ITI Cancel

Figure 2.31 Enter Variable Labels dialog box for missing ASCIl data

For non-ASClI data at level 1, you should click Yes in the Missing Data? field, and select when
you want to implement the listwise deletion by selecting one of the two options in this group
box. Then, when HLM2 encounters values coded as missing, it will recognize these properly. It is
important to note that some statistics packages (e.g. SAS) allow for more than one kind of
missing data code. HLM2 (and HLM3, etc.) will recognize only the standard, “system-missing”
code.

How HLM2 handles missing data differs a bit in the ASCII and non-ASCII cases. For ASCII data, it
is very important that you don't have any missing data codes or blanks in the level 2 file. HLM2
will read these as valid data; missing data codes as they are coded, and blanks will be read as
zeros. For non-AScCIl data, the program will skip over cases that have missing data in them,
essentially performing listwise deletion on the level-2 data file. Note: For non-Ascli file input,
the user has to either prepare system-missing values or missing value codes for the missing data.

2.7 The Basic Model Specifications - HLM2 dialog box

The Basic Model Specifications — HLM2 dialog box (see Fig. 2.32) is used to indicate the
distribution of the outcome variable, to request residual files and to provide a title and the
locations and names of output files.
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Basic Model Specifications - HLM2

~Distribution of Outcome Yariable

& Normal (Continuous)

Dichotomous outcomes " Bernoulli {0 or1)
—" Poisson (constant exposure)

CountautEormEs=— " Binomial (number of trials) Ih
None v
—" Poisson (variable exposure)
Multinomial outcomes —————— Multinomial :
Ordinal outcomes L~ Ordinal Number of categories I

Selectvariable that
indicates the number

of trials or unequal ——————— 1 Over dispersion

exposure

Request residual fles ————  Level-1 Residual File | | Level2 Residual File |
Specify output and _

graphics file names ™ Title |Intercepts and Slopes-as-Outcomes Model
and paths

Qutput file name I hsb1.out

{See File->Preferences to set default output type)
V' Make graph file

Graph file name Igrapheq,geq

Cancel I oK |

Figure 2.32 Basic Model Specifications - HLM2 dialog box

2.8  Other analytic options

2.8.1 Controlling the iterative procedure

Iteration Control - HLM2 ~ i

5
umber of (micro) iterations | 10000 = H(EWS‘O haf'f"j!e bad 'Tau(UD)—
et off diagonals to

1N

2 Mumber of macro iterations I— ¢ Manual reset

3 Frequency of accelerator IE— (s T
4 % change to stop iterating lm

(What to do when maximum number of iterations achieved without convergenceﬂ

& Prompt " Continue iterating " Stop iterating

Figure 2.33 Iteration Control - HLM2 dialog box

The iterative procedure settings can be changed by opening the Iteration Control — HLM2 dialog
box. To do so, select the Iteration Settings option from the Other Settings menu. Table 2.1
lists the definitions and options in the Iteration Control — HLM2 dialog box. See Fig. 2.33; note
the linking numbers in figure and table.
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Table 2.1 Table of definitions and options in Iteration Control - HLM2 dialog box

Key Terms Function Option Definition
1, 2 Number of Maximum number of iterations positive
iterations integer
3 Frequency of | Controls frequency of use of integer > 3 | Selects how often the
accelerator acceleration accelerator is used.
Default is 10.
4 % change to | Convergence criterion for positive Default: 0.000001.
stop iterating | maximum likelihood estimation real Can be specified
number to be more (or less)
restrictive
5 How to handle | Method of correcting unacceptable | 3 choices | 1. Set off-diagonal to 0

bad Tau(0) starting values

2. Manual reset
(starting values)

3. Automatic fix-up
(default)

2.8.2 Estimation control

Estimation Settings - HLM2

-

Type of Likelihood
+ Restricted maximum likelihood

Adaptive Gaussian Quadrature lteration Control

" First derivative

LaPlace lteration Control

i Maximum number of iterations

Mumber of quadrature points

- Maximum number of iterations

" Full maximum likelihood

——
——

" Second derivative

—

[~ Fixed Intercept, Random Coeffcient [ Diagonalize Tau r
Constraint of fixed eﬁects| Heterogeneous sigma*2 | Multiple imputati0n| 1
| Weighting | Latent Variable Regression | Plausible values|

Fix sigma*2 to specific value | computed

(Set to "computed” if you want sigma"2
random or if over-dispersion is desired)

e

Figure 2.34 Estimation Settings — HLM2 dialog box

The Estimation Settings — HLM2 dialog box, accessed via the Estimation Settings option on

the Other Settings menu, offers additional control over the iterative procedure.

HLM2 will use restricted maximum likelihood estimation by default. The type of likelihood used
is set in the Type of Likelihood group box (see Fig. 2.34), where full maximum likelihood

estimation may alternatively be requested (see Hierarchical Linear Models, pp. 52-53.)
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Full maximum Adaptive Gaussian Quadrature and LaPlace and EM LaPlace iterations may be
requested when nonlinear (HGLM) models are fitted. The maximum number of iterations
required, which has to be a positive integer, should be entered in the LaPlace Iteration Control
or EM LaPlace Iteration Control group box (see Fig. 2.34).

The Estimation Settings — HLM2 dialog box may also be used to access dialog boxes used in
defining special analyses, e.g. latent variable regression, applying HLM to multiply-imputed data,
and plausible value analysis. The Fixed Intercept, Random Coefficient option is used to
invoke the fiting of fixed intercepts random coefficients in models as discussed in Chapter 19.
The Diagonalize Tau option constrains the variance-covariance matrix to a diagonal matrix; in
other words no covariation between random coefficients are assumed or estimated if this option
is checked.

These special features, associated with the Plausible values, Multiple imputation and Latent
Variable Regression buttons in the Estimation Settings — HLM2 dialog box, are discussed in
Chapter 11.

2.8.3 Constraints on the fixed effects

A user may wish to constrain two or more fixed effects to be equal. For example, Barnett,
Marshall, Raudenbush, & Brennan (1993) applied this approach in studying correlates of
psychological distress in married couples. Available for each person were two parallel measures
of psychological distress. Hence, for each couple, there were four such measures (two per
person). At level-1 these measures were modeled as the sum of a “true score” plus error:

Yii = B Xiij + 5o Kyij 15
where X,;; is an indicator for females, X, is an indicator for males, and r; is a measurement

error. Hence f3,; is the “true score” for females and 4, ; is the “true score” for males. At level 2,

these true scores are modeled as a function of predictor variables, one of which was marital role
quality, W;, a measure of one's satisfaction with one's marriage. (Note that this is also a model

without a level-1 intercept.) A simple level-2 model is then:
B =70+, +Uy;
,sz =7zo+721Wj +Uy;.

The four coefficients to be considered are y,,, 711, 720, 721- We may, for instance, wish to specify
some constraints of fixed effects.

2.8.4 To put constraints on fixed effects

1. Open the Other Settings, Estimation Settings menu.

2. Click the Constraint of fixed effects button to open the Constrain Gamma dialog
box. Enter 1 in the Sector boxes (see Figure 2.35 for an example). Click OK. The
constraint imposed is y,; = 7,, -
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Coefficients with Os are not constrained, and those with 1s are. A user is allowed to impose
multiple constraints up to 5. Each set of the constrained coefficients will share the same value
from 1to 5.

Constrain Gammas

0K | Cancel |

MEASLRET slope, By
INTRCPTZ, v,,

o
MARITAL, v, , ’,

These two cosflicients are

constrained to be the same ESUIRER S0, ()

INTRCPTZ, ¥, [0 ]
MARITAL, v,

Figure 2.35 Constrain Gammas dialog box for the Barnett et al.'s (1993) example
2.8.5 Modeling heterogeneity of level-1 variances

Users may wish to estimate models that allow for heterogeneous level-1 variances. A simple
example (see HSB3.HLM) using the HS&B data would be a model that postulates that the two
genders have different means in and variances of math achievement scores. To specify a model
that hypothesizes different central tendency and variability in math achievement for the two
genders, the model displayed in Fig. 2.36 must first be set up.

To model heterogeneity of level-1 variances

1. Open the Other Settings menu and select the Estimation Settings option to open the
Estimation Settings — HLM2 dialog box.

2. Click the Heterogeneous sigma”2 button to open the Heterogeneous sigma’2
Predictors of level-1 variance dialog box. Double-click FEMALE to enter as a
variable in the Predictors of level-1 variance box (see Figure 2.37 for an example).
Click OK.
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{8 wHLM: him2 MDM File: HSB.MDM i o ] 24
File Basic Settings Other Settings Run Analysis Help

Outcome || pvEl 1 MODEL ﬂ

Zoiavelh o MATHACH .. = FEMALE
Level-2 g Byth ?)'( ,}') th

LZ“LRSQQ LEVEL 2 MODEL
FEMALE foy = oo * ¥
SES By = 7
MATHACH .

Mixedl v|

Model window for the modeling heterogeneity of level-1 variances example

Figure 2.36

Heterogeneous sigma™ 2: Predictors of level-1 variance

Double-click to move wariables in and out of Predictors column

Possible choices Predictors of level-1 variance
MINORITY FEMALE
SES

OK

Iteration Control

Macro lterations |1 1]1] Micro lterations |1 [1]1]

Stopping Criterion [0.0001000000 Stopping Criterion [0.0000010000

Figure 2.37 Heterogeneous sigma”2: Predictors of level-1 variance dialog box

The model estimated is a log linear-model for the level-1 variances, which can be generally
stated as:

o) =exp{a, + FEMALE, |

The following is a selected annotated output of the model run.

53



Final estimation of fixed effects:

Fixed Effect Coefficient Standard t-ratio Approx. p-value
error d.f.
For INTRCPTL, Bo
INTRCPT2, yoo 13.345271 0.253915 52.558 159 <0.001
For FEMALE slope, B;
INTRCPT2, y;0 -1.359401 0.171411 -7.931 7024 <0.001
Final estimation of fixed effects
(with robust standard errors)
Fixed Effect Coefficient Standard t-ratio Approx. p-value
error d.f.
For INTRCPTL, B
INTRCPT2, yoo 13.345271 0.260426 51.244 159 <0.001
For FEMALE slope, ;
INTRCPT2, y;0 -1.359401 0.185181 -7.341 7024 <0.001
Final estimation of variance components
Standard Variance 2
Random Effect Deviation Component d.f. X p-value
INTRCPT1, up 2.84757 8.10864 159 1601.08000 <0.001
level-1, r 6.23256 38.84483
Statistics for the current model
Deviance = 47051.483085
Number of estimated parameters = 4
Results for Heterogeneous o°
(macro iteration 4)
Var(R) = o® and log(c”) = ap + a;(FEMALE)
Model for level-1 variance
Parameter Coefficient ESr trzr;dard Z-ratio p-value
INTRCPT1 ,a0 3.70771 0.024645 150.444 0.000
FEMALE ,a; -0.09307 0.034023 -2.736 0.007
Summary of Model Fit
Model Number of Deviance
Parameters
1. Homogeneous o* 4 47051.48309
2. Heterogeneous o° 5 47044.02705
Model Comparison X d.f. p-value
Model 1 vs Model 2 7.45604 1 0.006
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The Z-ratio for y, (Z =-7.341) and Z-ratio for «, (Z =-2.736) for FEMALE indicate that the math

achievement scores of males are on average higher as well as more variable than those for
females. Furthermore, a comparison of the fits of the models suggests that the model with

heterogeneous within-school variances appears appropriate ( > = 7.45604, df = 1). See Chapter
10 in this manual for details on model comparisons.

2.8.6 Specifying level-1 deletion variables

If, when making the MDM file, “Delete missing data when running analyses” was specified, this
feature may be used to alter the default behavior of the programs. By default, the programs will
delete missing data on the basis of the level-1 variables actually in the model. While in many
cases this is the desired behavior, in other situations it may not be. For instance, one might be
running and comparing analyses that have different level-1 models. With many datasets, this can
lead to comparing results that have a different number of level-1 records used. To solve this
problem, check the option to delete missing data “when making the MDM file” (see Figure 2.30).

2.8.7 Using design weights

In many studies, data arise from sample surveys in which units have been selected with known
but unequal probabilities. In these cases, it will often be desirable to weight observations in order
to produce unbiased estimates of population parameters. According to standard practice in such
cases, the information from each unit is weighted inversely proportional to its probability of
selection.

Suppose, for instance, that in a pre-election poll, ethnic minority voters are over-sampled to
insure that various ethnic groups are represented in the sample. Without weighting, the over-
sampled groups would exert undue influence on estimates of the proportion of voters in the
population favoring a specific candidate. Use of design weights can yield unbiased estimates of
the population parameters.

Design weights are also commonly used to correct for differential non-response of sub-groups.
Response rates are estimated for relevant sub-groups, and information from each respondent is
weighted inversely proportional to the probability of response. That way, respondents who are
over-represented in a sample as a function of non-response are appropriately weighted down.

2.8.4.1 Design weighting in the hierarchical context

Hierarchical data can be described as arising from a multi-stage sampling procedure. For
example, schools might be sampled from a national frame of schools and then, within each
school, students might then be sampled from a list of all students attending the school.
Probabilities at each level might be known but unequal. For example, one might over-sample
private schools and then over-sample minority students within each school. Weights might be
constructed at each level to be inversely proportional to the probability of selection at that level.
In some cases, weights might be available at only one level. For example, in a two-level design
with students nested within schools, one might compute the marginal probability that a student is
selected as the product of the probability that student's school is selected multiplied by the
conditional probability that the student is selected given that his or her school is selected. In
another context, suppose persons are selected with known probability and then followed
longitudinally over time. In this case, we have occasions at level 1 nested within persons at level
2. The only weight may be a level-2 weight, inversely proportional to the probability of selection
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of that person. It is, of course, possible to include level-1 weights as well, but it is common to
have weights only at level-2 in such longitudinal studies.

HLM 7 uses a method of computation devised by Pfefferman et al. (1998) for hierarchical data.
This method, based on weighting the information of each case in the framework of maximum
likelihood, is more appropriate than the method of weighting in earlier versions of HLM, which
used a more conventional approach of weighting observations.

2.8.7.1 Weighting in two-level designs

In the two-level context, weights might be available at level 1, at level 2 or at both levels. If
weights are available at level-1 only, the methodology used in HLM 7 assumes that these weights
are inversely proportional to B, the marginal probability of that student i in school j is selected

into the sample. HLM 7 will then normalize the weight to have a mean of 1.0. Thus we have

N /P,
w,=— 1 (0.041)

ij J nj

>3un

j=1 i=1

in which case

nj

ZJ:ZW (0.012)

J=1

where N is the total sample size of level-1 units. In contrast, if weights are available only at level
2, the methodology assumes that these weights are inversely proportional to P, the probability of

selection of the level-2 unit. In this case, HLM 7 will again normalize the weight to have a mean
of 1.0, yielding

JIP,
(0.013)
Z 1/P,
j=1
in which case
Z LW =J. (0.014)

where J is the total number of level-2 units. If weights are available at both level-1 and level-2,

the methodology assumes that the level-1 weight is B,;, the conditional probability of selection

of unit i given that unit j was selected, so that P,; =P, | P;. The level-2 weight is assumed to be

||J
inversely proportional to P;. In this case, HLM will normalize the level-1 weight within level-2

units:
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n; /P,
W, = (0.015)

i~ n
Zl/ P,
i=1
so that the sum of these weights within a level-2 unit will be
D> owy; =n, (0.016)
i=1

where n; is the sample size of level-1 units in level-2 unit j.

2.8.7.2 Weighting in three-level designs

In the three-level context, weights might be available at any one of the three levels, at any pair of
them, or at all three levels. Normalization proceeds in a fashion completely analogous to that in
the case of two levels. If weights are available only at level 1, we assume these are inversely

proportional to B, , the marginal probability of selection of unit ijk. Similarly, if weights are
available only at level 2 or only at level 3, the corresponding probabilities are P, or R,

respectively. If the weights are at levels 1 and 2 but not 3, the corresponding probabilities are

P and P, ; if at levels 2 and 3 (but not 1), the corresponding probabilities are P,, and B ; if

the weights are at levels 1 and 3 (but not 2), the corresponding probabilities are B, and P,. If
weights are present at all three levels, the probabilities are B, , P, and B, .

To apply weights for both levels

In HLM, weights are selected at the time of analysis, not when the MDM file is made:

1. Select the Estimation Settings option from the Other Settings menu.
2. Click the Weighting button to access the pull-down menus used to select the weighting
variables at any level.

Note that the cover sheet of each HLM output reminds the user of the weighting specification
chosen.

2.8.8 Hypothesis testing
2.8.8.1 Multivariate hypothesis tests for fixed effects

HLM allows multivariate hypothesis tests for the fixed effects. For instance, for the model
displayed in Fig. 2.39, a user can test the following composite null hypothesis:

Ho 70 =7:.=0,

where y,, is the effect of SECTOR on the intercept and y,, is the effect of sector on the SES
slope.
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WHLM: him2 MDM File: hsb.mdm Command File: whimtemp.him
File Basic Settings Other Settings Run Analysis Help

=10lx|

__Outcome |, ryE| 1 MODEL i‘
__Levebl | \\ATHACH. = p, +p,(SES..5E5 )+
>> Level 2 << i = B+ By BES ;= SES, ) Apy
< 22 2r
QEECF’T? Var(r)) = of and log(oy) = o, + o, (FEMALE )
gs%% LEVEL 2 MODEL
oy Bey = oo +/'gm(SECTORj) + 75o(MEANSES ) +
HIMINTY = SECTOR ) +v,,(MEANSES ) + u,.
MEANSES | P4 = o P el DTy
Mixedlvl

/

Test if these two fixed effects are baoth zero

Figure 2.39 Model window

Below is a procedure that illustrates a Windows execution of the hypothesis test.

To pose a multivariate hypothesis test among the fixed effects

1. Open the Other Settings menu and select the Hypothesis Settings option to open
the Hypothesis Testing — HLM2 dialog box (See Figure 2.40).

2. Click “1” to open the General Linear Hypothesis: Hypothesis 1 dialog box and to
specify the first hypothesis (see Fig 2.41 for the contrasts for testing both of the effects
of SECTOR on the intercept and on the SES slope as null, see Hierarchical Linear
Models, p. 82). Then, click the “2” button for the second column and enter a 1 on the
7., line in the second column. Click OK.

Hypothesis Testing - HLM2 )

Click here to implement ~Multivariate Hypothesis Tests
multivariate hypothesis 3 I R e A T B Bl 87 Sl TR T O S T
tests using VWald tests walas s el elelmz] 2] 2] 2
Enter deviance statistic
and number of parameters ~Test against another model
Here'ta compute likelihood Deviance |test not used

ratio tests OK

Number of Parameters Itest not used

Click here to implement
test of homogeneity of

5 —— [ Test homogeneity of level-1 variance
variance

Figure 2.40 Optional Hypothesis Testing/Estimation dialog box
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Eeneral Linear Hypothesiz: Hyppothesziz 1 |

4 3
M Cancel | FTI_I '''''' ‘| . 2 . 3 . 4 i 5 _I
INTRCF‘TL[SD j
INTRCPT2, v, looooo | (ooooo | [ooooo || | | |
Note 1's are SECTOR, v, [1.0000 | ame0a | aacen | | | |
entered hare | MEANSES, v, looooo | (oooo0 | [omoooo || | | |
SES slope, B,
INTRCPT2, v, , looooo | (oooo0 | [omoooo || | | |
SECTOR, v,, looooo | {10000 | [omoooo || | | |
MEANSES, v, , W@.DDDD | [ooooo || | | |
=]

Figure 2.41 General Linear Hypothesis: Hypothesis 1 dialog box

The HLM2 output associated with this test appears in Section 2.8.8.3 below. (For a further
discussion of this multivariate hypothesis test for fixed effects see Hierarchical Linear Models,
pp. 58-61, 81-85).

2.8.8.2 Testing homogeneity of level-1 variances

By default, HLM2 assumes homogeneity of residual variance at level 1. That is, it specifies a

common o within each of the J level-2 units. As an option, HLM2 tests the adequacy of this
assumption.

To test homogeneity of level-1 variances

1. Click the Test homogeneity of level-1 variance box (Figure 2.40).

2. The HLM2 output associated with this test also appears in Section 2.8.8.3 below. (For a
further discussion of this test see Hierarchical Linear Models, pp. 263-267. We advise
that users review these pages carefully before using this procedure.)

2.8.8.3 Multivariate tests of variance-covariance components specification

HLM2 also provides, as an option, a multi-parameter test for the variance-covariance components.
This likelihood-ratio test compares the deviance statistic of a restricted model with a more
general alternative. The user must input the value of the deviance statistic and related degrees of
freedom for the alternative specification. Below we compare the variance-covariance
components of two Intercept-and-Slope-as-Outcome models. One treats S, as random and the

other does not.

To specify a multivariate test of variance-covariance components

Enter the deviance and the number of parameters in the Deviance Statistics box and in the
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Number of Parameters box (see Fig. 2.40) respectively (the two numbers for our example are
46512.978000 and 4, obtained in Section 2.5.3).

The HLM2 output associated with this test appears in the section below. (For a further discussion
of this multi-parameter test see Hierarchical Linear Models, pp. 63-65, 83-85). Below is an
example of a selected HLM2 output that illustrates optional hypothesis testing procedures.

The outcome variable is MATHACH
Summary of the model specified
Level-1 Model

MATHACH;; = Bo; + B1*(SESy) + 1

Level-2 Model

fui =700 + y01*(SECTOR}) + 02*(MEANSES)) + Ug,
B1i = 710+ y11*(SECTOR)) + y12*(MEANSES]) + Uy

SES has been centered around the group mean.
MEANSES has been centered around the grand mean.
Mixed Model

MATHACH” =Yoo t Vo]_*SECTORj + VOZ*MEANSES]
+ YlO*SESij + Yll*SECTORj*SESij + VlZ*MEANSESj*SESij
+ Ugj + Ulj*SES

Note, the middle section of output has been deleted. We proceed directly to the final results
page.

Final estimation of fixed effects:

Standard Approx.

Fixed Effect Coefficient error t-ratio df p-value

For INTRCPT1, B,
INTRCPT2, yoo 12.095250 0.198627 60.894 157 <0.001
SECTOR, yo1  1.224401 0.306117 4.000 157 <0.001
MEANSES,

Yoz 5.336698 0.368978 14.463 157 <0.001

For SES slope,
INTRCPTZ2, yi0 2.935664 0.150690 19.482 7022 <0.001
SECTOR, y11  -1.642102 0.233097 -7.045 7022 <0.001
MEANSES,

Y12 1.044120 0.291042 3.588 7022 <0.001

60



Final estimation of fixed effects
(with robust standard errors)

. - Standard . Approx.
Fixed Effect Coefficient error t-ratio d_f?p p-value
For INTRCPTL, Bo
INTRCPTZ2, yoo 12.095250 0.173679 69.641 157 <0.001
SECTOR, yo;  1.224401 0.308507 3.969 157 <0.001
MEANSES,
Yo2 5.336698 0.334617 15.949 157 <0.001
For SES slope,
INTRCPTZ2, y1i0 2.935664 0.147576 19.893 7022 <0.001
SECTOR, y1;  -1.642102 0.237223 -6.922 7022 <0.001
MEANSES,
V12 1.044120 0.332897 3.136 7022 0.002
Final estimation of variance components
Standard Variance 2
Random Effect Deviation Component d.f. X p-value
INTRCPT1, ug 1.54118 2.37524 157 604.29895 <0.001
level-1, r 6.06351 36.76611

Statistics for current covariance components model

Deviance = 46502.952743
Number of estimated parameters = 2

For the likelihood ratio test, the deviance statistic reported above is compared with the value
from the alternative model manually. The result of this test appears below.

Variance-Covariance components test

X’ statistic = 10.02526
Degrees of freedom = 2
p-value = 0.007

A model that constrains the residual variance for the SES slopes, £, to zero appears appropriate.
(For a further discussion of this application see Hierarchical Linear Models, pp. 83-85.)

Test of homogeneity of level-1 variance

¥” statistic = 244.08638
degrees of freedom = 159
p-value = 0.000

These results indicate that there is variability among the (J = 160) level-2 units in terms of the
residual within-school (i.e., level-1) variance. (For a full discussion of these results see
Hierarchical Linear Models, pp. 263-267.)
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Results of General Linear Hypothesis Testing - Test 1

Coefficients Contrast
For INTRCPT1, B,
INTRCPT2, yoo 12.095250 0.0000 0.0000
SECTOR, vo: 1.224401 1.0000 0.0000
MEANSES, Vo, 5.336698 0.0000 0.0000
For SES slope,
INTRCPT2, y1o 2.935664 0.0000 0.0000
SECTOR, y11 -1.642102 0.0000 1.0000
MEANSES, y1, 1.044120 0.0000 0.0000
Estimate 1.2244 -1.6421
Standard error of estimate 0.3085 0.2372

x° statistic = 60.527852
Degrees of freedom = 2
p-value = <0.001

The table above is a reminder of the multivariate contrast specified. The chi-square statistic and
associated p-value indicate that it is highly unlikely that the observed estimates for y, and y,,

could have occurred under the specified null hypothesis.
2.9 Output options

There are a few options relating to the output that can be selected on the Other Settings, Output
Settings menu:

e # of OLS estimates shown (HLM2 only) — this controls the number of OLS estimates
printed in the output. See the output in Section 2.5.3.

e Print variance-covariance matrices — see Section A.5.

e Print reduced output — if this is checked, only the header page and the final results
are printed.

Starting values, OLS estimates (if present), etc. will not be printed.

#of OLS estimates shown I’IEI

[T Print variance-covariance matrices

¥ Reduced output

Figure 2.42 Output Settings — HLM2 dialog box

2.10 Models without a level-1 intercept
In some circumstances, users may wish to estimate models without a level-1 intercept. Consider,
for example, a hypothetical study in which three alternative treatments are implemented within
each of J hospitals. One might estimate the following level-1 (within-hospital) model:
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Yij :ﬁljxlij +:sz'xzij +ﬁ3jx3ij +,

where X_.. (q = 1,2,3) are indicator variables taking on a value of 1 if patient i in hospital j has

aij
received treatment g, O otherwise; and 4, ; is the mean outcome in hospital j of those receiving
treatment g. At level-2, the treatment means f,; are predicted by characteristics of the hospitals.

Of course, the same data could alternatively be modeled by a level-1 intercept and two treatment
contrasts per hospital, but users will sometimes find the no-intercept approach is more
convenient.

An example of a no-intercept model appears on page 174 of Hierarchical Linear Models. The
vocabulary growth of young children is of interest. Both common sense and the data indicated
that children could be expected to have no vocabulary at 12 months of age. Hence, the level-1
model contained no intercept:

Y, = 7, (AGE,; —12) + 7, (AGE, —12)* +¢,

where AGE,, is the age of child i at time t in months and Y,; is the size of that child's vocabulary
at that time.

To delete an intercept from a level-1 model
Click INTRCPT1 on the >>Level-1<< drop-down list. Click delete variable from model.

2.11 Coefficients having a random effect with no corresponding fixed
effect

A user may find it useful at times to model a level-1 predictor as having a random effect but no
fixed effect. For example, it might be that gender differences in educational achievement are, on
average, null across a set of schools; yet, in some schools females outperform males while in
other schools males outperform females. In this case, the fixed effect of gender could be set to
zero while the variance of the gender effect across schools would be estimated.

The vocabulary analysis in Hierarchical Linear Models supplies an example of a level-1
predictor having a random effect without a corresponding fixed effect. For the age interval under
study, it was found that, on average, the linear effect of age was zero. Yet this effect varied
significantly across children. The level-1 model estimated was:

Y, = 7, (AGE, —12) + 7, ( AGE, —12)2 +e

ti

However, the level-2 model was:
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7 =

Ty = Pog + 1y

Notice that AGE — 12 has a random effect but no fixed effect.

To delete the fixed effect from a level-2 model

1. Select the equation from which the fixed effect is to be removed.

2. Click INTRCPT2 on the >>Level-2<< drop-down list. Click delete variable from
model.

2.12 Exploratory analysis of potential level-2 predictors

The user may be interested in computing “t-to-enter statistics* for potential level-2 predictors to
guide specification of subsequent HLM2 models. The implementation procedure is as follows.

To implement exploratory analysis of potential level-2 predictors

1. Open the Other Settings menu and choose Exploratory Analysis (level 2). A Select
Variables For Exploratory Analysis dialog box appears.

2. Click the equation associated with a regression coefficient to model the corresponding
coefficient. Click to select variables for exploratory analysis. (Figure 2.43 displays the
level-2 predictors chosen for our HS&B example).

3. Click Return to Model Mode to return to the model window.

The following contains a selected HLM2 output to illustrate exploratory analysis of potential
level-2 predictors.

i WHLM: him2 MDM File: hsh.mdm

File Basic Settings Other Settings  Fun Analysis  Help
Outcome ! Select Variahles For Explorator Return To Model Made ﬂ
Level-1 I

33 Level-2 << [|INTRCPTT, By oSlfE PRACAD DISCLIM HIMIMNTY

INTRCPTZ -

SIZE
SECTOR SES, By SIZE PRACAD DISCLIM HIMINTY,

PRACAD
DISCLIM

HIMIMTY - Mixed| |

Figure 2.43 Select Variables For Exploratory Analysis dialog box for the HS&B example

=101 x|
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Exploratory Analysis: estimated level-2 coefficients and their standard errors obtained by
regressing EB residuals on level-2 predictors selected for possible inclusion in subsequent HLM
runs

Level-1 Coefficient Potential Level-2 Predictors
INTRCPT1,8,

SIZE PRACAD DISCLIM HIMINTY
Coefficient 0.000 0.690 -0.161 -0.543
Standard Error 0.000 0.404 0.106 0.229
t-value 1.569 1.707 -1.515 -2.372
SES,;

SIZE PRACAD DISCLIM HIMINTY
Coefficient 0.000 0.039 -0.005 -0.058
Standard Error 0.000 0.044 0.012 0.025
t-value 1.297 0.899 -0.425 -2.339

The results of this exploratory analysis suggest that HIMINTY might be a good candidate to
include in the INTRCPT1 model. The t-values represent the approximate result that will be
obtained when one additional predictor is added to any of the level-2 equations. This means that
if HIMINTY is added to the model for the INTRCPT1, for example, the apparent relationship
suggested above for HIMINTY in the SES slope model might disappear. (For a further discussion
of the use of these statistics see discussion in Hierarchical Linear Models, p.270 on
“Approximate t-to-Enter Statistics.”)
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3. Conceptual and Statistical Background for Three-Level
Models

The models estimated by HLM3 are applicable to a hierarchical data structure with three levels of
random variation in which the errors of prediction at each level can be assumed to be
approximately normally distributed. Consider, for example, a study in which achievement test
scores are collected from a sample of children nested within classrooms that are in turn nested
within schools. This data structure is hierarchical (each child belongs to one and only one
classroom and each classroom belongs to one and only one school); and there are three levels of
random variation: variation among children within classrooms, variation among classrooms
within schools, and variation among schools. The outcome (achievement test scores) makes the
normality assumption at level 1 reasonable, and the normality assumption at the classroom and
school levels will often also be a sensible one.

Chapter 8 of Hierarchical Linear Models discusses several applications of a three-level model.
The first is a three-level cross-sectional study as described above. A second case involves time-
series data collected on each subject where the subjects are nested within organizations. This
latter example is from the Sustaining Effects Study, where achievement data were collected at
five time points for each child. Here the time-series data are nested within children and the
children are nested within schools. A third example in Chapter 8 involves measures taken on
each of the multiple classes taught by secondary school teachers. The classes are nested within
teachers and the teachers within schools. A final example involves multiple items from a
questionnaire administered to teachers. The items vary “within teachers” at level 1, the teachers
vary within schools at level 2, and the schools vary at level 3. In effect, the level-1 model is a
model for the measurement error associated with the questionnaire. Clearly, there are many
interesting applications of a three-level model.

3.1 The general three-level model

The three-level model consists of three submodels, one for each level. For example, if the
research problem consists of data on students nested within classrooms and classrooms within
schools, the level-1 model will represent the relationships among the student-level variables, the
level-2 model will capture the influence of class-level factors, and the level-3 model will
incorporate school-level effects. Formally there are i = 1, ..., n, level-1 units (e.g., students),
which are nested within each of j = 1,..., J, level-2 units (e.g., classrooms), which in turn are

nested within each of k = 1,..., K level-3 units (e.g., schools).

3.1.1 Level-1 model

In the level-1 model we represent the outcome for case i within level-2 unit j and level-3 unit k
as:
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Yijk = Tow + @ + oo ton et @i i
P (0.047)
= o+ D Moy €

p=1

where

7o (P=0,1,..., P)are level-1 coefficients,

a .. isalevel-1 predictor p for case i in level-2 unit j and level-3 unit k,

pik
&;. is the level-1 random effect, and

o’ is the variance of e, , that is the level-1 variance.

ijk?

Here we assume that the random term e, ~ N (0, o).

3.1.2 Level-2 model

Each of the x_., coefficients in the level-1 model becomes an outcome variable in the level-2

pjk
model:
ik :ﬂpOk +ﬂp1kX1jk +ﬂp2kX2jk +"'+ﬂprkXijk + 1ok
Q
= Boox +Zlﬂquxqjk ik
q=
(0.018)
where

B (@=0,1,...,Q,) are level-2 coefficients,

X... isalevel-2 predictor, and

ajk

r is a level-2 random effect.

pjk

’
We assume that, for each unit j, the vector (rojk, rljk,...,rpjk) is distributed as multivariate
normal where each element has a mean of zero and the variance of r;, is:

Var(rpjk) = Tzz'pp ) (091—9) ‘

For any pair of random effects p and p’,
Cov(Fyis Tyik) = Trpp - (0.020) ‘

These level-2 variance and covariance components can be collected into a dispersion matrix, T_,
with a maximum dimension is (P +1) x (P +1).
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We note that each level-1 coefficient can be modeled at level 2 as one of three general forms:

a level-1 coefficient that is fixed at the same value for all level-2 units; e.g.,

TCoik =ﬂp0k’ (0.02%)

a level-1 coefficient that varies non-randomly among level-2 units, e.g.,

Qp
Zoic = Booe + 2 Boax Xaje » (0.022)
=1

a level-1 coefficient that varies randomly among level-2 units, e.g.,

ik = Book + oji (0.023)
or
QP
oik = Byox +Z];ﬂquxqjk Flojice (0.024)
=

The actual dimension of T_ in any application depends on the number of level-1 coefficients

specified as randomly varying. We also note that a different set of level-2 predictors may be used
in each of the P +1 equations that form the level-2 model.

3.1.3 Level-3 model

Each of the level-2 coefficients, S_,, , defined in the level-2 model becomes an outcome variable

in the level-3 model:

pak?

,quk =7 nqo +7pq1W1k +7/pq2W2k +"'+7pqquwquk +Upak
Spq
=7 pqo +Z7/pqswsk TUpqk:
=1

(0.025)
where
Yoqs (8=0,1,...,S,,) are level-3 coefficients,
W,, isa level-3 predictor, and
U,q IS alevel-3 random effect.
We assume that, for each level-3 unit, the vector of level-3 random effects (the u,,, terms) is

distributed as multivariate normal, with each having a mean of zero and with covariance matrix
T, , whose maximum dimension is:
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3Q,+Dx D@, +1), (0.026)

We note that each level-2 coefficient can be modeled at level-3 as one of three general forms:

1. as a fixed effect, e.g.,

Proax =7 pao: (0.027) ‘
2. as non-randomly varying, e.g.
SDCI
ﬁqu = ypqo +27pqswsk' (0928)
s=1
3. as randomly varying, e.g.
Progk = Vpao T Upax (0.029) ‘
or
SPG
ﬂqu = 7pqo +Z7/pqsvvsk +uqu' (OQ%Q)
s=1

The actual dimension of T, in any application depends on the number of level-3 coefficients

specified as randomly varying. We also note that a different set of level-3 predictors may be used
in each equation of the level-3 model.

3.2 Parameter estimation

Three kinds of parameter estimates are available in a three-level model: empirical Bayes
estimates of randomly varying level-1 and level-2 coefficients; maximum-likelihood estimates of
the level-3 coefficients (note: these are also generalized least squares estimates); and maximum-
likelihood estimates of the variance-covariance components. The maximum-likelihood estimate
of the level-3 coefficients and the variance-covariance components are printed on the output for
every run. The empirical Bayes estimates for the level-1 and level-2 coefficients may optionally
be saved in the “residual files” at levels 2 and 3, respectively. Reliability estimates for each
random level-1 and level-2 coefficient are always produced. The actual estimation procedure for
the three-level model differs a bit from the default two-level model. By default, HLM2 uses a
“restricted maximum likelihood* approach in which the variance-covariance components are
estimated by means of maximum likelihood and then the fixed effects (level-2 coefficients) are
estimated via generalized least squares given those variance-covariance estimates. In HLM3, not
only the variance-covariance components, but also the fixed effects (level-3 coefficients) are
estimated by means of maximum likelihood. This procedure is referred to as “full” as opposed to
“restricted” maximum likelihood (For a further discussion of this see Hierarchical Linear
Models, pp. 52-53). Note that full maximum likelihood is also available as an option for HLM2.
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3.3 Hypothesis testing

As in the case of the two-level program, the three-level program routinely prints standard errors
and t-tests for each of the level-3 coefficients (“the fixed effects”) as well as a chi-square test of
homogeneity for each random effect. In addition, optional “multivariate hypothesis tests* are
available in the three-level program. Multivariate tests for the level-3 coefficients enable both
omnibus tests and specific comparisons of the parameter estimates just as described in the
section Multivariate hypothesis tests for fixed effects in this chapter. Multivariate tests regarding
alternative variance-covariance structures at level 2 or level 3 proceed just as in the section
Multivariate tests of variance-covariance components specification in this chapter.

The use of full maximum likelihood for parameter estimation in HLM3 has a consequence for
hypothesis testing. For both restricted and full maximum likelihood, one can test alternative
variance-covariance structures by means of the likelihood-ratio test as described in the section
Multivariate tests of variance-covariance components specification. However, in the case of full
maximum likelihood, it is also possible to test alternative specifications of the fixed coefficients
by means of a likelihood-ratio test. In fact, any pair of nested models can be compared using the
likelihood-ratio test under full maximum likelihood. By nested models, we refer to a pair of
models in which the simpler model can be derived by imposing constraints on the parameters of
the more complex model. Any pair of nested two-level models can be compared using a
likelihood ratio test.
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4 Working with HLM3

As in the case of the two-level program, data analysis by means of the HLM3 program will
typically involve three stages:

e Construction of an MDM file (the multivariate data matrix)
e Execution of analyses based on the MDM file
e Evaluation of fitted models based on residual files

As in HLM2, HLM3 analyses can be executed in Windows, interactive, and batch modes. We
describe a Windows execution below. We consider interactive and batch execution in Appendix
B. A number of special options are presented at the end of the chapter.

4.1 An example using HLM3 in Windows mode

Chapter 8 in Hierarchical Linear Models presents a series of analyses of data from the US
Sustaining Effects Study, a longitudinal study of children’'s growth in academic achievement
during the primary years. A level-1 model specifies the relationship between age and academic
achievement for each child. At level 2, the coefficients describing each child's growth vary
across children within schools as a function of demographic variables. At level 3, the parameters
that describe the distribution of growth curves within each school vary across schools as a
function of school-level predictors.

To illustrate the operation of the HLM3 program, we analyze another data set having a similar
structure. The level-1 data are time-series observations on 1721 students nested within 60 urban
public primary schools and mathematics achievement is the outcome. These data are provided
along with the HLM software so that a user may replicate our results in order to assure that the
program is operating correctly.

4.1.1 Constructing the MDM file from raw data

In constructing the MDM file, the user has the same range of options for data input for HLM3 as
for HLM2 (see Section 2.5.1). We first describe the use of SPSS file input and then consider
ASCII, SYSTAT, SAS, and other data file formats.

41.1.1 SPSSinput

Data input requires a level-1 file (in our illustration a time-series data file), a level-2 file (child-
level file), and a level-3 (school-level) file.

Level-1 file.
The level-1 file, EG1.SAvV, has 7242 observations collected on 1721 children beginning at the end
of grade one and followed up annually thereafter until grade six. There are four level-1 variables

(not including the schoolid and the childid). Time-series data for the first two children are shown
in Figure 4.1.

There are eight records listed, three for the first child and five for the second. (Typically there
are four or five observations per child with a maximum of six.) The first ID is the level-3 (i.e.,
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school) ID and the second ID is the level-2 (i.e., child) ID. We see that the first record comes from
school 2020 and child 273026452 within that school. Notice that this child has three records, one
for each of three measurement occasions. Following the two ID fields are that child's values on
four variables:

® YEAR (year of the study minus 3.5)
This variable can take on values of —2.5, —-1.5, -0.5, 0.5, 1.5, and 2.5 for the six years
of data collection.

e GRADE

The grade level minus 1.0 of the child at each testing occasion. Therefore, it is 0 at grade
1, 1 at grade 2, etc.

e MATH
A math test in an IRT scale score metric.
e RETAINED
An indicator that a child is retained in grade for a particular year (1 = retained, 0 = not
retained).
schoolid childid year grade math | retained
12020 273026452 A0 2.00 1.14 .an
2| 2020 2730264452 1.80 3.00 1.13 .an
3| 2020 273026452 240 4.00 230 .an
4 | 2020 273030991 A0 2.00 243 .an
5| 2020 273030991 1.80 3.00 225 .an
6 | 2020 273030991 2480 4.00 3.87 .an
7|2020 273030991 -A0 1.00 A4 .an
8| 2020 273030991 -1.80 oo -1.30 .an

Figure 4.1 First eight cases in EG1.SAV

We see that the first child, child 27306452 in school 2020, had values of 0.5, 1.5, and 2.5 on
year. Clearly, that child had no data at the first three data collection waves (because we see no
values of —2.5, —1.5, or —0.50n year), but did have data at the last three waves. We see also that
this child was not retained in grade during this period since the values for GRADE increase by 1
each year and since RETAINED takes on a value of O for each year. The three MATH scores of that
child (1.15, 1.13, 2.30) show no growth in time period 1.5. Oddly enough, the time-series record
for the second child (child 273030991 in school 2020) displays a similar pattern in the same
testing.

Note: The level-1 and level-2 files must also be sorted in the same order of level-2 ID nested
within level-3 ID, e.g., children within schools. If this nested sorting is not performed, an
incorrect multivariate data matrix file will result.
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Level-2 file

The level-2 units in the illustration are 1721 children. The data are stored in the file EG2.SAV.
The level-2 data for the first eight children are listed below. The first field is the schoolid and the
second is the childid. Note that each of the first ten children is in school 2020.

There are three variables:
e FEMALE (1 = female, 0 = male)
e BLACK (1 = African-American, 0 = other)
e HISPANIC (1= Hispanic, O = other)

We see, for example, that child 273026452 is a Hispanic male (FEMALE = 0, BLACK = 0,
HISPANIC = 1).

schoolid childid female black hispanic
1 [2020 273026452 00 .00 1.00
2| 2020 273030521 00 .00 00
3| 2020 273059461 00 .00 1.00
4 | 2020 278055341 00 .00 00
3 | 2020 292017571 00 .00 1.00
6 | 2020 292020281 00 .00 00
£ | 2020 292020361 00 .00 00
8| 2020 292025081 00 .00 00

Figure 4.2 First eight children in EG2.SAV

Level-3 file.

The level-3 units in the illustration are 60 schools. Level-3 data for the first seven schools are
printed below. The full data are in the file EG3.SAv. The first field on the left is the schoolid.
There are three level-3 variables:

e SIZE, number of students enrolled in the school
e LOWINC, the percent of students from low income families
e MOBILE, the percent of students moving during the course of a single academic year

We see that the first school, school 2020, has 380 students, 40.3% of whom are low income. The
school mobility rate is 12.5%.
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schoolid size lowinc mobility
1 2020 350.00 40.30 12.50
2 | 2040 502.00 83.10 18.60
3| 2180 F77.00 56.60 44.40
4 | 2330 800.00 78.90 31.70
3 | 2340 1133.00 893.70 67.00
6 | 2330 439.00 36.90 39.30
7| 2390 566.00 100.00 39.90

Figure 4.3 First seven schools in EG3.SAV

In sum, there are four variables at level 1, three at level 2 and three at level 3. Note that the ID
variables do not count as variables. Once the user has identified the two sets of IDs, the number
creation of the MDM™ file is
.5.1.1. The user first informs
hree-level file. Then HLM is
supplied with the appropriate information for the data. Note that the three files are linked by

of variables in each file, the variable names, and the filenames,
exactly analogous to the three major steps described in the Section 2
HLM that the input files are SPSS system files and the MDM is a t

level-2 and level-3 IDs here.

Make MDM HLM3 N

~MDM template file MDM File Name {use .mdm suffix)
File Name: I
Open mamtfle|  Save momtfle|  Editmamtfie | InputFile Type [ SPESMindows ]

— Structure of Data - this affects the notation only!

" longitudinal ¢ longitudinal with measurement model at level-1

(¢ cross sectional (" cross-sectional with measurement model at level-1

—Level-1 Specification

Level-1 File Name:

-Missing Data? — Delete missing level-1 data when: -

¢ No  Yes " making mdm " running analyses

Choose Variables

—Level-2 Specification

Browse I Level-2 File Name:

—Level-3 Specification

Browse I Level-3 File Name:

Choose Yanables

Make MDM | CheckStatsl Done |

Figure 4.4 Make MDM — HLM3 dialog box for EG.MDM

74




Choose variables - HLM3
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[Math e Cwe Fawow [ o ol oo
[RETAMED 3 2 Ponwom [ [ Lo Lz T oinnow
[ Pl Flw Eiavow [ e L [ o
[ Pl Pl Favow [ e T Lz ko
[ Pl Pl Favow [ e T Lz ko
|— e Lzl [ in o |— [ Lail [T izid ) in o
|— e Lzl [ in o |— [ Lail [T izid ) in o
D D T = Y T N

Page 1 of 1 1 | ok I Caricel

Figure 45  Choose Variables — HLM3 dialog box for level-1 file, EG1.SAV

Note: In addition, the program can handle missing data at level-1 only, with the same options
available as discussed in HLM2. HLM3 will listwise delete cases with missing data at levels two
and three. The three level program handles design weights at all three levels.

The response file, EGSPSS.MDMT, contains a log of the input responses used to create the MDM
file, EG.MDM, using EG1.SAV, EG2.SAV, and EG3.SAV. Figure 4.4 displays the dialog box used to
create the MDM file. Figure 4.5 shows the dialog box for the level-1 file, EG1.SAV.

Note: As in the case of HLM2, after constructing the MDM file, you should check whether the data
have been properly read into HLM by examining the descriptive statistics of the MDM file.

4.1.1.2 ASCIlinput

The procedure for constructing an MDM file from AscCII data files is similar to that for spss file
input. The major difference is that the format statements must be entered for the three data files,
variable names, and missing value codes, if applicable. Rules about the format are included in
the Appendix. An example is included in the response file, EGASCII.MDMT, which constructs the
MDM file, EGASCII.MDM, using EG1.DAT, EG2.DAT, and EG3.DAT. Figure 4.6 shows the dialog
box for creating the MDM file, displaying the input responses of EGASCII.MDMT.
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Make MDM - HLM3 i

MDM template name:

MDM File Name (use .mdm suffix) ] EG.MDM

— Structure of Data - this affects the notation only!

¢ cross sectional
¢ longitudinal

" cross-sectional with measurement model at level-1
¢ longitudinal with measurement model at level-1

—Level-1 Specification

| EG1.DAT

—

Level-1 File Name

Number of Variables

Browse

Lahels

Data Format
(FORTRAN-Style)

[(aa.1%,29,1%,2F5.1 F7.3F2.0)

Missing Data

—Level-2 Specification

Level-2 File Name | EG2.DAT

Number of VYariables I 3
Data Format

Browse

Labels

(FORTRAN-Style)

| (A4,1%,A0,3F2.0)

—Level-3 Specification

Level-3 File Name I EG3.DAT

—

Number of Variables

Browse

Data Format
(FORTRAN-Style)

| (Ad,1%,3FT.1)

il L

Labels

Figure 4.6

4.1.1.3 Other file input

For SAS and SYSTAT file input, a user selects either SAS5 transport or SYSTAT from the Input
File Type drop-down list box as appropriate before clicking the Browse buttons in the file
specification sections and follows the same steps for SPSS input type to create MDM files.

4.1.1.4 Other file type input

HLM3 has the same range of options for data input as HLM2. In addition to SYSTAT, SPSS,
STATA, free format, and SAS, the Windows version (through a third-party module) allows
numerous other data formats from, for example, EXCEL, and LOTUS input. See Section 2.5.1 for

details.

Make MDM — HLM3 dialog box for EGASCII.MDM

4.2 Executing analyses based on the MDM file

Once the MDM file is constructed, it is used as input for the analysis. Model specification via the

Windows mode has five steps:

1. Specification of the level-1 model. In our case we shall model mathematics achievement
(MATH) as the outcome, to be predicted by YEAR in the study. Hence, the level-1 model will

Open mdmtfile

Save mdmt file

Edit mdmt file

Make MDM

Check Stats

Done

FERELL

have two coefficients for each child: the intercept and the YEAR slope.

2. Specification of the level-2 prediction model. Here each level-1 coefficient — the intercept
and the YEAR slope in our example — becomes an outcome variable. We may select certain
child characteristics to predict each of these level-1 coefficients. In principle, the level-2

parameters then describe the distribution of growth curves within each school.
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Intercept
Year slope

5 WHLM: him3 MDM File: EG.MDM Command File: egl.mim - 1ol x|
File Basic Settings Othér Settings Ruh Analysis Help
Outcome ODEL (hold: group-mean centering; hold italic: grand-mean centering) ﬂ
‘-—I'-E\El-'!—— MATH = + 7, (YEAR) +
>> Level-2 << gk (TEAR)e
Level-3 LEVEL 2 MODEL (hold: group-mean centering; bold italic: grand-mean certering)
INTRCPT2 Ry = Po, tF
FEMALE L
BLACK Ty = Pyt
HISPANIC
LEVEL 3 MODEL (hold ttalic: grand-mean centering)
Boo = Tooo Yoo
Bio = T100 ™ %10
Mixed| v|
Mixed Model
MATH = Yoob T 'ywo*YEAR tr,t ri*YEAR’ +Upg + uw*YEAR +e f:l
Mixed model farmulation
:j
Bath level-1lcoefficients are Both level-2 coefficients are
specified as randomly varying specified as randomly varying

Figure 4.7 Model Window for the public school example

3. Specification of level-1 coefficients as random or non-random across level-two units. We
shall model the intercept and the YEAR slope as varying randomly across the children within
schools.

4. Specification of the level-3 prediction model. Here each level-2 coefficient becomes an
outcome, and we can select level-3 variables to predict school-to-school variation in these
level-2 coefficients. In principle, this model specifies how schools differ with respect to the
distribution of growth curves within them.

5. Specification of the level-2 coefficients as random or non-random across level-3 units.

Following the five steps above, we first specify a model with no child- or school-level
predictors. The Windows execution is very similar to the one for HLM2 as described in Section
2.5.2. The command file, EG1.HLM, contains the model specification input responses. To open
the command file, open the File menu and choose Edit/Run old command file. Figure 4.7
displays the model specified in both standard and mixed model notation.

4.2.1 An annotated example of HLM3 output

Here is the output produced by the model described above. The first page of the output gives the
specification of the model.
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Problem Title: UNCONDITIONAL LINEAR GROWTH MODEL

The data source for this run = EG.MDM Name of the MDM file

The command file for this run = egl.mim Name of the command file
Output file name = him3.html Name of this output file

The maximum number of level-1 units = 7230 There are 7230 observations
The maximum number of level-2 units = 1721 There are 1721 children

The maximum number of level-3 units = 60 There are 60 schools

The maximum number of iterations = 100
Method of estimation: full maximum likelihood

Level-1 Model
MATHix = moj + 1 (YEARG ) + eix
Level-2 Model

Mok = Book + Tojk
Tk = Baok + Mk

Level-3 Model

Book = Yooo + Uook
Biok = Y100 + Uiok

Mixed Model
MATH;x = Vooo + V100*YEAR«
+ lojk + Ik *YEARijk

+ Ugok + Uik *YEARji + €k

Next come the initial parameter estimates or “starting values.” Users should not base inferences
on these values, the sole purpose of which is to get the iterations started.

Least Squares Estimates

62 =1.21432

Least-squares estimates of fixed effects

Fixed Effect Coefficient Standard t-ratio dAfpprox. p-value

error
For INTRCPT1, m,
For INTRCPT2, Boo
INTRCPTS3, yooo  -0.827685 0.013431 -61.623 7228 <0.001
For YEAR slope, m;
For INTRCPT2, Bio
INTRCPTS3, yi00  0.765828  0.009293 82.410 7228 <0.001
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Least-squares estimates of fixed effects (with robust standard errors)

Fixed Effect Coefficient t-ratio

Standard Approx.
d.f.

p-value

error
For INTRCPTL, mq
For INTRCPT2, Boo
INTRCPTS3, Yoo -0.827685 0.072631 -11.396 7228
For YEAR slope, m;
For INTRCPT2, B1o
INTRCPTS3, yi00 0.765828 0.018892 40.537 7228

<0.001

<0.001

The least-squares likelihood value = -1.096090E+004
Deviance = 21921.80879
Number of estimated parameters = 3

For starting values, data from 7230 level-1 and 1721 level-2 records were used

Starting Values

6% = 0.29710
Tx(0)
INTRCPT1,m,  0.71125 0.05143
YEAR, T, 0.05143 0.01582
T(0)
INTRCPT1 YEAR
INTRCPT2,B00 INTRCPT2,B10
0.14930 0.01473
0.01473 0.01196

The value of the log-likelihood function at iteration 1 = -8.169527E+003
The value of the log-likelihood function at iteration 2 = -8.165377E+003

Final Results - Iteration 9
Iterations stopped due to small change in likelihood function

*kkkkkk ITERATION 9 *kkkkkk
6% =0.30148

Standard error of 02 = 0.00660
Tr

INTRCPT1,1mg 0.64049 0.04676
YEAR,m; 0.04676 0.01122
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Standard errors of T
INTRCPT1,m, 0.02515 0.00499
YEAR,T; 0.00499 0.00196

T (as correlations)
INTRCPT1,m,  1.000 0.551
YEAR,m; 0.551 1.000

Note that the estimated correlation between true status at YEAR = 3.5 (halfway through third
grade) and true rate of change is estimated to be 0.551 for children in the same school.

Random level-1 coefficient Reliability estimate
INTRCPT1,m, 0.839
YEAR,m; 0.190

Reliabilities of child parameter estimates.

18
INTRCPT1 YEAR
INTRCPT2,B00 INTRCPT2,B10
0.16531 0.01705
0.01705 0.01102

Standard errors of T8

INTRCPT1 YEAR

INTRCPT2,B00 INTRCPT2,B10
0.03641 0.00720
0.00720 0.00252

Tg (as correlations)
INTRCPTY/INTRCPT2,B00 1.000 0.399
YEAR/INTRCPT2,810 0.399 1.000

Notice that the estimated correlation between true school mean status at YEAR = 3.5 and true
school-mean rate of change is 0.399.

Random level-2 coefficient Reliability estimate
INTRCPTY/INTRCPT2,B00 0.821
YEAR/INTRCPT2,B19 0.786

Reliabilities of school-level parameter estimates. These indicate the reliability with which we
can discriminate among level-2 units using their least-squares estimates of £, and f,. Low

reliabilities do not invalidate the HLM analysis. Very low reliabilities (e.g., < 0.10), often indicate
that a random coefficient might be considered fixed in subsequent analyses.
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Final estimation of fixed effects:

Standard

Fixed Effect Coefficient t-ratio Approx. p-value

error d.f.
For INTRCPTL, mq
For INTRCPT2, Boo
INTRCPTS, Vooo -0.779309 0.057829 -13.476 59 <0.001
For YEAR slope, m;
For INTRCPT2, B1o
INTRCPTS3, Vi0o 0.763029 0.015263 49.993 59 <0.001

The above table indicates that the average growth rate is significantly positive at 0.763 logits per
year, t=49.997.

Final estimation of fixed effects (with robust standard errors)

Standard

Fixed Effect Coefficient t-ratio Approx. p-value

error d.f.
For INTRCPTL, mg
For INTRCPT2, Boo
INTRCPTS, Vooo -0.779309 0.057830 -13.476 59 <0.001
For YEAR slope, m;
For INTRCPT2, B
INTRCPTS, Vigo 0.763029 0.015260 50.000 59 <0.001

Note that the results with and without robust standard errors are nearly identical. If the robust
and model-based standard errors are substantially different, further investigation of the tenability
of key assumptions (see Section 4.3 on examining residuals) is recommended.

Final estimation of level-1 and level-2 variance components

Standard Variance 2
Random Effect Deviation Component d.f. X p-value
INTRCPT1,rq 0.80030 0.64049 1661 13679.62589 <0.001
YEAR slope,r; 0.10595 0.01122 1661 2132.50756 <0.001
level-1, e 0.54907 0.30148

Final estimation of level-3 variance components

Standard Variance 2

Random Effect Deviation Component d.f. X p-value
INTRCPTL/INTRCPT2,uq 0.40658 0.16531 59 488.30922 <0.001
YEAR/INTRCPT2,uy 0.10498 0.01102 59 377.43020 <0.001

The results above indicate significant variability among schools in terms of mean status at YEAR
= 3.5 (y* = 488.34499, df = 59) and in terms of school-mean rates of change (y* of 377.40852, df
= 59).

Statistics for the current model

Deviance = 16326.231407
Number of estimated parameters = 9
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Exploratory Analysis: estimated level-2 coefficients and their standard errors obtained by
regressing EB residuals on level-2 predictors selected for possible inclusion in subsequent HLM
runs

Level-1 Coefficient Potential Level-2 Predictors
YEAR,m;

FEMALE BLACK HISPANIC
Coefficient 0.001 -0.029 0.005
Standard Error 0.003 0.006 0.006
t-value 0.369 -4.835 0.761

Exploratory Analysis: estimated level-3 coefficients and their standard errors obtained by
regressing EB residuals on level-3 predictors selected for possible inclusion in subsequent HLM

runs
Level-1 Coefficient Potential Level-3 Predictors
YEAR/INTRCPT2,10
SIZE LOWINC MOBILITY
Coefficient -0.000 -0.001 -0.002
Standard Error 0.000 0.000 0.001
t-value -1.525 -2.871 -1.962

Just as in the case of the two-level program, the potential predictors not included in the model to
be employed as significant predictors in subsequent models is indicated approximately by the “t-
values” given above. Note: because of the metric of school size (100s and 1000s), the actual
coefficients and standard errors are too small to be printed. The t-values are not, however.

4.3 Model checking based on the residual files

HLM3 produces three residual files, one each at levels 1 and 2 (see Chapter 2 for a discussion of
these files) and one at level-3 (containing estimates of the £'s). These files will contain the EB

residuals defined at the various levels, fitted values, and OLS residuals, and EB coefficients. In
addition, level-2 predictors can be included in the level-2 residual file and level-3 predictors in
the level-3 residual file. However, other statistics provided in the residual file of HLMm2, for
example the Mahalanobis distance measures, are not available in the residual files produced by
HLM3. The procedures for requesting level-3 residual files are similar to those for HLM2 as
described in Section 2.5.4.

The files in this example are structured as SPSS data files and can be directly opened in SPSS.
As with HLM2, the user can also specify STATA, SYSTAT or SAS command file format for the
residual file. The result will be STATA, SYSTAT or SAS data files. (For more details see Section
2.5.4.) Alternatively, the data can be obtained in free form (i.e., as a text file) by selecting the
Free Format option on the Create Level-3 Residual File dialog box. These residual files can
then be read into any other computing package. The list of variables in the level-3 residual file
and their attributes are shown in Figure 4.8, while the first 10 records contained in this file are
shown in Figure 4.10.
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i 5 *resfil3.sav [DataSet1] - SPSS Data Editor = Il:llll

; File Edit Wiew Data Transform Analyze Graphs Utilities Add-ons ‘Window Help

[ = 33 E o2 w k|l Elr SlalE s @

<[> ]\ Data View A Variable View / |« f

I Name Type Width | Decimals Label Yalues Missing Columns Align Measur —
1|L3ID String 12 0 Mone Mone 12 Left Nominal
2|NK MNurmeric 8 0 MNone None g Right Scale
3|EBOD MNumeric 12 3 None None 8 Right Scale
4|EB10 MNumeric 12 3 None None g Right Scale
5|0L00 Numeric 12 ) None -99.000 8 Right Scale
B|OL10 Numeric 12 3 None -99.000 8 Right Scale
7|Fv0_0 Mumeric 12 3 MNone None 8 Right Scale
8|Fv1_0 Numeric 12 3 MNone None 8 Right Scale
9|ECD D MNumeric 12 3 MNone None 8 Right Scale
10]EC1_0 Numeric 12 3 None None 8 Right Scale
11|Pv3_0_0_0_0|Numeric 12 3 MNone None g Right Scale
12|Pv3_1_0_0_0|Numeric 12 3 None None 8 Right Scale
13{Pv3_1_0_1_0|Numeric 12 3 None None 8 Right Scale

|SPSS Processor is ready [ [ [ |

Figure 4.8 List of variables and attributes for level-3 residual file

An example of the level-2 residual file produced in the above analysis is shown in Figure 4.9.
Only data from school 2020 are given.

We see that the level-3 ID (13id) is the first variable and the level-2 1D (12id) is the second. The
third variable is njk, the number of observations associated with child j in school k. The empirical

Bayes estimates of the residuals, r,; , are given next, including, respectively, the intercept

(ebintrcptl) and the year effect (ebyear). The ordinary least squares estimates of the same
quantities (olintrcptl and olyear); and the fitted values, that is, the predicted values of the 7, s

for a given child based on the fixed effects (fvintrcptl and fvyear) and random school effect,
follow. These are followed by the EB coefficients. Finally, the posterior variances and
covariances (pv2_0_0, pv2_1 0, and pv2_1_1) of the empirical Bayes estimates are given.

& *resfil2.sav [DataSet1] - SPSS Data Editor =18l x|
File Edit View Data Transform Analyze Graphs Utiities Add-ons Window Help
= B ol w=k| al Ee BlElEl ®) ®|.||
[1: 5D [2020 Visible: 14 of 14 Variable
L3ID L2ID MNJK | EBINTRCP| EBYEAR | OLINTRCP| OLYEAR |F¥INTRCP| FWYEAR | ECINTRCP| ECYEAR | Pv2. 0.0 | Pv2_1.0 | Pv2_1_1 g
T T1 T1 T1
1§2020  |273026452 3 245 .004 .866 -.376 -.205 953 .039 957 106 -.001 .007
2(2020 273030991 5 12123 124 1.136 .264 -.205 953 918 1.077 077 .0o02 006
3|2020 273059461 5 644 058 685 .085 -.205 953 439 1.011 077 .002 .006
412020 278058841 5 1.318 099 1.451 079 -.205 953 1.113 1.052 077 002 006
5(2020 292017571 3 1.301 124 1.821 .808 -.205 953 1.096 1.077 114 .01 .0os
612020 252020281 5 -221 -038 -228 -.086 -205 953 - 426 915 .070 .004 .006
7|2020 292020361 B -.368 -.044 -.389 -.082 -.205 1953 -573 .909 .070 .004 .006
8|2020 252025081 5 180 .056 .089 223 -.205 953 -.026 1.009 077 .002 .006
9[2020 292026211 5 -.202 -.043 -.151 -.152 -.205 953 -.408 910 077 .002 006
10{2020 292027291 5 .208 .050 140 186 -.205 953 .002 1.003 077 .0o02 006
1112020 |292027531 ] 045 015 .019 062 -.205 953 -.160 968 077 .002 .006
1212020 292028181 5 -779 -.055 -.867 -.028 -.205 953 -.984 .898 077 .0o02 .006 -
<[> ]\ pata view £ Variable View [ 1« | ol
|SPSS Processor is ready l— [ [ | [ 4

Figure 4.9 First 12 children in level-2 residual file

We see that the first child in the data set has schoolid 2020 and childid 273026452. That child has
3 time-series observations. The predicted growth rate for that child (the YEAR effect) is the fitted
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value .953. That child's empirical Bayes residual YEAR effect is .004. Thus, the EB coefficient
(“ebyear”) is computed as:

”;jk = ﬂ1*0k + rl*jk
=FVYEAR+EBYEAR (0.03%1)
=0.953+0.004
=0.957

The empirical Bayes estimate for the child's intercept, 7, i (“ecintrcp”), is computed similarly.

The level-3 residual file, printed below, has a similar structure. Only the data for the first 10
schools are given. We see that the level-3 ID (13id) is the first value given, and is followed by nk,
the number of children in school k. This is followed by the empirical Bayes estimates of the £,
including, respectively, the intercept (eb00) and the year effect (eb10). The ordinary least squares
estimates of the same quantities (ol00 and ol10); and the fitted values, that is, the predicted values
of the fs for a given school based on that school's effect and the fixed effects (fv0_0 and fv1_0).

The EB coefficients are given next. Finally, the posterior variances and covariances
(pv3_0.0 0 0,pv3_1_0 0 0, and pv3_1_0_1_0) of the estimates are given.

resfil3.sav - 5PSS Data Editor i =10l x]

File Edit View Data Transform Analyze Graphs Utiities Add-ons Window Help

B(R(S| B| o|| =k &l £ BlEE 3l
|1 : 13id ,2020
13id nk EBOO | EB10| OLOD | OL10| PO O FV1 O ECOD(ECTI O] PV3 D000 )| PY31000| PY31010]([4~
1]|2020 21 574|190 BBB| 225 -779 763 -205| 953 028 .002 .002 <|
2|2040 21 091 109 097 136 =779 763 -B88| 872 028 .002 .002
3[2180 41 =242 -114 -257 | -128 -779 7B63| -1.021| 649 016 .001 .001
412330 36 80| -.076 218| -.091 =779 763 -599| BE7 .018 .001 .001
5(2340 53 -213| -.042 -.228| -045 -779 763 -9921 721 013 .001 .001
6{2380 19 14| 110 13| 136 =779 763 -BBS| 873 031 .001 .002
712390 25 -257 | .000 -.307| .004 -779 763| -1.036| .763 024 .001 .002
8(2440 15 =177 -.093 -198| -.124 =779 763 -956| 670 037 .002 .003
9{2480 1 79| -.069 281 -.115 -779 763 -600| 694 047 .003 .004
102520 B3 B38| 070 B83| 072 -779 763 -140| 833 011 .000 .001
11]2540 17 382|009 A02| 001 -779 763 -3687| 772 034 002 003
12| 2560 37 -002| -.243 031| -.280 =779 763 -782| 520 017 .001 001 |«
4| » |\ pata view £ Variable View [ | <] | _b_lJ
|5PSS Processor is ready [ [ [ [ 7

Figure 4.10 First 10 schools in level-3 residual file

We see that the first unit, school 2020, has nk = 21 children. The predicted YEAR effect for
school 2020 is the fitted value .763, that is, the maximum-likelihood estimate of the school mean
growth rate in the case of this unconditional model. That school's empirical Bayes residual YEAR
effect is .190. Thus HLM3 constructs the empirical Bayes estimate of that school's YEAR effect
(mean rate of growth, “ec_10") as

Biok = Vigo Tlix = 0L + eb10 (0.032)
=.763 +.190 = .953.

Similarly, HLM3 constructs the empirical Bayes estimate for the school's intercept, A,
(“ec0_0"), using fv0_0 + eb00.

84



Note that the empirical Bayes estimate of the school YEAR effect, 0.953, is the fitted value for
each child in that school (in the level-2 residual file). This will be true in any model that is
unconditional at level 2, that is, any model with no child-level predictors such as race, ethnicity or
female. When level-2 predictors are in the model, the level-2 fitted values will also depend on
those predictors.

4.4  Specification of a conditional model

The above example involves a model that is “unconditional” at levels 2 and 3; that is, no
predictors are specified at each of those levels. Such a model is useful for partitioning variation
in intercepts and growth rates into components that lie within and between schools (see
Hierarchical Linear Models, Chapter 8), but provides no information on how child or school
characteristics relate to the growth curves. Figure 4.11 shows a model that incorporates
information about a child's race and ethnicity and a school's percent low income. Moreover, we
explore the possibility that several other predictors (gender, school enrollment, and percent
mobility) might help account for variation in subsequent models.

Lewvel-2 predictors Level-3 predictar

]
{8 wHLM: him3 MDM File: EG.MDM Commanc| File: whimten p.
File Basic Setkings Other Settings  Run Analysis| Help

=10l

Outcome LEVEL 1 MODEL (bold: grpup-mean center|ng, bold talic: grand-mean centering) ﬂ
Level MATH YEA

= +
Level-2 Ty |

>> Level-3 << | LEWEL 2 MODEL (bold: arbup-mean certerng; bold talic: grand-mean centerin

—

g\J&ECPTS Ty = Fag By (BLACK) + o (HISPARNIC) + v,
LOWYING Ty = Pyt By (BLACK) + B, {HISPANIC) +r,
MOBILITY

LEVEL 3 MODEL (hald italic: grand-mean centering)

= 4y (LOWANG) + o
Pao = Tago * Tousl gy | Level-3 model far
T Por = Yo a child's intercept
T Poz = Yoz

Brg = Tygp ¥ ¥io (LOWING) +

H— By = Tao —— Level-3 madel for
growth rates

T PFaz =tz

Mixedl '|

Effects associated with race/ethnicity are assumed ta
be invariant across schoals (ie. fixed)

Figure 4.11 Model window for the public school example
The results of the analysis are given below.

Problem Title: LINEAR GROWTH OVER GRADE, MINORITY, LOW INCOME

The data source for this run = EG.MDM

The command file for this run = eg2.mim
Output file name = him3.html

The maximum number of level-1 units = 7230
The maximum number of level-2 units = 1721
The maximum number of level-3 units = 60
The maximum number of iterations = 100
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Method of estimation: full maximum likelihood
The outcome variable is MATH

Summary of the model specified

Level-1 Model

MATHijk = Tlojk + ﬂljk*(YEARijk) + €ijk

Level-2 Model

Mok = Book + Bow*(BLACK(,) + Boai*(HISPANICy) + roj
Trljk = BlOk + Bllk*(BLACK]’k) + Blzk*(HISPANICjk) + rljk

Level-3 Model

Book = Yooo * Yoo1(LOWINCy) + Ugok

Boik = Yoo
Bozk = Yoo

Biok = Y100 * Y101(LOWINCy) + U10k

Bk = Y110
B2k = V120

Mixed Model

MATH”k = Yooo + Yoo]_*LOWINCk + VOlO*BLACKjk + VOZO*HISPANIC]k
+ VlOO*YEARijk + YlOl*YEARijk*LO\NlNCk + Vllo*YEARijk*BLACKjk + VlZO*YEARijk*HlspANlcj'k
+ ok + e *YEARj + Uook + Uzok *YEAR;) + €ijk

Least Squares Estimates
o’ = 1.07437

Least-squares estimates of fixed effects

. - Standard . Approx.
Fixed Effect Coefficient error t-ratio df p-value
For INTRCPTL, mo
For INTRCPT2, Boo
INTRCPTS3, Yoo 0.187343 0.040175 4.663 7222 <0.001
LOWINC, yon1 -0.008941 0.000568 -15.733 7222 <0.001
For BLACK, 301
INTRCPTS, Yoi0 -0.405550 0.041045 -9.881 7222 <0.001
For HISPANIC, B2
INTRCPTS, yoz0 -0.285918 0.049723 -5.750 7222 <0.001
For YEAR slope, m;
For INTRCPT2, B1o
INTRCPTS3, yi00 0.906001 0.027528 32.912 7222 <0.001
LOWINC, y;01 -0.001768 0.000392 -4.512 7222 <0.001
For BLACK, Bll
INTRCPTS,
Y110 -0.015548 0.028610 -0.543 7222 0.587
For HISPANIC, B2
INTRCPTS,
Y120 0.032732 0.034446 0.950 7222 0.342
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Least-squares estimates of fixed effects (with robust standard errors)

. - Standard . Approx.
Fixed Effect Coefficient error t-ratio PP df. p-value
For INTRCPT1, mg
For INTRCPT2, Boo
INTRCPTS3, Yooo 0.187343 0.106837 1.754 7222 0.080
LOWINC, Voo1 -0.008941 0.001287 -6.948 7222 <0.001
For BLACK, fBo1
INTRCPTS3, Yo1o -0.405550 0.106437 -3.810 7222 <0.001
For HISPANIC, Bo2
INTRCPTS3, Yoz -0.285918 0.089893 -3.181 7222 0.001
For YEAR slope, m;
For INTRCPT2, B
INTRCPTS3, Y100 0.906001 0.031606 28.665 7222 <0.001
LOWINC, yi01 -0.001768 0.000446 -3.968 7222 <0.001
For BLACK, B11
INTRCPTS3, Y110 -0.015548 0.030859 -0.504 7222 0.614
For HISPANIC, B2
INTRCPTS3, Y120 0.032732 0.037194 0.880 7222 0.379

The least-squares likelihood value = -1.051825E+004

Deviance = 21036.49127

Number of estimated parameters = 9

For starting values, data from 7230 level-1 and 1721 level-2 records were used

Starting Values

6% = 0.29710
Tx(0)
INTRCPTL1,m, 0.69259 0.04914
YEAR,m; 0.04914 0.01481
T30
INTRCPT1 YEAR
INTRCPT2,800 INTRCPT2,810
0.05922 0.00290
0.00290 0.01057

The value of the log-likelihood function at iteration 1 = -8.127397E+003
The value of the log-likelihood function at iteration 2 = -8.121908E+003
The value of the log-likelihood function at iteration 3 = -8.121269E+003
The value of the log-likelihood function at iteration 4 = -8.121059E+003
The value of the log-likelihood function at iteration 5 = -8.120942E+003

Final Results - Iteration 9
Iterations stopped due to small change in likelihood function

6% =0.30162

Standard error of 62 = 0.00660
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Tn
INTRCPT1,m, 0.62231 0.04657
YEAR, ™, 0.04657 0.01106

Standard errors of T
INTRCPT1,m, 0.02451 0.00491
YEAR,m; 0.00491 0.00196

T (as correlations)

INTRCPT1,m, 1.000 0.561
YEAR,m; 0.561 1.000
Random level-1 coefficient Reliability estimate
INTRCPT1,m, 0.835
YEAR,m; 0.188
B
INTRCPT1 YEAR
INTRCPT2,Bq0 INTRCPT2,B10
0.07808 0.00082
0.00082 0.00798

Standard errors of T8

INTRCPT1 YEAR

INTRCPT2,B00 INTRCPT2,B10
0.01991 0.00441
0.00441 0.00194

Tg (as correlations)

INTRCPTYINTRCPT2,B00 1.000 0.033
YEAR/INTRCPT2,810 0.033 1.000
Random level-2 coefficient Reliability estimate
INTRCPTYINTRCPT2,B00 0.702
YEAR/INTRCPT2,819 0.735

The value of the log-likelihood function at iteration 9 = -8.119604E+003

88



Final estimation of fixed effects:

. - Standard . Approx. p-
Fixed Effect Coefficient error t-ratio df. value
For INTRCPTL, mq
For INTRCPT2, Boo
INTRCPTS, Voo  0.140628 0.127486 1.103 58 0.275
LOWINC, Voo1 -0.007578 0.001691 -4.482 58 <0.001
For BLACK, Boz
INTRCPTS, yo10  -0.502091 0.077879 -6.447 1597 <0.001
For HISPANIC, Bo2
INTRCPTS3, yo20  -0.319381 0.086099 -3.709 1597 <0.001
For YEAR slope, m;
For INTRCPT2, B1
INTRCPTS3, yioo  0.874501 0.039144 22.340 58 <0.001
LOWINC, yi01 -0.001369 0.000523 -2.619 58 0.011
For BLACK, B3
INTRCPTS3, y110  -0.030918 0.022453 -1.377 1597 0.169
For HISPANIC, B2
INTRCPTS3, yi0  0.043085 0.024652 1.748 1597 0.081
Final estimation of fixed effects (with robust standard errors)
. - Standard . Approx. p-
Fixed Effect Coefficient error t-ratio df value
For INTRCPTL, mq
For INTRCPT2, Boo
INTRCPTS3, Vooo  0.140628 0.113814 1.236 58 0.222
LOWINC, Voo1 -0.007578 0.001396 -5.428 58 <0.001
For BLACK, BOl
INTRCPTS3, yo1o  -0.502091 0.076842 -6.534 1597 <0.001
For HISPANIC, B2
INTRCPTS3, yo20  -0.319381 0.081918 -3.899 1597 <0.001
For YEAR slope, m;
For INTRCPT2, B1o
INTRCPTS3, yioo  0.874501 0.037287 23.453 58 <0.001
LOWINC, V101 -0.001369 0.000499 -2.744 58 0.008
For BLACK, Bll
INTRCPT3, y110  -0.030918 0.022274 -1.388 1597 0.165
For HISPANIC, B2
INTRCPT3, y120 _ 0.043085 0.024368 1.768 1597 0.077
Final estimation of level-1 and level-2 variance components
Standard Variance 2
Random Effect Deviation Component X p-value
INTRCPTL,ro 0.78886 0.62231 1659 13364.57298 <0.001
YEAR slope,r; 0.10518 0.01106 1659 2126.73092 <0.001
level-1, e 0.54920 0.30162
Final estimation of level-3 variance components
Standard Variance 2
Random Effect Deviation Component d.f. X p-value
INTRCPTLYINTRCPT2,upp 0.27943 0.07808 58 254.96395 <0.001
YEAR/INTRCPT2,u 0.08935 0.00798 58 277.26967 <0.001
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Statistics for the current model

Deviance = 16239.207347
Number of estimated parameters = 15

Exploratory Analysis: estimated level-2 coefficients and their standard errors obtained by
regressing EB residuals on level-2 predictors selected for possible inclusion in subsequent HLM

runs
Level-1 Coefficient Potential Level-2 Predictors
YEAR, ™,
FEMALE
Coefficient 0.001
Standard Error 0.003
t-value 0.454

Exploratory Analysis: estimated level-3 coefficients and their standard errors obtained by
regressing EB residuals on level-3 predictors selected for possible inclusion in subsequent HLM

runs
Level-1 Coefficient Potential Level-3 Predictors
YEAR/INTRCPT2,810
SIZE MOBILITY
Coefficient -0.000 -0.000
Standard Error 0.000 0.001
t-value -1.155 -0.540

4.5 Other program features

The options available for HLM3 are similar to those available with HLM2. The differences are
outlined below.

4.5.1 Basic specifications

The level-3 residual files may also be specified. They are specified similarly to the level-2
residuals.

4.5.2 lteration control

The Mode of iteration acceleration section of this screen is primarily intended for people who
have data large enough to cause the accelerator (and final) iterations to take a prohibitive amount
of time. While for most data the 2" derivative option is recommended, users with large amounts
of data (particularly with large ratios of level-1 to level-2 data) may find the 1% derivative Fisher
useful, although this will make the standard errors of & and the T matrices more crude. If the
third option, No accelerator, is selected, there will be no Fisher iterations will be performed.
This will make large MDMs run faster, but will have the side effect of not producing standard
errors of o and the tau matrices. If you want to suppress any Fisher iterations, but do want to
have the above mentioned standard errors, choose 1% or 2™ derivative Fisher, and set the value in
the Frequency of accelerator box to the number of iterations + 1.

4.5.3 Estimation settings

HLM3 has the same options as HLM2.
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4.5.4 Hypothesis testing

HLM3 does not have the test of level-1 homogeneity.

4.5.5 Output settings

HLM3 output does not include OLS estimates.
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5 Conceptual and Statistical Background for Four-Level
Models

HLM4 handles models with data that have a four-level nested structure. A four-level hierarchy
would arise in the HLM3 illustrative example described in the last chapter, for example, if the
students who were repeatedly observed while attending a given school were also nested within
classrooms. With an additional clustering unit of classrooms, the achievement data would be
triply nested. The time-series data are nested within students, the students nested within
classrooms, and the classrooms nested within schools. In a different scenario, with the
incorporation of a measurement model for the repeated measures on mathematics achievement
for the same example, one would implement four-level analyses. Hough, Bryk, Pinnell, Kerbow,
Fountas, and Scharer (2008), for example, used this approach with four-level models to study the
effect of school-based coaching on the growth in teacher expertise in literary practices. The
level-1 model in their study was a measurement error model associated with repeated measures
on teacher expertise, the level-2 model studied the growth trajectories of the “true scores” on the
expertise, and the level-3 and level-4 models investigated the associations of the growth
trajectory parameters with teacher- and school-level correlates, respectively. For examples of
similar level-1 measurement error models (in three-level analyses), see pp. 248-249 in Chapter 8
and Chapter 11 of Hierarchical Linear Models.

5.1 The general four-level model

The four-level model consists of four submodels, one for each level. For example, if the research
problem consists of data on students nested within classrooms, classrooms within schools, and
classrooms within school districts, the level-1 model will represent the relationships among the
student-level variables, the level-2 model will capture the influences of class-level correlates, the
level-3 model will incorporate school-level effects, the level-4 model will handle district-level
factors.

Formally there are i =1, ..., n,, level-1 units (e.g., students), which are nested within each of j =

1., J, level-2 units (e.g., classrooms) nested within each of k = 1,..., K, level-3 units (e.g.,
schools) nested within each of I =1,..., L level-4 units (e.g., school districts).

5.1.1 Level-1 model

In the level-1 model, the user can select notation according to the type of application (e.g., a
cross-sectional model versus a model with longitudinal data). In the case of a cross-sectional
model, we represent the outcome for case i within level-2 unit j, level-3 unit k and level-4 unit |
as:

Yijkl =Toj T Mjuiiju T Tojuijn Tt Tpjaiju T E6ju

P (5.1)
=7oiu +Zﬂpjklapijkl + €
p=1
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where

7w (P=0,1,..., P) are level-1 coefficients;

a is a level-1 predictor p for case i in level-2 unit j, level-3 unit k, and level-4 unit ;

pijkl

e .., is the level-1 random effect; and

i jki

o’ is the variance ofe,;,,, that is the level-1 variance.

Here we assume that the random term e, ,, ~ N (0, o®).

5.1.2 Level-2 model

Each of the » coefficients in the level-1 model becomes an outcome variable in the level-2

pik
model:
Ty i :ﬂpOKI +ﬂplklxljkl +ﬂpzmxzm +”’+ﬁprk|Xijk| +rpjk|
Q (5.2)
= ﬁpOkl +Zﬁqulxqjkl + rpjkl'
g=1
where
Boqga (@=0,1,...,Q,) are level-2 coefficients;
X 1s @ level-2 predictor; and
I, ;a is @ level-2 random effect.
We assume that, for each level-2 unit, the vector of level-1 random effects (the r,., terms) is

distributed as multivariate normal, with each having a mean of zero and with covariance matrix
T_, with a maximum dimension (P +1) x (P +1).

5.1.3 Level-3 model

Each of the level-2 coefficients, f defined in the level-2 model, becomes an outcome

variable in the level-3 model:

pakl?

/qukl =7 pqol +7pq1|W1k| +7pq2|W2k| +"'+7pqqulwquk| +Upqu
Spq (5.3)
= ypqO +Zj/pqslwskl +uqu|'
51
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where

Yoqs (5=0,1,...,S,) are level-3 coefficients,
W,,, isa level-3 predictor, and

u is a level-3 random effect.

pgkl

We assume that, for each level-3 unit, the vector of level-3 random effects (the u ,,, terms) is

distributed as multivariate normal, with each having a mean of zero and with covariance matrix
T,, whose maximum dimension is:

Zp:(Qp+l)pr:(Qp+1), (5.9)

5.1.4 Level-4 model

Each of the level-3 coefficients, y ., defined in the level-3 model, becomes an outcome
variable in the level-4 model:
7pqs| = 5pqso +§ ZZI +'”+5qu

pqslzll +5pq32 pqSZqusI +qus|

Gpes (5.5)
=0pqs0 + Z;; OpqsaLgl + Vpqsi»
g:

where

Opesg (0=0,1,...,G
Z

oqs) are level-4 coefficients,

o Isalevel-4 predictor, and

v is a level-4 random effect.

pgsl

We assume that, for each level-4 unit, the vector of level-4 random effects (the v, terms) is

distributed as multivariate normal, with each having a mean of zero and with covariance matrix
T,, whose maximum dimension is:

i(qu+l)><§(qu+l), (56)

pa=0 pg=0
5.2 Parameter estimation

Three Kkinds of parameter estimates are available in a four-level model: empirical Bayes
estimates of randomly varying level-1, level-2, and level-3 coefficients; maximum-likelihood
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estimates of the level-4 coefficients (note: these are also generalized least squares estimates); and
maximum-likelihood estimates of the variance-covariance components. Both HLM3 and HLM4
estimate the variance-covariance components and the fixed effects (level-4 coefficients) by
means of full maximum likelihood. In nonlinear models, the coefficients are estimated via

penalized quasi-likelihood. Unlike HGLM, however, only unit-specific and not population-
averaged results are available.

5.3 Hypothesis testing

As in the case of the three-level program, the three-level program routinely prints standard errors
and t-tests for each of the level-3 coefficients (“the fixed effects™) as well as a chi-square test of
homogeneity for each random effect. In addition, optional “multivariate hypothesis tests* and
residual files are available in the four-level program.
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6 Working with HLM4

Data analysis by means of the HLM4 program involves similar stages regarding MDM creation,
analyses, and fit evaluation as in the case of the two- and three-level programs. HLM4 analyses
can be executed in Windows, interactive, and batch modes. We describe a Windows execution
below. We consider interactive and batch execution in Appendix D.

6.1 An example using HLM4 in Windows mode

To illustrate the operation of the HLM4 program, we reanalyze a subset of data from Hough,
Bryk, Pinnell, Kerbow, Fountas, and Scharer (2008). Hough et al. used a four-level model to
examine the association between school-based coaching and the development of teachers’
expertise in literary instruction. The level-1 model in their study was a measurement error model
associated with 1317 repeated observations on a measure of classroom instruction, which they
called teaching expertise. (This measurement model relates the observed data to a “true” or latent
score plus some error of measurement. See below.) The level-2 model represented a growth
model for each teacher's “true scores” on teaching expertise, and the level-3 and level-4 models
investigated the associations of the growth trajectory parameters with teacher- and school-level
correlates with data from 219 teachers from 17 schools, respectively.

The example illustrates the use of a level-1 in HLM as a measurement model. In brief,

2
Ymtij =Woij t Emijr Emiij ~ N (0’ Gmtij)
where
Y.; 1S the observed measure on occasion t for teacher i in school j,

vy Is the true or latent value for teacher expertise, and
is the error of measurement associated with the observed rating m on occasion t for
teacher i in school j.

E i

(Note, in this data set there is only one observed rating per occasion. As a result the number of
level-1 and level-2 units are identical.)

In most applications, &, is unknown and assumed normally distributed with constant variance.

In contrast in this application, the Rasch measurement model for the observed outcomes, Y, ,

also provides a standard error estimate for each observed measure, Smij . We explicitly represent

this by multiplying both sides of the level-1 model by the inverse of the standard error,
8 = S » Yielding

mtij

*

Ymtij = Qi W oij +e;tij’ €y ~ N (0'1)'

mtij
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The variance at level-1 is now assumed known and fixed at a value of 1.0.

6.1.1 Constructing the MDM file from raw data

The user has the same range of options for data input for HLM4 as for HLM3. We will use SPSS
file input for the illustrative example.

6.1.1.1 SPSSinput

Data input requires a level-1 file (in our illustration a measurement data file), a level-2 file (“true
scores” file), a level-3 (teacher level), and a level-4 (school level) file.

Level-1 file. The level-1 file, MEASURE.SAV, has 1317 observations collected on 219 teachers on
up to 9 different occasions. Data for the first three teachers are shown in Fig. 6.1. Each of these
teachers was observed on three occasions. (Some teachers in the study were observed on as
many as nine occasions over three years.)

The first column contains the level-4 (i.e., school) 1D, next is the level-3 (i.e., teacher) 1D, and this
is followed by the level-2 (i.e., occasion) ID. We see that the first record comes from school
1100, teacher 1100002, and occasion 11000026. Following the teacher ID fields are that teacher’s
values on two variables:

® expertis
A composite Rasch measure of teachers' classroom literacy practice rated on some
particular occasion (weighted by the inverse of its standard error of measurement.)

e invstder
The inverse of the standard error of measurement associated with that individual rating
(the standard errors are generated as part of the Rasch rating scale model.)

schid tchrid | occasid | experis | inwstderr |
1] 1100 1100002 | 11000026 -2.862 4.472
2 1100 1100002 11000027 -1.860 5.000
3 1100 1100002 0 11000028 -2.182 4642
4 1100 1100011 11000116 5.750 5.000
] 1100 1100011 11000117 4.106 5.263
B oo 1100011 11000118 7150 5.000
7 100 1100012 11000123 2.2 4.645
a 100 1100012 11000124 AE1 4545
9 Moo 11000120 11000125 23 4348
10 1100 1100013 11000136 400 5.000

Figure 6.1 First nine cases in MEASURE.SAV

Level-2 file. The level-2 units consisted of the 1317 occasions when measurements on classroom
literary practice were made. The data are stored in the file OCCAS.SAV. The level-2 data for the
first nine records are listed below. It has the same three ID's as the level-1 file. The two occasion-
level variables are included in the file:

® occasion
This variable identifies the specific data collection time point, counted up from the first
study occasion in the fall of yearl (a value of 0) through the end of the study in the spring
of year 3 (a value of 8).
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Figure 6.2

artifact
A dummy variable introduced into the analysis to adjust for a measurement artifact that
occurred with the first-year spring scores (at occasion = 2).

schid tchrid | occasid | occasion | arifact |
1] 1100 1100002 11000026 3.000 000
2 1100 1100002 | 11000027 4.000 000
3 1100 1100002 11000023 5.000 000
4 11000 1100011 11000116 3.000 000
5 11000 1100011 | 11000117 4.000 000
= 1100 1100011 | 11000118 5.000 000
7 11000 1100012 11000123 3.000 000
8 11000 1100012 11000124 4.000 000
g9 11000 1100012 11000125 5.000 000
10 11000 1100013 11000136 3.000 000

First nine cases in OCCAS.SAV

The first teacher in this data file, Teacher 1100002 in school 1100, was observed on three
occasions during the second year of the study (i.e. occasions 3 through 5). The same was true for
the next two teachers. In general, the data collection patterns vary among teachers in this study
depending upon their employment history at the school and when they first became eligible for
classroom coaching.

Level-3 file. The level-3 units are the 219 teachers. The data are stored in the TCHR.SAV file. The
first field is the school ID and the second is the teacher ID. Note that each of the first ten teachers
is in school 1100. There are six variables in this file:

coach
The average number of one-on-one coaching sessions per month that each teacher
received over the course of the study

newwtch

A dummy variable indicating that the teacher had three or fewer years of classroom
teaching experience at onset of study participation

pdpart

A composite measure of teachers' exposure to literacy professional development prior to
the onset of the study

scmt

A scale score on the teacher's commitment to the school measured at study onset

y2ent
A dummy variable indicating the teacher began work at the school during the second year
of the study
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e y3ent
A dummy variable indicating the teacher began work at the school during the third year

of the study
schlid tchrid | coach | rewtchr | pdpart | st | wZent | yZent |
1 1100.00f 1100002 A7 000 842 252 1.000 .0oo
2 110000 1100011 A7 1.000 -.361 -813 1.000 .0oo
3 110000 1100012 755 000 1.653 2R7 0o .0oo
4 110000 1100013 A7 1.000 1.115 Fid 1.000 .0oo
] Moooo, 1100020 495 0no B56 1.150 onn ono
5] 110000 1100023 873 000 -248 -1.379 0o .0oo
7 110000 1100025 i 000 -.B31 1.150 .00o .0oo
d 110000 1100026 B3 000 -248 -813 000 .0oo
g Moooo, 1100027 736 0no 307 164 onn ono
10 110000 1100029 B35 1.000 =292 -.340 0o .0oo

Figure 6.3 First ten teachers in TCHR.SAV

Level-4 file. The school level data from 17 schools appear in SCH.SAV. The first field is the school
ID. This is followed by:

e chgcoach
A dummy variable indicating that a coaching change occurred during the course of the
study. This happened with only one school in the sample.

schid ‘ chgeoach |
1 1100.00 0.000
2 1200.00 0.000
3 1300.00 0.000
4 1400.00 0.000
& 1600.00 0.000
B 1700.00 0.000
7 1800.00 0.000
8 1900.00 0.000
= 2000.00 0.000
10 2100.00 0.000

Figure 6.4 First ten schools in SCH.SAV

The response file, LITERACY.MDMT, contains a log of the input responses used to create the MDM
file, LITERACY.MDM, using MEASURE.SAV, OCCAS.SAV, TCHR.SAV, and SCH.SAV. Figure 6.5
shows the dialog box used to create the MDM file. Note that the model notation selected is
longitudinal with measurement model data. Choosing this option affects the notation used for
subscripts and model parameters in the Windows interface and program output.
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Make MDM - HLM4

Response File MDM File Marme (use .mdrm suffix)
Response File CAHLMExamplestliteracy. mdmt ||iteracy.mdm
Open mdmt file | Save mdmtﬂle| Edit mdmt file | Input File Type | SPSSMindows ﬂ

Structure of Data - this affects the notation only!

" crogs sectional " cross-sectional with measurement model at level-1
" langitudinal f |ongitudinal with measurement maodel at level-1

Level-1 Specification

Level-1 File Wame: CAHLM\Examplesimeasure sav Choose Yariahles

Missing Data® Delete missing level-1 data when:

Mo Yes " making mdm ™ running analyses

Level-2 Specification
Browse Leval-2 File Mame: CAHLMExamplesioccas.sav Choose Variahles

Level-3 Specification

Browse | Lewel-3 File Mame: CAHLMExamplesichr say Choose Yariahles

Level-4 Specification

Brivwse Level-4 File Mame: CIAHLWExamplesisch sav Choose Yariahles
Make MDM Check Stats Done

Figure 6.5 Make MDM — HLM4 dialog box for LITERACY.MDM

I

6.2 Executing analyses based on the MDM file

The MDM file can now be used as input for analysis. Model specification via the Windows mode
has seven steps:

1. Specification of the level-1 model. In our example data set, EXPERTIS is the outcome and we use
INVSTDER as a level-1 predictor. We also delete the standard intercept from the level-1 model.
At a subsequent step (see step 8 below) we will specify the level-1 random effect as having a
known variance of 1.0.

2. Specification of the level-2 prediction model. In this measurement model application, the level-1
coefficient associated with INVSTDER becomes the outcome variable. (As noted above, this
coefficient now represents the true or latent score on a particular occasion.) At level 2, we model
this outcome as a function of OCCAS. That is, we specify a linear growth model for teacher's
expertise development over the course of the study. This allows us to represent for every teacher
both their initial status and growth rate on the expertise measure over time. We also include as a
fixed effect in the level-2 model for the measurement artifact that occurred at the third time
point, ARTIFACT.

3. The “true score” level-2 outcomes are specified as randomly varying between teachers.

4. Specification of the level-3 prediction model. In general, one may select different level-3
predictors for each level-3 equation. In the example below, we illustrate this with four of the
variables included in the MDM file.

5. Specification of level-3 equations as fixed, random or non-randomly varying. The intercept and
the OCCASION slope, which capture the initial status and growth rate of expertise in literary

practice, are specified as randomly varying within schools. The effect for ARTIFACT is fixed to
the same value for all teachers within a given school.
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6. Specification of the level-4 prediction model. In general, each level-3 coefficient becomes an
outcome, and we can select level-4 variables to predict school-to-school variation in these level-
3 coefficients. Given the relatively small number of school in the data set (J = 17) no level-3
predictors are used in the example.

7. Specification of the level-4 equations as fixed, random or non-randomly varying. In the example,
mean school initial status on expertise, mean growth rates for teacher expertise and the size of
the measurement artifact are all allowed to vary randomly across schools.

timation Settings - HLM4
Estimation Settings - HLM

I~ Diagonalize Tau(pi) [~ Diagonalize Tau(beta) [ Diagonalize Tau(gamma)

I” Fixed Intercept, Random Coefficient

Fix sigma*2 to specific 1.000000

(Set to "computed” if you want sigma*2
random or if over-dispersion is desired)

oK

—_—— 4

Figure 6.6 Estimation Settings dialog box
8. Finally, to specify the level-1 variance as fixed at a value of 1.0, per the measurement model

described above, open the Other Settings menu, select Estimation Settings, enter 1.0 in the text
box for Fix Sigma*2 to specific value.

6.2.1 A 4-level measurement model example

To illustrate the use of HLM4 we posed the following model for teacher expertise
development:
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File Basic Settings  Other Settings  Run Analysis  Help

Outcome || FyEL 1 MODEL

Level-1 _
—T% EXPERTIS, 0 = wyy, (INVSTDER )
Level-3 LEVEL 2 MODEL
Wy = Tygy T gy (OCCASION ) + 7y, (ARTIFACT ) + o,
INTRCPT4 :
CHECOACH | LEVEL 3 MODEL

Froy = Frogy + BrgyNEWTCHR, - NEWTCHR, j) + 8, (PDPART - FDPART ;) +

B3 (SCMT ;- STMIT 1) + 1,00

Sigy = Byagy + Ay, COACH - TOACH ;) + 4, (NEWTCHR, - NEWTCHR ;) +
8193PDPART - POPART ;) + 8, (SCMT - BCMIT j) + 1,
Tyap = Bazgy

LEVEL 4 MODEL

Fioor = Yoo T Yi00i

i1 = Taano
Frozr = Yaozo
Eioa = Taazo
Fraor = Yaroo T Mg
Fry T Yo
Erar = Tazo
Frar T tase
g = Tiago

Fizor = Yazoe T iz

Figure 6.7 Model window for the conditional model for the literacy program example

6.3 An annotated example of HLM4 output

Problem Title: HLM4 example, measurement model

The data source for this run = literacy.mdm

The command file for this run = C:\whimtemp.him

Output file name = C:\him4measurement model example.html
The maximum number of level-1 units = 1317

The maximum number of level-2 units = 1317

The maximum number of level-3 units = 219

The maximum number of level-4 units = 17

The maximum number of iterations = 100

Method of estimation: full maximum likelihood

The outcome variable is EXPERTIS

Summary of the model specified

Level-1 Model
EXPERTIS mij = @1i* INVSTDER i)

Level-2 Model
Watij = i + ﬂllij*(OCCAS|ONtij) + ﬂlzij*(ART|FACTm) + €4
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Level-3 Model
MM10i = Brooj + Broy* (NEWTCHR;) + B10o*(PDPART;) + B1og*(SCMT) + ryg
M5 = Blle + Blllj*(COACHij) + Blle*(N EWTCH R'l) + BllS]*(PDPARTI]) + 3114]**(SCMTU) + I35

M1oj = BlZOj
Level-4 Model
B1ooj = V1000 + Uiooj
B1o1j = Y1010
B1o2j = Y1020
B1osi = V1030
Bi1oj = Y1100 + U11gj
B111j = V1110
B112j = V1120
B11si = V1130
B114j = V1140

Bi20j = Y1200 *+ U1z
COACH NEWTCHR PDPART SCMT have been centered around the level-4 mean.

For starting values, data from 1317 level-1, 1312 level-2, 214 level-3 and 17 level-4 records were used

Final Results - Iteration 61
Iterations stopped due to small change in likelihood function

2
Oe

INVSTDER,y; 0.31788

02.3 (as correlations)
INVSTDER,y; 1.000

Random level-1 coefficient Reliability estimate

INVSTDER 0.821
Tn
INVSTDER INVSTDER
|NTRCPT2,7710 OCCAS|ON,7711
0.93753 0.01861
0.01861 0.00113

T, (as correlations)
INVSTDER/INTRCPT2,mp 1.000 0.571
INVSTDER/OCCASION,m;; 0571  1.000

Random level-2 coefficient  Reliability estimate

INVSTDER/INTRCPT2 0.740
INVSTDER/OCCASION 0.077

Note: The reliability estimates reported above are based on only 214 of 219 units that had sufficient data
for computation. Fixed effects and variance components are based on all the data.

Note, among teachers within schools, there is a positive correlation of 0.571 between their initial
status and expertise development.
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Tp

INVSTDER INVSTDER INVSTDER
INTRCPT2 OCCASION ARTIFACT
INTRCPTS3,B100 INTRCPT3,B110 INTRCPTS3,B120
0.28840 -0.03214 0.16341
-0.03214 0.03798 -0.05972
0.16341 -0.05972 0.22678

Tg (as correlations)

INVSTDER/INTRCPT2/INTRCPT3,8100 1.000 -0.307 0.639
INVSTDER/OCCASION/INTRCPT3,8110 -0.307  1.000  -0.643
INVSTDER/ARTIFACT/INTRCPT3,8120 0.639  -0.643 1.000

In contrast, at the school level a negative correlation, -.307, exists between school mean initial
status on teachers' expertise and school-level growth rates.

Random level-3 coefficient Reliability estimate
INVSTDER/INTRCPT2/INTRCPT3  0.727
INVSTDER/OCCASION/INTRCPT3 0.965
INVSTDER/ARTIFACT/INTRCPT3  0.747

The value of the log-likelihood function at iteration 61 = -3.447675E+003

Final estimation of fixed effects

. - Standard . Approx.
Fixed Effect Coefficient error t-ratio df p-value
For INVSTDER, y,
For INTRCPT2, 119
For INTRCPT3, BlO 0
INTRCPTA4, y1000 -0.042320 0.152308 -0.278 32 0.783
For NEWTCHR, BlO 1
INTRCPTA4, y1010 -0.520219 0.226444 -2.297 178 0.022
For PDPART, BlO 2
INTRCPTA4, y1020 0.167179 0.092189 1.813 178 0.069
For SCMT, Bl 03
INTRCPT4, y1030 0.137797 0.085591 1.610 178 0.107
For OCCASION, 1y 1
For INTRCPT3, Bl 10
INTRCPT4, y1100 0.208296 0.048144 4.327 32 <0.001
For COACH, Bl 11
INTRCPT4, y1110 0.261937 0.078204 3.349 178 0.001
For NEWTCHR, Bl 12
INTRCPTA4, y1120 0.009542 0.027833 0.343 178 0.731
For PDPART, Bl 13
INTRCPTA4, y1130 0.004064 0.009894 0.411 178 0.681
For SCMT, ﬁl 14
INTRCPTA4, y1140 0.014517 0.010328 1.406 178 0.160
For ARTIFACT, 1Ty,
For INTRCPT3, Bl 20
INTRCPT4, y1200 0.569328 0.133191 4.275 16 <0.001

New teachers scored considerably lower on initial status than more experienced teachers ( 7,5, =

-0.520, t = -2.297, p-value = 0.022.) As hypothesized by the study, both prior professional
development experience PDPART and commitment to school improvement SCMT were positively
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related to differences among schools in initial expertise ratings ( p-values of 0.069 and 0.107
respectively.)

In terms of teachers' growth in expertise over the course of the study, OCCASION, the study
hypothesized that this would be related to differential exposure to coaching, COACH.
A highly significant relationship was found, (y,,,, = 0.262, with associated t-value of 3.349 and

a p-value = 0.001). A significant measurement artifact also occurred, see results for y,,q, .

Final estimation of level-1 and level-2 variance components

Standard Variance 2
Random Effect Deviation Component df. X p-value
INVSTDER, ¢, 0.56381 0.31788 1078 4729.76970 <0.001

Note: The chi-square statistics reported above are based on only 1312 of 1317 units that had sufficient
data for computation. Fixed effects and variance components are based on all the data.

Final estimation of level-3 variance components

Standard Variance 2

Random Effect Deviation Component d.f. X p-value
INVSTDER/INTRCPT2,r1g 0.96826 0.93753 193 734.15590 <0.001
INVSTDER/OCCASION,ry; 0.03365 0.00113 192 267.53588 <0.001

Note: The chi-square statistics reported above are based on only 214 of 219 units that had sufficient
data for computation. Fixed effects and variance components are based on all the data.

The variation on among teachers within schools on expertise ratings at the study onset, var( rio),
is 0.937 and the variation within schools on teachers' rate of growth in expertise, var (ri), is
0.001. Both variance components are statistically significant.

Final estimation of level-4 variance components

Standard Variance 2
Random Effect Deviation Component df. x p-value
INVSTDER/ INTRCPT2/INTRCPT3, U100 0.53703 0.28840 16 65.90635 <0.001
INVSTDER/ OCCASION/INTRCPT3, uj10 0.19489 0.03798 16 599.59968 <0.001
INVSTDER/ ARTIFACT/INTRCPTS3, U;5 0.47622 0.22678 16 71.51494 <0.001

We see evidence of considerable variability among schools in teachers' initial expertise ratings,
U110, (;{2 = 65.906, p—value<0.001). Significant variation was also found in school growth

rates, uiio, and in the magnitude of the measurement artifact at each school, ujo.
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Statistics for the current model

Deviance = 6895.349602
Number of estimated parameters = 20

6.4 Other program features
Multivariate hypothesis testing and residual files at all four levels are available in HLM4. Other

options found in HLM2 and HLM3 are not currently operational. For a list of all options currently
available in HLM4, please see the table in Appendix J.
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7 Conceptual and Statistical Background for Hierarchical
Generalized Linear Models (HGLM)

The hierarchical linear model (HLM) as described in the previous six chapters is appropriate for
two- and three-level data where the random effects at each level are normally distributed. The
assumption of normality at level-1 is quite widely applicable when the outcome variable is
continuous. Even when a continuous outcome is highly skewed, a transformation can often be
found that will make the distribution of level-1 random effects (residuals) at least roughly
normal. Methods for assessing the normality of random effects at higher levels are discussed on
page 38 and on page 274 of Hierarchical Linear Models.

There are important cases, however, where the assumption of normality at level-1 is clearly not
realistic and no transformation can make it so. Examples of a binary outcome, Y, are: the
presence of a disease (Y = 1 if the disease is present, Y = 0 if the disease is absent), graduation
from high school (Y = 1 if a student graduates on time, Y = 0 if not), or the commission of a
crime (Y =1 if a person commits a crime during a given time interval, Y = 0 if not). The use of
the standard level-1 model in this case would be inappropriate for three reasons:

e Given the predicted value of the outcome, the level-1 random effect can take on only one
of two values, and therefore cannot be normally distributed.

e The level-1 random effect cannot have homogeneous variance. Instead, the variance of
this random effect depends on the predicted value as specified below.

e Finally, there are no restrictions on the predicted values of the level-1 outcome in the
standard model: they can legitimately take on any real value. In contrast, the predicted
value of a binary outcome Y, if viewed as the predicted probability that Y = 1, cannot
meaningfully be less than zero or greater than unity. Thus, an appropriate model for
predicting Y ought to constrain the predicted values to lie in the interval (0, 1). Without
this constraint the effect sizes estimated by the model are, in general, uninterpretable.

Another example involves count data, where Y is the number of crimes a person commits during
a year or Y is the number of questions a child asks during the course of a one-hour class period.
In these cases, the possible values of Y are non-negative integers 0, 1, 2, .... Such data will
typically be positively skewed. If there are very few zeros in the data, a transformation, e.g.,
Y  =log(1+Y), may solve this problem and allow sensible use of the standard HLM. However, in
the cases mentioned above, there will typically be many zeros (many persons will not commit a
crime during a given year and many children will not raise a question during a one-hour class).
When there are many zeros, the normality assumption cannot be approximated by a
transformation. Also, as in the case of the binary outcome, the variance of the level-1 random
effects will depend on the predicted value (higher predicted values will have larger variance).
Similarly, the predicted values ought to be constrained to be positive.
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Another example involves multi-category (> 2) data, where the outcome consists of responses
tapping teachers' commitment to their career choice. Teachers are asked if they would choose the
teaching profession if they could go back to college and start over again. The three response
categories are:

1. yes, | would choose teaching again
2. notsure
3. no, I would not choose teaching again.

Such outcomes can be studied using a multinomial model. Thus, as discussed previously for
models with binary outcomes, the use of the standard level-1 model would be inappropriate.
Another model one may use is an ordinal model, which treats the categories as ordered.

Within HLM, the user can specify a non-linear analysis appropriate for counts and binary,
multinomial, or ordinal data. The approach is a direct extension of the generalized linear model
of McCullagh & Nelder (1989) to the case of hierarchical data. We therefore refer to this
approach as a “hierarchical generalized linear model” (HGLM). The execution of these analyses is
in many ways similar to that in HLM, but there are also important differences.

7.1 Thetwo-level HLM as a special case of HGLM

The level-1 model in the HGLM may be viewed as consisting of three parts: a sampling model, a
link function, and a structural model. In fact, the standard HLM can be viewed as a special case of
the HGLM where the sampling model is normal and the link function is the identity link.

7.1.1 Level-1 sampling model

The sampling model for a two-level HLM might be written as
Yijlﬂij~N|D(ﬂij’O-2) (0.033)

meaning that the level-one outcome Y;;, given the predicted value, g, is normally and

independently distributed with an expected value of 4;; and a constant variance, o’. The level-1
expected value and variance may alternatively be written as

E(Yij |:uij)::uij Var(Yij |1uij):O'2' (0.034)
7.1.2 Level-1 link function

In general it is possible to transform the level-1 predicted value, y;;, to #;; to insure that the

predictions are constrained to lie within a given interval. Such a transformation is called a link
function. In the normal case, no transformation is necessary. However, this decision not to
transform may be made explicit by writing

i = Hij - (0.035)
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The link function in this case is viewed as the “identity link function.”

7.1.3 Level-1 structural model

The transformed predicted value is now related to the predictors through the linear model or
“structural model*

1= Boy ¥ By Ky By XoijFoF oy X - (0.036)

It is clear that combining the level-1 sampling model (7.1), the level-1 link function (7.3), and
the level-1 structural model (7.4) reproduces the level-1 model of HLM (1.1). In the context of a
standard HLM, it seems silly to write three equations where only one is needed, but the value of
the extra equations becomes apparent in the case of binary, count, and multi-categorical data.

7.2 Two-, three-, and four- level models for binary outcomes

While the standard HLM uses a normal sampling model and an identity link function, the binary
outcome model uses a binomial sampling model and a logit link. Only the level-1 models differ
from the linear case.

7.2.1 Level-1 sampling model

Let Y;; be the number of “successes” in m;; trials. Then we write that

Yyl ~B(my.é;), (0.037) |

to denote that Y;; has a binomial distribution with m;; trials and probability of success ;.
According to the binomial distribution, the expected value and variance of Y;; are then

E(Yij|¢.j):mij¢|j Var(Yij |¢.j):mij¢|j (l_¢|j)- (0.038) ‘

When m; =1, Y;; may take on values of either zero or unity. This is a special case of the

binomial distribution known as the Bernoulli distribution. HGLM allows estimation of models in
which m; = 1 (Bernoulli case) or m;; > 1 (other binomial cases). The case with m;; >1 will be

treated later.

For the Bernoulli case, the predicted value of the binary Y is equal to the probability of a
success, ¢;.
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7.2.2 Level-1 link function

When the level-1 sampling model is binomial, HGLM uses the logit link function

ol i
M= Iog(l_ﬁj ] (0.039)

In words, 7, is the log of the odds of success. Thus if the probability of success, ¢, , is 0.5, the

odds of success is 1.0 and the log-odds or “logit” is zero. When the probability of success is less
than 0.5, the odds are less than one and the logit is negative; when the probability is greater than
0.5, the odds are greater than unity and the logit is positive. Thus, while ¢, is constrained to be

in the interval (0,1), 7;; can take on any real value.

7.2.3 Level-1 structural model

This will have exactly the same form as (7.4). Note that estimates of the gs in (7.4) make it
possible to generate a predicted log-odds (7,;) for any case. Such a predicted log-odds can be

converted to an odds by computing odds = exponential (7;). Similarly, predicted log-odds can
be converted to a predicted probability by computing

1

= m (0.040)

1j

Clearly, whatever the value of 7,;, applying (7.8) will produce a ¢, between zero and unity.

7.2.4 Level-2 and Level-3 and Level-4 models
In the case of a two-level analysis, the level-2 model has the same form as used in a standard 2-
level HLM (equations 1.2, 1.3, and 1.4). In the case of a three-level analysis, the level-2 and level-
3 models are also the same as in a standard 3-level HLM. The same applies for 4-level HLM.

7.3 The model for count data

For count data, we use a Poisson sampling model and a log link function.

7.3.1 Level-1 sampling model
Let Y;;be the number of events occurring during an interval of time having length m;. For
example, Y;; could be the number of crimes a person i from group j commits during five years,
so that m;; = 5. The time-interval of m;; units may be termed the “exposure.” Then we write that
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to denote that Y;; has a Poisson distribution with exposure m;; and event rate 4;. According to
the Poisson distribution, the expected value and variance of Y;; are then

E(Yijlﬂﬂ):mijﬂij Var(Yijlﬂﬂ):mijﬂﬁ' (0.042)

The exposure m;; need not be a measure of time. For example, if Y;; is the number of bombs
dropping on neighborhood i of city j during a war, m;; could be the area of that neighborhood. A
common case arises when, for each i and j, the exposure is the same (e.g., Y;; is the number of
crimes committed during one year for each person i within each neighborhood j). In this case, we

set m; =1 for simplicity. HGLM allows estimation of models in which m;; =1 or m;; > 1. (The

case with m;; > 1 will be treated later.)

According to our level-1 model, the predicted value of Y;; when m;; =1 will be the event rate
A

ij"
7.3.2 Level-1 link function

HGLM uses the log link function when the level-1 sampling model is Poisson, that is

1:; = 109(4;). (0.043)

In words, 7;; is the log of the event rate. Thus, if the event rate, 4;,, is one, the log is zero. When

the event rate is less than one, the log is negative; when the event rate is greater than one, the log
is positive. Thus, while 4; is constrained to be non-negative, 7;; can take on any real value.

7.3.3 Level-1 structural model

This will have exactly the same form as (7.4). Note that estimates of the gs in (7.4) make it
possible to generate a predicted log-event rate (7;;) for any case. Such a predicted log-event rate
can be converted to an event rate by computing

A ; =eventrate = exp(r, ,—)

Clearly, whatever the value of 7,;, 4; will be non-negative.

7.3.4 Level-2 model

The level-2 model has the same form as the level-2 model for HLM2 (equations 1.2, 1.3, and 1.4),
and the level-2 and level-3 models have the same form in the three- and four-level case as in
HLM3 and HLM4, respectively.
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7.4 The model for multinomial data

For multi-category nominal data, we use a multinomial model and a logit link function. This is
an extension of the Bernoulli model with more than two possible outcomes. This feature is not
available in HLMm4.

7.4.1 Level-1 sampling model

Let
Prob(R; =m)=4g,,

that is, the probability that person i in group j lands in category m is ¢, for categoriesm =1, ...,
M, there being M possible categories.

For example, R; = 1 if high school student i in school j goes on to college; R; = 2 if that student
goes on to a job; R;; = 3 if that student becomes unemployed. Here M = 3. The analysis is
facilitated by constructing dummy variables Y,,Y,,...,Y, , where Y. = 1 if R; =m, 0 otherwise.
ij =1, Y2ij =0, Y3ij
=0, Y,; =1,Y,; =0; if that student becomes unemployed, R;; =3, so

For example, if student ij goes to college, R; = 1,50 Y, = 0; if student ij goes
to work, R;; =2, s0 Y
Yu; =0, Y,; =0, Yy; = 1. This leads to a definition of the probabilities as Prob(Ymij :1) = B -

For example, for M = 3,

PrOb(Ylij = ):¢1ij
Prob(Y,; =1) = (0.044)
PrOb(Ysij :l):¢3ij :l_¢1ij _¢2ij

Y.

2ij

Y.

Note that because Y, =1-Y, 5i; Is redundant.

3ij — 1j —

According to the multinomial distribution, the expected value and variance of Y ;. given 4.,
are then

E(Ymij |¢mij):¢mij Var(Ymij |¢mij):¢mij (1_¢mij)- (0.045)

The covariance between outcomes Y, ;. and Y, ; is

COV (Yo iy ) = i (0.046)

mij? "m'ij
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7.4.2 Level-1 link function

HGLM uses the logit link function when the level-1 sampling model is multinomial. Define 7, ..
as the log-odds of falling into category m relative to that of falling into category M. Specifically

¢mi'
=log| ==L 0.047
77m|J og[¢Mijj ( ~ )
where
¢Mij =1- §,¢mij- (0.048)

In words, 7, is the log odds of being in m-th category relative to the M-th category, which is
known as the “reference category.”

7.4.3 Level-1 structural model

At level-1, we have

Q
T :ﬁOj(m)_'_Zﬂqj(m)xqij! (0.049)
=1

form=1, .., (M- 1). For example, with M = 3, there would be two level-1 equations, for 7,
and 7,; -

7.4.4 Level-2 model

The level-2 model has a parallel form

Sq
Baimy = Vaoem + Zl]/qs(m)wsj +Ugjmy- (0.050)

Thus, for M = 3, there would be two sets of level-2 equations.
7.5 The model for ordinal data
7.5.1 Level-1 sampling model
Again a person falls into category m and there are M possible categories, so m =1, ..., M. But

now the categories are ordered. Given the ordered nature of the data, we derive the M dummy
variables Y, Ym_1y; for case i in unit j as

TERRRY

Yo =1 if R;;<m, O otherwise. (0.05%)
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For example, with M = 3, we have

i (0.052)
Y, =1 if R,<2

The probabilities Prob(Y,,;; =1) are thus cumulative probabilities. For example, with M = 3,

Prob(Yy; =1) =Prob(Ry; =1) = ¢;
Prob(Y,; =1) =Prob(R;; =1)+Prob(R;; = 2) = 4 (0.053)
Prob (Yy; =1) =Prob(R;; =1)+Prob(R;; = 2)+Prob(R;; =3) =1

Since Yy; =1-Y,;, Yy; is redundant. We actually need only M — 1 dummy variables.

Associated with the cumulative probabilities are the cumulative logits,

_ Prob(R;; <m) g 0,050
Mmij = 109 Prob(Rij>m) =log 1:¢mij : (-7 )

7.5.2 Level-1 structural model

The level-1 structural model assumes “proportional odds”,

Q M
Mmi :ﬂOJ +Zﬁqjxqij +25m' (0.059)
g=1 m=2

Under the proportional odds assumption, the relative odds that R;; <m, associated with a unit
increase in the predictor, does not depend on m.

Here &, is a “threshold” that separates categories m — 1 and m. For example, when M = 4,

Q
i = Boj + 2 B Xai
gq=1
Q
Maij = P "'Zﬂqjxqij +0, (0.056)
o]
Q
13ij :ﬂoj +Zﬂqjxqij +0, +0;
o]
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7.6 Parameter estimation

HLM2 and HLM3 use three approaches to estimation for HGLM. The first method bases inference
on the joint posterior modes of the level-1 and level-2 (and level-3) regression coefficients given
the variance-covariance estimates. The variance-covariance estimates are based on a normal
approximation to the restricted likelihood. Stiratelli, Laird, & Ware (1984) and Wong & Mason
(1985) developed this approach for the binary case. Schall (1991) discusses the extension of this
approach to the wider class of generalized linear models. Breslow & Clayton (1993) refer to this
estimation approach as “penalized quasi-likelihood* or PQL. Extending HLM to HGLM requires a
doubly iterative algorithm, significantly increasing computational time. Related approaches are
described by Goldstein (1991), Longford (1993), and Hedeker & Gibbons (1994).

The second and third methods of estimation (“Laplace and “adaptive Gaussian quadrature”) involve
somewhat more computationally intensive algorithms but provide accurate approximation to
maximum likelihood (ML). These two approaches are currently available for two-level and three-
level Bernoulli models and for two-level Poisson models with m; =1. We consider PQL below in

some detail followed by a brief discussion of Laplace and adaptive Gaussian quadrature.

7.6.1 Estimation via PQL

The approach can be presented heuristically by computing a “linearized dependent variable” as
in the generalized linear model of McCullagh and Nelder (1989). Basically, the analysis involves
use of a standard HLM model with the introduction of special weighting at level-1. However,
after this standard HLM analysis has converged, the linearized dependent variable and the weights
must be recomputed. Then, the standard HLM analysis is re-computed. This iterative process
of analyses and recomputing weights and linearized dependent variable continues until estimates
converge.

We term the standard HLM iterations “micro-iterations.” The recomputation of the linearized
dependent variable and the weights constitute a “macro iteration.” The approach is outlined
below for four cases: Bernoulli (binomial with m; =1), Poisson with m;; =1, binomial with

m;; >1, and Poisson with m;; >1.
7.6.1.1  Bernoulli (binomial with m; =1)

Consider the model
Y, =g, +a, 0057 |

with ¢, defined as in Equation 7.8 and

E(s;)=0 Var(g;) =w; =¢,;1-4;). (0.058) ‘

We now substitute for ¢; its linear approximation with
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(i)
¢~ + o) — (15 -1)
(] 1] 677(') ij 1]

¢(0)
77'(10) Iog[ ¢(0)

where ¢ is an initial estimate and

e
%:wﬂﬁ.j a-4).
i

If we evaluate ;; at its initial estimates
W' =4 0-g).
(7.25) can be written as

_ 4(0) (0) (0)
_¢|j +\Nij (77” 77Ij ) |"

(0.059)

(0.060)

(0.061)

(0.062)

(0.063)

Algebraically rearranging the equation so that all observables are on the left-hand side yields

:ﬂoj' +,B1jX1ij +ﬂ2jX2ij +"'+IBQ,'XQij +

where

is the linearized dependent variable and

&j 1
Var(e;) =Var W(O) N\Ni(jO).

1]
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Thus, (7.32) is a standard HLM level-1 model with outcome Zi(jo’ and level-1 weighting variable

w.
The algorithm works as follows.
1. Given initial estimates of the predicted value, 4;, and therefore of the linearized
dependent variable, Z;;, and the weight, w;;, compute a weighted HLM analysis with
(7.32) as the level-1 model.

2. The HLM analysis from step 1 will produce new predicted values and thus new
linearized dependent variables and weights. HLM will now compute a new, re-
weighted MDM file with the appropriate linearized dependent variable and weights.

3. Based on the new linearized dependent variable and weights, re-compute step 1.

This process goes on until the linearized dependent variable, the weights, and therefore, the
parameter estimates, converge to a pre-specified tolerance. The program then stops.

7.6.1.2 Poisson with m; =1

The procedure is exactly the same as in the binomial case with m; =1 except that

o4,
Var(gij):Wij :a:/’iﬁ. (0961)
ij

7.6.1.3 Binomial with m; >1

In the previous example, Y;; was formally the number of successes in one trial and therefore
could take on a value of 0 or 1. We now consider the case where Y;; is the number of successes
in m; trials, where Y;; and m; are non-negative integers, Y;; <m,.

Suppose that a researcher is interested in examining the relationship between pre-school
experience (yes or no) and grade retention and wonders whether this relationship is similar for
males and females. The design involves students at level 1 nested within schools at level 2. In
this case, each school would have four “cell counts” (boys with and without pre-school and girls
with and without pre-school). Thus, the data could be organized so that every school had four
observations (except possibly schools without variation on pre-school or sex), where each
observation was a cell having a cell size m; and a cell count Y;; of students in that cell who

were, in fact, retained. One could then re-conceptualize the study as having up to four level-1
units (cells); the outcome Y;;, given the cell probability ¢;, would be distributed as B(mij,;/i,j).

There would be three level-1 predictors (a contrast for pre-school experience, a contrast for sex,
and an interaction contrast). This problem then has the structure of a 2x2xJ contingency table
(pre-school experience by sex by school) with the last factor viewed as random.
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The structure of a level-1 file for group 2 might appear as follows.

Group Dy Yij Xaij Xaij Xaij
Girls with pre-school 2 n, Y, 0.50 0.50 0.25
Girls without pre-school 2 n,, Y,, 0.50 -0.50 -0.25
Boys with pre-school 2 n,, Y., -0.50 0.50 -0.25
Boys without pre-school 2 N,, Y., -0.50 -0.50 0.25

For example, n,, is the number of girls in school 2 with pre-school and Y,, is the number of
those girls who were retained. The predictor X, is a contrast coefficient to assess the effect of
sex (0.5 if female, 0.5 if male); X,;; is a contrast for pre-school experience (0.5 if yes, 0.5 if

no), and X,; = X;; x X,;; Is the interaction contrast.

Estimation works the same in this case as in the binomial case except that
o (0.068)

with

W, =md, (1_¢.j)- (0.069)
7.6.1.4 Poisson with m; >1

Consider now a study of the number of homicides committed within each of j neighborhoods in
a large city. Many neighborhoods will have no homicides. The expected number of homicides in
a neighborhood will depend not only on the homicide rate for that neighborhood, but also on the
size of that neighborhood as indexed by its number of residents, m;;. Level-1 variables might

include characteristics of the homicide (e.g., whether the homicide involved a domestic dispute,
whether it involved use of a gun). Each cell (e.g., the four types of homicide as defined by the
cross-classification of domestic — yes or no — and use of a gun — yes or no) would be a level-1
unit.

Estimation in this case is the same as in the Poisson case with m;; =1 except that

7 ZM"‘% (0.070)



and

W, =m;A,;. (0.07%)

7.6.2 Properties of the estimators

Using PQL, HGLM produces approximate empirical Bayes estimates of the randomly varying
level-1 coefficients, generalized least squares estimators of the level-2 (and level-3 or level-4)
coefficients, and approximate maximum-likelihood estimators of the variance and covariance
parameters. Yang (1995) has conducted a simulation study of these estimators in comparison
with an alternative approach used by some programs that sets the level-2 random coefficients to
zero in computing the linearized dependent variables. Breslow & Clayton (1993) refer to this
alternative approach as “marginalized quasi-likelihood” or MQL. Rodriquez & Goldman (1995)
had found that MQL produced biased estimates of the level-2 variance and the level-2 regression
coefficients. Yang's results showed a substantial improvement (reduction in bias and mean
squared error) in using the approach of HGLM. In particular, the bias in estimation of the level-2
coefficients was never more than 10 percent for HGLM, while the MQL approach commonly
produced a bias between 10 and 20 percent. HGLM performed better than the alternative approach
in estimating a level-2 variance component as well. However, a negative bias was found in
estimating this variance component, ranging between two percent and 21 percent. The bias was
most severe when the true variance was very large and the typical “probability of success” was
very small (or, equivalently, very large). Initial simulation results under the Poisson model
appear somewhat more favorable than this. Breslow & Clayton (1993) suggest that the
estimation will be more efficient as the level-1 sample size increases.

7.6.3 Parameter estimation: A high-order Laplace and adaptive Gaussian

Quadrature approximation of maximum likelihood

For two- and three-level models with binary and count outcomes, HGLM provides two
alternatives to estimation via PQL: a high-order Laplace and an adaptive Gaussian Quadrature
approximation. Figure 7.1 displays the dialog box for the estimation settings for two-level
models.
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F — bl

Type of Likelihood
&+ Restricted maximum likelihood " Full maximum likelihood

-Adaptive Gaussian Quadrature lteration Control -

[ Do adaptive Gaussian iterations  Maximum number of iterations

I

Number of quadrature points

" First derivative " Second derivative

LaPlace lteration Control

[T Do EM Laplace iterations Maximum number of iterations I

[~ Fixed Intercept, Random Coeffcient [ Diagonalize Tau [~ Fun as spatial dependence

Constraint of fixed effectsl Heterogeneous sigma"2 mputatior | Multiple imputationl

. | Weighting | Latent Variable Regression | Plausible valuesl
Variable Selection Modell [TT effects | IV Effects |
Fix sigma"2 to specific value | computed
(Set to "computed" if you want sigma*2
random or if over-dispersion is desired)

Figure 7.1 Estimation settings for two-level hierarchical generalized linear models

One alternative for two- and three-level Bernoulli and Poisson models with constant and variable
exposure uses a high-order approximation to the likelihood based on a Laplace transform. The
adaptive Gauss-Hermite quadrature (AGQ) technique (Pinheiro & Bates, 1995) is another
approximation option available for two- and three-level binomial and Poisson models with
constant and variable exposure. For AGQ, users have the options to specify the number of
quadrature points and to choose the use of a first or a second derivative approximation. Both
accuracy in approximation and computational demands increase as the number of nodes
specified increases and when the second derivative option is used.

For two-level Bernoulli models, Yang (1998), Raudenbush, Yang, and Yosef (2000) and Yosef
(2001) found that both the Laplace and AGQ techniques yielded accurate estimates. Results of
Yosef (2001) suggested AGQ performed better for models with small cluster size (n; = 2) in
terms of smaller means-squared errors and biases. The Laplace method, on the other hand, gave
more accurate approximation in models with bivariate random effects. Johnson (2006) showed in
his simulation study that for two-level Poisson models with equal exposure, the Laplace and
AGQ estimates in general displayed less bias than those of PQL. However, AGQ gave more
accurate approximation when the event rate was low and the level-2 variance was large (o = 1).
Based on his results, he recommended AGQ be used with small event rate and small cluster size
(nij = 2).

120



7.7 Unit-specific and population-average models

The models described above have been termed “unit-specific* models. They model the expected
outcome for a level-2 unit conditional on a given set of random effects. For example, in the

Bernoulli case (m; =1), we might have a level-1 (within-school) model

M = Poj + By Xi» (0.072)

and a level-2 (between-school) model

Boi =Yoo + VW +Uy;

(0.073)
ﬂlj =10
leading to the combined model
i =Yoo +VaW; + 710 X; +Up;- (0.074)
Under this model, the predicted probability for case ij, given u,;, would be
1
E(Yy luy; ) = (0.075)

1+exp{—(700 +701Wj +710xij +u0j)}.

In this model y,, is the expected difference in the log-odds of “success” between two students
who attend the same school but differ by one unit on X (holding u,; constant); y,, is the

expected difference in the log-odds of success between two students who have the same value on
W but attend schools differing by one unit on W (holding u,; constant). These definitions

parallel definitions used in a standard HLM for continuous outcomes.

However, one might also want to know the average difference between log-odds of success of
students having the same X but attending schools differing by one unit on W, that is, the
difference of interest averaging over all possible values of u,;. In this case, the unit-specific

model would not be appropriate. The model that would be appropriate would be a “population-
average“ model (Zeger, Liang, & Albert, 1988). The distinction is tricky in part because it does
not arise in the standard HLM (with an identity link function). It arises only in the case of a non-
linear link function.

Using the same example as above, the population average model would be
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1
E Y| = * * * . (0.916)
( J) 1+exp{_(7oo+701wj+71°Xij)}

Notice that (7.41) does not condition on (or “hold constant”) the random effect u,;. Thus, Yol

gives the expected difference in log-odds of success between two students with the same X who
attend schools differing by one unit on W — without respect to the random effect, u,; . If one had

a nationally representative sample and could validly assign a causal inference to W, y,, would be

the change in the log-odds of success in the whole society associated with boosting W by one
unit while y,, would be the change in log-odds associated with boosting W one unit for those

schools sharing the same value of u,;.

HGLM produces estimates for both the unit-specific and population-average models. The
population-average results are based on generalized least squares given the variance-covariance
estimates from the unit-specific model. Moreover, HGLM produces robust standard error
estimates for the population-average model (Zeger, et al., 1988). These standard errors are
relatively insensitive to misspecification of the variances and covariances at the two levels and to
the distributional assumptions at each level. The method of estimation used in HGLM for the
population-average model is equivalent to the “generalized estimating equation” (GEE) approach
popularized by Zeger, et al. (1988).

The following differences between unit-specific and population-average results are to be
expected:

® If all predictors are held constant at their means, and if their means are zero, the

population-average intercept can be used to estimate the average probability of success
across the entire population, that is

1

= (0.0#%)
1+exp(=74o)

¢ij

This will not be true of unit-specific intercepts unless the average probability of
success is very close to .5.

e Coefficient estimates (other than the intercept) based on the population-average model
will often tend to be similar to those based on the unit-specific model but will tend to be
smaller in absolute value.

Users will need to take care in choosing unit-specific versus population-average results for their
research. The choice will depend on the specific research questions that are of interest. In the
previous example, if one were primarily interested in how a change in W can be expected to
affect a particular individual school's mean, one would use the unit-specific model. If one were
interested in how a change in W can be expected to affect the overall population mean, one
would use the population-average model.
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7.8 Over-dispersion and under-dispersion

As mentioned earlier, if the data follow the assumed level-1 sampling model, the level-1
variance of the Y;; will be w;; where

=

m.¢.(1—¢.), Binomial case, or
J¢J ¢'J (0.078)

=

i Poisson case.

i

ij=m
However, if the level-1 data do not follow this model, the actual level-1 variance may be larger
than that assumed (over-dispersion) or smaller than that assumed (under-dispersion). For
example, if undetected clustering exists within level-1 units or if the level-1 model is under-
specified, extra-binomial or extra-Poisson dispersion may arise. This problem can be handled in
a variety of ways; HGLM allows estimation of a scalar variance so that the level-1 variance will

be o’w;.
7.9 Restricted versus full PQL versus full ML

The default method of estimation for HGLM is restricted PQL, while full PQL is an option. For the
three-and four-level HGLM, PQL estimation is by means of full PQL only. All estimates based on
Laplace and adaptive Gauss-Hermite Quadratures are based on full ML.

7.10 Hypothesis testing

The logic of hypothesis testing with HGLM is quite similar to that used in the case of HLM. Thus,
for the fixed effects (the ys), a table of approximate t-values is routinely printed for univariate
tests; multivariate tests for the fixed effects are available using the approach described earlier in
Chapter 2. Similarly, univariate tests for variance components (approximate chi-squares) are also
routinely printed out. The one exception is that multivariate tests based on comparing model
deviances (-2 log likelihood at convergence ) are not available using PQL, because PQL is based
on quasi-likelihood rather than maximum-likelihood estimation. These are available using
Laplace Or adaptive Gauss-Hermite quadrature.
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8 Fitting HGLMs (Nonlinear Models)

There is no difference between HGLM (“nonlinear analysis™) and HLM (“linear analysis™) in the
construction of the MDM file. Thus, the same MDM file can be used for nonlinear and linear
analysis.

8.1 Executing nonlinear analyses based on the MDM file

Model specification for nonlinear analyses, as in the case of linear analyses, can be achieved via
Windows (PC implementation only), interactive execution, or batch execution. The mechanics of
model specification are generally the same as in linear analyses with the following differences:

Six types of nonlinear analysis are available. With Windows execution, these options are
displayed in the Basic Model Specifications — HLM2 dialog box (See Figure 8.1). This
dialog box is accessed by clicking the Outcome button at the top of the variable list box
to the left of the main HLM window. There are two choices for dichotomous outcomes,
two for count outcomes, one for multinomial outcomes, and one for ordinal outcomes.

Highly accurate approximations to maximum likelihood based on either the Laplace
approximation or adaptive Gauss-Hermite Quadrature are available for 2- and 3-level
Bernoulli models and for 2-level Poisson models through the Estimation Settings —
HLM2 dialog box shown in Figure 8.3.

If desired, an over-dispersion option is available for binomial and Poisson models. This
option is not available with Laplace (see Figure 8.3). To specify over-dispersion, set the

o’ value to computed in the Estimation Settings — HLM2 dialog box (see Figure 8.3).

As mentioned, the nonlinear analysis is doubly iterative so the maximum number of
macro iterations can be specified as well as the maximum number of micro iterations.
Similarly, convergence criteria can be reset for macro iterations as well as micro
iterations.? The number of iterations and method of estimation is set through the Iteration
Control — HLM2 dialog box shown in Figure 8.2.

2The overall accuracy of the parameter estimates is determined by the convergence criterion for
macro iterations. The convergence criterion for micro iterations will influence the number of
micro iterations per macro iteration. The default specifications stop macro iterations when the
largest parameter estimate change is less than 10™; micro iterations within macro iterations stop
when the conditional log likelihood (conditional on the current weights and values of the
linearized dependent variable) changes by less than 10°°.
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Drop-down listhox for selecting the variable that
indicates the number of trials or unequal exposure

Basic Model Specifications - HLM2 =

~Distribution of Outcome Variable

& Normal {Cantinuous)

Dichotomous outcomes " Bemoulli {0 or1)
—{" Poisson (constant exposure)

Count outcomes—| " Binomial (number of trials) INme ___|
~" Poisson (variable exposure) =

Multinomial outcomes ————— " Multinomial )

Ordinal outcomes ¢ Ordinal Number of categories I

Selectvariable that
indicates the number

of trials or unequal ————— I~ Over dispersion

exposure

Request residual files ————— Level-1 Residual File | | Level-2 Residual File I
Specify output and /

graphics file names ™ Title llntercepts and Slopes-as-Outcomes Model
and paths

Output file name ] hsb1.out

(See File-=Preferences to set default output type)
Jv Make graph file

Graph file name Igrapheq.geq

Cancel | OK |

Figure 8.1 Basic Model Specifications — HLM2 dialog box

Iteration Control - HLM2

Murmber of (micra) iterations 100] ~How to handle bad Tau(l)
" Set off diagonals to 0

Mumber of macro iterations I " Manual reset
& Automatic fixup
Frequency of accelerator |5

% change to stop iterating ID.DDDDD1DDDD

YWhat to do when maximum number of iterations achieved without convergence
|V & Prompt " Continue iterating " Stop iterating

DI

Figure 8.2 Iteration Control — HLM2 dialog box
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(2 = ~N

Type of Likelihood
& Restricted maximum likelihood " Full maximum likelihood

Adaptive Gaussian Quadrature lteration Control-

[T Do oadaptive Gaussian iterations  Maximum number of iterations

I

Number of quadrature points

" First derivative " Second derivative

LaPlace Iteration Control

[T Do EM Laplace iterations Maximum number of iterations I

[” Fixed Intercept, Random Coeffcient [ Diagonalize Tau " Run as spatial dependence mod

Constraint of fixed effectsl Heterogeneous sigma*2 nputatior | Multiple imputationl

ible: l Weighting l Latent Variable Regressionl Plausible values|
Variable Selection Model MTeffects | IV Effects |
Fix sigma*2 to specific value | computed
(Set to "computed" if you want sigma*2
random or if over-dispersion is desired)

Figure 8.3 Estimation Settings — HLM2 dialog box

Below we provide two detailed examples of nonlinear analyses: the first uses the Bernoulli

model, that is, a binomial model with the number of trials, m;, equal to one. The second

example uses a binomial model with m;; >1. The analogs of these two analyses for count data
are, respectively, the Poisson model with equal exposure and the Poisson case with variable
exposure (some brief notes about these two applications are also included). Finally, we furnish
two examples for multi-category outcomes, one for multinomial data and one for ordinal data.
Windows mode specification is illustrated. See Appendix D for interactive and batch
specification.

8.2 Case 1: a Bernoulli model

Data are from a national survey of primary education in Thailand (see Raudenbush & Bhumirat,
1992, for details), conducted in 1988, and yielding, for our analysis, complete data on 7516 sixth
graders nested within 356 primary schools. Of interest is the probability that a child will repeat a
grade during the primary years (REP1 = 1 if yes, 0 if no). It is hypothesized that the sex of the
child (MALE = 1 if male, 0 of female), the child's pre-primary experience (PPED = 1 if yes, 0 if
no), and the school mean SES (MSESC) will be associated with the probability of repetition.
Every level-1 record corresponds to a student, with a single binary outcome per student, so the
model type is Bernoulli. These data (level-1 and level-2) data files are UTHAIL1.SAV and
THAI2.SAV.
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Below are the Windows commands for specifying a Bernoulli model.

To specify a Bernoulli model

1.

N

After specifying the outcome in the model specification window (REP1 in our example),
click the Outcome button at the top of the variable list box to the left of the main HLM
window to open the Basic Model Specifications — HLM2 dialog box (See Figure 8.1).
Select Bernoulli (0 or 1) as there is one binary outcome per level-1 unit.

(Optional) Specify the maximum number of macro and micro iterations by selecting the
Iteration Settings option from the Other Settings menu.

(Optional) Select Laplace approximation or Adaptive Gaussian iteration control from
the options on the Estimation Settings — HLM2 dialog box, which is accessed by selecting
the Estimation Settings options from the Other Settings menu (See sections 8.8 and 7.6.3).

The model described above is displayed in Figure 8.4 in both standard and mixed model
notation. The command file for the model is THAIUL.HLM.

Uncentered level-1 predictars,
Cutcame gender and pre-primary experience

[ WHLM: him2 MDM File: thaiu.mdm Command File: whlmtemp.hlrfﬁf 10| =]
File Basic Settings Other Setlings  Run Analvsis  Helg

Outcome LEVEL 1 MODEL (hold: aroup-mean centering; bold italic: grand-mean certering) ﬂ
Level-1

>> Level2 << | OPREPT=NR =9

INTRCETZ Logleil - @) = n

MSESC = By + B, (MALE) + p,(PPED)

LEVEL ? MODEL (hold talic: grand-mean centering)
Bo = tpg T 1 MSESC) +u,

By = 1ap

Fa = 12

Mixedl v|

Mixed Model

M= Ygp 1 HMSESCT + 1, #MALE + v, APPED + 1,

i

Mote: these level-1 Grand mean centered level-2
coefficients are non-random predictor, school mean SES

Figure 8.4 Model specification window for the Bernoulli model

Below we provide a transcript of the messages that HLM2 sent to the iteration window during
computation of the results.
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MACRO ITERATION 1

Starting values computed. Iterations begun.

Should you wish to terminate the iterations prior to convergence, enter cntl-c
The value of the likelihood function at iteration 1 = -2.400265E+003

The value of the likelihood function at iteration 2 = -2.399651E+003

The value of the likelihood function at iteration 3 = -2.399620E+003

The value of the likelihood function at iteration 4 = -2.399614E+003

The value of the likelihood function at iteration 5 = -2.399612E+003

The value of the likelihood function at iteration 6 = -2.399612E+003

The value of the likelihood function at iteration 7 = -2.399612E+003

Macro iteration number 1 has converged after seven micro iterations. This macro iteration
actually computes the linear-model estimates (using the identity link function as if the level-1
errors were assumed normal). These results are then transformed and input to start macro
iteration 2, which is, in fact, the first nonlinear iteration.

MACRO ITERATION 2

Starting values computed. Iterations begun.

Should you wish to terminate the iterations prior to convergence, enter cntl-c
The value of the likelihood function at iteration 1 = -1.067218E+004
The value of the likelihood function at iteration 2 = -1.013726E+004
The value of the likelihood function at iteration 3 = -1.011008E+004
The value of the likelihood function at iteration 4 = -1.010428E+004
The value of the likelihood function at iteration 5 = -1.010265E+004
The value of the likelihood function at iteration 6 = -1.010193E+004
The value of the likelihood function at iteration 7 = -1.010188E+004
The value of the likelihood function at iteration 8 = -1.010188E+004
The value of the likelihood function at iteration 9 = -1.010187E+004
The value of the likelihood function at iteration 10 = -1.010187E+004
The value of the likelihood function at iteration 11 = -1.010187E+004
The value of the likelihood function at iteration 12 = -1.010187E+004

Macro iteration 2, the first nonlinear macro iteration, converged after twelve micro iterations.

MACRO ITERATION 8

Starting values computed. Iterations begun.

Should you wish to terminate the iterations prior to convergence, enter cntl-c
The value of the likelihood function at iteration 1 = -1.000374E+004

The value of the likelihood function at iteration 2 = -1.000374E+004

Note that macro iteration 8 converged with just 2 micro iterations. Macro iteration 8 was the
final “unit-specific* macro iteration. One final “population-average* iteration is computed. Its
output is given below.

MACRO ITERATION 9

Starting values computed. Iterations begun.

Should you wish to terminate the iterations prior to convergence, enter cntl-c
The value of the likelihood function at iteration 1 = -1.011638E+004

The value of the likelihood function at iteration 2 = -1.010710E+004

The value of the likelihood function at iteration 3 = -1.010710E+004

Next, we examine the output file THAIBERN.OUT.
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SPECIFICATIONS FOR THIS NONLINEAR HLM RUN
Problem Title: Bernoulli output, Thailand data
The data source for this run = THAIUGRP.MDM
The command file for this run = THAIBERN.HLM
Output file name = THAIBERN.HTML
The maximum number of level-1 units = 7516
The maximum number of level-2 units = 356
The maximum number of micro iterations = 20
Method of estimation: restricted PQL
Maximum number of macro iterations = 25
Distribution at Level-1: Bernoulli
The outcome variableis REP1

Summary of the model specified

Level-1 Model

Prob(REPL;=1|8) = 4,

log[¢; /(1 - ¢;)] = i
Ni = Boj + By*(MALE;) + B*(PPED;)

Thus, the level-1 structural model is

1, = log Lib—';”} = fo; + By (MALE)U_ + 5, (PPED)”

Level-2 Model
Boj = Yoo * Yo1*(MSESC)) + U
B1j = V1o
B2 = Y20

MSESC has been centered around the grand mean.

And the level-2 structural model is

Bo; :7oo+701(MSESC)ij +Uo;
/311 =10
ﬁzj =7Y20"

Level-1 variance = 1/[¢; (1-¢;)]

In the metric of the linearized dependent variable, the level-1 variance is the reciprocal of the
Bernoulli variance, ¢,;(1-¢;).
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Mixed Model

Nii = Yoo *+ Yor*MSESC; + y10*"MALE;; + yo0*PPED; + Ug;

Three sets of output results appear below: those for the normal linear model with identity link
function, those for the unit-specific model with logit link function, and those for the population-
average model with logit link. Typically, only the latter 2 sets of results will be relevant for
drawing conclusions. The linear model with identity link is estimated simply to obtain starting

values for the estimation of the models with logit link.
Final Results for Linear Model with the Identity Link Function

6% =0.12181

T
INTRCPT1,8, 0.01897

Random level-1 coefficient  Reliability estimate

INTRCPT1,8, 0.749

The value of the log-likelihood function at iteration 6 = -2.413825E+003

Estimation of fixed effects: (linear model with identity link function)

Fixed Effect Coefficient Standard t-ratio Approx. p-value
error d.f.

For INTRCPT1, B,

INTRCPT2, Yoo 0.153756 0.010812 14.221 354 <0.001

MSESC, yo1 -0.033414 0.022465 -1.487 354 0.138
For MALE slope, 8

INTRCPT2, yio 0.054131 0.008330 6.498 7158 <0.001
For PPED slope, 8,

INTRCPT2, V2o -0.064613 0.010926 -5.914 7158 <0.001

Results for Non-linear Model with the Logit Link Function
Unit-Specific Model, PQL Estimation - (macro iteration 8)

T
INTRCPT1,8, 1.29571

Random level-1 coefficient  Reliability estimate

INTRCPT1,8, 0.682

The value of the log-likelihood function at iteration 2 = -1.001031E+004
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Final estimation of fixed effects: (Unit-specific model)

Fixed Effect Coefficient eSr;tgPdard t-ratio dA.\f?prox. p-value
For INTRCPT1, B,
INTRCPT2, yoo -2.046961 0.093985 -21.780 354 <0.001
MSESC, vo: -0.254412 0.193319 -1.316 354 0.189
For MALE slope, ;
INTRCPT2, yio 0.508561 0.073935 6.879 7158 <0.001
For PPED slope, 3,
INTRCPT2, vy -0.594375 0.095962 -6.194 7158 <0.001
Fixed Effect Coefficient R(’)a (:S)S Igt(;r;\fllglence
For INTRCPT1, S,
INTRCPT2, yoo -2.046961 0.129127 (0.107,0.155)
MSESC, vo:1 -0.254412 0.775372 (0.530,1.134)
For MALE slope, ;
INTRCPT2, yio 0.508561 1.662897 (1.439,1.922)
For PPED slope, 3,
INTRCPT2, y2 -0.594375 0.551908 (0.457,0.666)
Final estimation of fixed effects
(Unit-specific model with robust standard errors)
. - Standard . Approx.
Fixed Effect Coefficient error t-ratio d. fr.)p p-value
For INTRCPT1, B,
INTRCPT2, Yoo -2.046961 0.094872 -21.576 354 <0.001
MSESC, yo1 -0.254412 0.204048 -1.247 354 0.213
For MALE slope, 8
INTRCPT2, yio 0.508561 0.075994 6.692 7158 <0.001
For PPED slope, 8,
INTRCPT2, V2o -0.594375 0.094840 -6.267 7158 <0.001
Fixed Effect Coefficient Rc?a c:i(ls Igtz?\fllglence
For INTRCPT1, B,
INTRCPT2, Yoo -2.046961 0.129127 (0.107,0.156)
MSESC, Vo1 -0.254412 0.775372 (0.519,1.158)
For MALE slope, 8;
INTRCPT2, yio 0.508561 1.662897 (1.433,1.930)
For PPED slope, 8,
INTRCPT2, vz -0.594375 0.551908 (0.458,0.665)
Final estimation of variance components
Standard Variance
Random Effect Deviation Component d.f. X p-value
INTRCPT1, ug 1.13829 1.29571 354 1431.43082 <0.001
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Results for Population-Average Model

The value of the log-likelihood function at iteration 2 = -1.010987E+004

Final estimation of fixed effects: (Population-average model)

Fixed Effect Coefficient Standard t-ratio Approx. p-value
error d.f.
For INTRCPTL, B
INTRCPT2, Voo -1.748402 0.087969 -19.875 354 <0.001
MSESC, Vo1 -0.283620 0.185179 -1.532 354 0.127
For MALE slope, B:
INTRCPT2, y1o 0.446546 0.066993 6.666 7158 <0.001
For PPED slope, B,
INTRCPT2, V2 -0.536378 0.088479 -6.062 7158 <0.001
Fixed Effect Coefficient Od.d s Confidence
Ratio Interval
For INTRCPTL, B
INTRCPT2, yoo -1.748402 0.174052 (0.146,0.207)
MSESC, Vo1 -0.283620 0.753053 (0.523,1.084)
For MALE slope, B
INTRCPT2, y1o 0.446546 1.562905 (1.371,1.782)
For PPED slope, 3,
INTRCPT2, V2 -0.536378 0.584863 (0.492,0.696)

Notice that the results for the population-average model are quite similar to the results for the
unit-specific model except in the case of the intercept. The intercept in the population-average
model in this case is the expected log-odds of repetition for a person with values of zero on the
predictors (and therefore, for a female without pre-primary experience attending a school of
average SES). In this case, this expected log-odds corresponds to a probability of 1/(1 +
exp{1.748402}) = .148, which is the “population-average” repetition rate for this group. In
contrast, the unit-specific intercept is the expected log-odds of repetition rate for the same kind
of student, but one who attends a school that not only has a mean SES of 0, but also has a
random effect of zero (that is, a school with a “typical” repetition rate for the school of its type).
This conditional expected log-odds is -2.046961, corresponding to a probability of 1/(1 +
exp{2.046961}) = .114. Thus the probability of repetition is lower in a school with a random
effect of zero than the average in the population of schools having mean SES of zero taken as a
whole. This is a typical result. Population-average probabilities will be closer to .50 (than will
the corresponding unit-specific probabilities).

One final set of results is printed out: population-average results with robust standard errors
(below). Note that the robust standard errors in this case are very similar to the model-based
standard errors, with a slight increase for the level-2 predictor and slight decreases for level-1
predictors. Results for other data may not follow this pattern.
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Final estimation of fixed effects
(Population-average model with robust standard errors)

Standard Approx.

Fixed Effect Coefficient error t-ratio a.f p-value
For INTRCPT1, B,
INTRCPT2, yoo -1.748402 0.082158 -21.281 354 <0.001
MSESC, yo1 -0.283620 0.196005 -1.447 354 0.149
For MALE slope, 3,
INTRCPT2, yio 0.446546 0.062788 7.112 7158 <0.001
For PPED slope, 3,
INTRCPT2, vz -0.536378 0.082221 -6.524 7158 <0.001
Fixed Effect Coefficient Od.d S Confidence
Ratio Interval
For INTRCPT1, S,
INTRCPT2, yoo -1.748402 0.174052 (0.148,0.205)
MSESC, Vo1 -0.283620 0.753053 (0.512,1.107)
For MALE slope, ;
INTRCPT2, yio 0.446546 1.562905 (1.382,1.768)
For PPED slope, 3,
INTRCPT2, y2 -0.536378 0.584863 (0.498,0.687)

8.3 Case 2: a binomial model (number of trials, m; > 1)

A familiar example of two-level binomial data is the number of hits, Y., in game i for baseball

ij?
player j based on m;; at bats. In an experimental setting, a subject j under condition i might
produce Y;; successes in m; trials.

A common use of a binomial model is when analysts do not have access to the raw data at
level 1. For example, one might know the proportion of children passing a criterion-referenced
test within each of many schools. This proportion might be broken down within schools by sex
and grade. A binomial model could be used to analyze such data. The cases would be sex-by-age
“cells” within each school where Y;; is the number passing within cell i of school j and m;; is the

number of “trials,” that is, the number of children in that cell. Sex and grade would be level-1
predictors.

Indeed, in the previous example, although raw level-1 data were available, the two level-1
predictors, MALE and pre-primary experience, were categorical. For illustration, we reorganized
these data so that each school had, potentially, four cells defined by the cross-classification of
sex and pre-primary experience:

o females without pre-primary experience
e females with pre-primary experience

e males without pre-primary experience

e males with pre-primary experience
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Level-1 predictors were the same as before, with MALE = 1 if male, O if female; PPED = 1 if pre-
primary experience, 0 if not. The outcome is the number of children in a particular cell who
repeated a grade, and we created a variable TRIAL, which is the number of children in each cell.
In some schools there were no children of a certain type (e.g., no females with pre-primary
experience). Such schools would have fewer than four cells. The necessary steps for executing
the analysis via the Windows interface are given below.

To specify a Binomial model

1. After specifying the outcome in the model specification window (REP1 in our example),
click the Outcome button at the top of the variable list box to the left of the main HLM
window to open the Basic Model Specifications — HLM2 dialog box (See Figure 8.1).

2. Select Binomial (number of trials).

3. Select the variable from the pull down menu in the dialog box, which indicates number of
trials (TRIAL in our example) (See Figure 8.1).

4. (Optional) Specify the maximum number of macro and micro iterations by selecting the
Iteration Settings option from the Other Settings menu.

5. (Optional) Select the Over-dispersion option if appropriate (See section on Additional
Features at the end of the chapter).

The model described above uses the same predictors at level-1 and level-2 as those in the
Bernoulli example (see Figure 8.5). The command file for the example is THAIBNML.HLM.

& WHLM: him2 MDM File: GTHALMDM Command File: 10| =l
File Basic Settings ©Other Settings Run Analvsis  Help
M LEVEL 1 MODEL (bold: group-mean centering; bold talic: grand-tmean certering) ﬂ
22 Levebl <1 o REPI=11p) = g+TRIAL
Level-2 rob =TIE) = @
INTRCPT Logle/i1 - g)] =n
MALE =
n = p,+p,MALE) +p(FPED
FRED o tRyl )+ Bl )
REPF1 LEVEL 2 MODEL (hald italic: grand-mean centering)
TRIAL Bo = Top + 7oy (MSESCT) +u,
By = tg
L
Mixedl '|

Figure 8.5 Model specification window for the Binomial model
Problem Title: BINOMIAL ANALYSIS, THAILAND DATA

The data source for this run = THAIGRP.MDM
The command file for this run = thaibnml.him
Output file name = thaibnml.out

The maximum number of level-1 units = 1097
The maximum number of level-2 units = 356
The maximum number of micro iterations = 50
Method of estimation: restricted PQL
Maximum number of macro iterations = 50
Distribution at Level-1: Binomial
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Summary of the model specified

Level-1 Model

E(REPLJ:”B]) = ¢ij * TRIAL ij

IOg[¢ij /(l - ¢ij )] = nij
N = Boj + By*(MALE;) + B*(PPEDy)

This is the program's way of saying that the level-1 sampling model is binomial with “TRIAL”
indicating the number of trials, so that the above equation, written with subscripts and Greek
letters, is

E(Yij |/BJ) = mij¢ij
Var(Yij |:B,) = mij¢ij (1_¢ij)|

where m; = TRIAL.
Level-2 Model

Boj = Yoo + Yo.*(MSESC)) + uy,
[31] = Y10
[32] = Y20

MSESC has been centered around the grand mean.
Notice that the level-1 and level-2 structural models are identical to those in Case 1.
Level-1 variance = 1/[TRIAL*¢; (1-¢;)]

In the metric of the linearized dependent variable, the level-1 variance is the reciprocal of the
binomial variance,

mij¢ij (1_¢ij)-

Results for the unit-specific model, population-average model, and population-average model
with robust standard errors, are not printed below. They are essentially identical to the results
using the Bernoulli model.

8.4 Case 3: Poisson model with equal exposure

Suppose that the outcome variable in Case 1 had been the number of days absent during the
previous year rather than grade repetition. This outcome would be a non-negative integer, that is,
a count rather than a dichotomy. Thus, the Poisson model with a log link would be a reasonable
choice for the model. Notice that the time interval during which the absences could accumulate,
that is, one year, would be the same for each student. We call this a case of “equal exposure,”
meaning that each level-1 case had an “equal opportunity” to accumulate absences. (Case 4
describes an example where exposure varies across level-1 cases.)
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This model has exactly the same logic as in Case 1 except that the type of model and therefore
the corresponding link function will be different.

To specify a Poisson model with equal exposure

1. After specifying the outcome in the model specification window (REP1 in our example),
click the Outcome button at the top of the variable list box to the left of the main HLM
window to open the Basic Model Specifications — HLM2 dialog box (See Figure 8.1).

2. Select Poisson (constant exposure) to tell HLM that the level-1 sampling model is Poisson
with equal exposure per level-1 case.

3. (Optional) Specify the maximum number of macro and micro iterations by selecting the
Iteration Settings option from the Other Settings menu.

4. (Optional) Select the Over-dispersion option if appropriate (See section on Additional
Features at the end of the chapter).

The HLM output would describe the model as follows

Level-1 Model
E(REPL1|8) = Aj
log[Ai] = nj

The above equation, written with subscripts and Greek letters, is

E(Yij |ﬁj) :ﬂ’lj
Var(Yij |ﬁ,) =/l|j

where 4;; is the “true” rate of absence for child ij.

Ni = Boj + By*(MALE;) + B*(PPED;)

Level-2 Model

Boj = Yoo * Yo.*(MSESC)) + uy;
B1j = Y10
Baj = Y20

MSESC has been centered around the grand mean.

Notice that the log link replaces the logit link when we have count data. In the example above,
B, is the expected difference in log-absenteeism between two children of the same sex attending

the same school. To translate back to the rate of absenteeism, we would expect a child with pre-
primary experience to have exp { S, } times the absenteeism rate of a child attending the same

school who did not have pre-primary experience (holding sex constant). In this particular case,
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the estimated effect for g, is most plausibly negative; exp { S, } is less than 1.0 so that pre-

primary experience would reduce the rate of absenteeism. Notice that the level-2 structural
models are identical to those in Case 1.

Notice that the level-1 and level-2 structural models are identical to those in Case 1.

Level-1 variance = 1/\;

In the metric of the linearized dependent variable, the level-1 variance is the reciprocal of the
Poisson variance, ;.

8.5 Case 4: Poisson model with variable exposure

Suppose that the frequency of a given kind of cancer were tabulated for each of many counties.
For example, with five age-groups, the data could be organized so that each county had five
counts, with Y;; being the number of cancers in age-group i of county j and m; being the

population size of that age group in that county. A Poisson model with variable exposure would
be appropriate, with m;; the variable measuring exposure.

To specify a Poisson model with variable exposure

1. After specifying the outcome in the model specification window (REP1 in our example),
click the Outcome button at the top of the variable list box to the left of the main HLM
window to open the Basic Model Specifications — HLM2 dialog box (See Figure 8.1).

2. Select Poisson (variable exposure) to tell HLM that the level-1 sampling model is Poisson
with variable exposure per level-1 case.

3. Select the variable that indicates variable exposure from the drop-down list box (See Figure
8.1). (In the illustration below, we use TRIAL as the variable to indicate variable exposure).

4. (Optional) Specify the maximum number of macro and micro iterations by selecting the
Iteration Settings option from the Other Settings menu.

5. (Optional) Select the Over-dispersion option if appropriate (See section on Additional
Features at the end of the chapter).

The HLM output would describe the model as follows:

Level-1 Model

E(REPlulﬁJ) = Aij* TRIAL ij
log[Ai] = N
i = Boj + B1*(MALE;) + B5*(PPED;)

This is the program's way of saying that the level-1 sampling model is Poisson with variable
exposure per level-1 case, so that the above equation, written with subscripts and Greek letters, is
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ECY;18))=m;4,
Var(Yij |ﬂ,) = mij;{1j'

Notice that the log link replaces the logit link when we have count data.

Level-2 Model
Boj = Yoo + Yo1*(MSESC)) + U
B = Yo
,321 = VY20

Notice that the level-1 and level-2 structural models are identical to those in Case 1.

Level-1 variance = 1/(TRIAL*A)

In the metric of the linearized dependent variable, the level-1 variance is the reciprocal of the

Poisson variance, m;;4;.

8.6 Case 5: Multinomial model

Data are from a 1990 survey of teachers in 16 high schools in California and Michigan. In the
MDM file, not included with the software, there are a total of 650 teachers. The level-1 SPSS
input file is TCHR1.SAV, and the level-2 file is TCHR2.SAV.

An outcome with three response categories tapping teachers' commitment to their career choice
is derived from teachers' responses to the hypothetical question of whether they would become a
teacher if they could go back to college and start over again. The possible responses are:

e yes, | would choose teaching again
e notsure
e no, | would not choose teaching again.

At the teacher level, it is hypothesized that teachers' perception of task variety is positively
associated with greater odds of a teacher choosing the first category relative to the third category,
and with greater odds of a teacher choosing the second category relative to the third category.
The perception is measured by a task variety scale that assessed the extent to which teachers
followed the same teaching routines each day, performed the same tasks each day, had
something new happening in their job each day, and liked the variety present in their work
(Rowan, Raudenbush & Cheong, 1993).

At the school level, it is postulated that the extent of teacher control has the same relationship to
the two log odds as perception of task variety does. The teacher control scale is constructed by
aggregating nine-item scale scores of teachers within a school. This scale indicates teacher
control over school policy issues such as student behavior codes, content of in-service programs,
student grouping, school curriculum, and text selection; and control over classroom issues such
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as teaching content and techniques, and amount of homework assigned (Rowan, Raudenbush &
Kang, 1991).

As a previous analysis showed that there is little between-teacher variability in their log-odds of
choosing the second category relative to the third category, the level-1 coefficient associated
with it is fixed. Furthermore, the effects associated with perception of task variety are
constrained to be the same across teachers for the sake of parsimony.

The general procedure to specify a multinomial logit model is given below. Note that the
multinomial and ordinal analyses provide unit-specific estimates only. They do not currently
produce population-average estimates.

To specify a multinomial model

1. After specifying the outcome in the model specification window, click the Outcome button
at the top of the variable list box to the left of the main HLM window to open the Basic
Model Specifications — HLM2 dialog box (See Figure 8.1).

2. Select Multinomial to tell HLM that the level-1 sampling model is multinomial.
3. Enter the number of categories into the Number of Categories box.

4. (Optional) Specify the maximum number of macro and micro iterations by selecting the
Iteration Settings option from the Other Settings menu.

Figure 8.6 displays the model discussed above.

The output obtained for this model follows.

Specifications for this multinomial HLM run
Problem Title: Multinomial Output, High School Context Data

The data source for this run = tchr.MDM

The command file for this run = tchrl.him
Output file name = tchrl.html

The maximum number of level-1 units = 650
The maximum number of level-2 units = 16
The maximum number of micro iterations = 14
Number of categories = 3

Distribution at Level-1: Multinomial

The outcome variable is TCOMMIT
Summary of the model specified

Level-1 Model

Prob[TCOMMIT(1) = 1|6] = ¢,
Prob[TCOMMIT(2) = 1|5] = ¢,
Prob[TCOMMIT(3) = 1] = ¢, =1- ¢, - ¢
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log[ @, /¢, 1= Boiwy + Friy*(TASKVAR;)
log[ @, /¢, 1= Boiey + Fri*(TASKVAR;)

Grand mean centered level-1predictor,

perception of task variety
Grand mean centered level-2
Outcome predictor, teacher control

3 WHLM: him2 MDM File: TCHR.MDM Command File: T
File Basic Settings Other Settings

Outcome LEVEL 1 MODEL (hold: group-mean ¢entering; bold ttalic: grand-mean centering) ﬂ
Level-1

S Lovel <c| ProbITCOMMIT(1)=118)= ¢,
INTRCPT2 Prob[TCOMMIT(2)=118] = ¢,
TCONTROL | Prab[TCOMMIT3)=118]= $,=1-l4, - ¢,
Logld, /3] = 8y ey + 8y1) TASKVAR)
Loald, /] = 8y sy + 85 TASKVAR)

LEVEL 2 MODEL (bold talic: grand-mean centering)
For category 1

CHR1I.MLM

Run Analysis Help

oe1)
Bae) = Mo

For category 2
Boe2) = Yooz +T01(2)(T00Nm0“-)

B0 = Moz

Mixed| v |

Figure 8.6 Model specification window for the multinomial example

Thus, the level-1 structural models are

¢ii(1)
iy = log| — |= :Boj(l) +ﬂ1j(1) (TASKVAR)ij
_¢ij(3) )
=1 ¢ii(2) _
Mij2 =109 ¢— —:BOj(Z) +ﬂ1j(2) (TASKVAR)ij
L 7ii(3) |

Level-2 Model

Bow) = Yooy * Yory*(TCONTROL)) + ugjcyy

B1w) = V1o
Bo@ = Yoo@) * Yoi2*(TCONTROL))

31(2) = Y10(2)

TASKVAR has been centered around the grand mean.
TCONTROL has been centered around the grand mean.
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The level-2 structural models are

Boiay = Yooy T Yorny (TCONTROL)ij +Uia

By iw = Y10
IBOJ(Z) = Y002 T Vo12) (TCONTROL)ij
ﬂlj(z) =702

T

INTRCPT1(1) 0.00986

Random level-1 coefficient  Reliability estimate
INTRCPT1(1), Bowy 0.083

The value of the log-likelihood function at iteration 2 = -1.246191E+003

Final estimation of fixed effects:

Standard Approx.

Fixed Effect Coefficient t-ratio p-value
error d.f.
For Category 1
For INTRCPTL, Boq
INTRCPT2, Yoo 1.079269 0.123439 8.743 14 <0.001
TCONTROL, Vo1 2.090207 0.508369 4.112 14 0.001
For TASKVAR slope, B1q)
<0.001
INTRCPT2, Vio) 0.398355 0113650  3.505 630
For Category 2
For INTRCPTL, By
INTRCPT2, Yoo 0.091930 0.141643 0.649 630 0.517
TCONTROL, Yoiz) 1.057285 0.577673 1.830 630 0.068
For TASKVAR slope, B
INTRCPT2, V1o 0.030693 0.130029 0.236 630 0.813

yoo1), the unit-specific intercept, is the expected log-odds of an affirmative response relative to a
negative response for a teacher with mean perception of task variety and working in a school with
average teacher control and a random effect of zero. It is adjusted for the between-school
heterogeneity in the likelihood of an affirmative response relative to a negative response, which is
independent of the effect of task variety and teacher control. The estimated conditional expected log-
odds is 1.079269.

The predicted probability that the same teacher responds affirmatively (Category 1) is
exp{1.079269}/ (1 + exp{1.079269} + exp{0.091930}) = .584. The predicted probability of
responding “not sure” (category 2) is exp{0.091930}/(1 + exp{1.079269} + exp{0.091930}) =1 -
584 -.218 =.198.
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Fixed Effect Coefficient Odds Confidence

Ratio Interval
For Category 1
For INTRCPTL, Boq
INTRCPT2, Yoo 1.079269 2.942528 (2.258,3.835)
TCONTROL, Yoi( 2.090207 8.086586 (2.718,24.063)

For TASKVAR slope, Biq)

0.398355 1.489373
For Category 2
For INTRCPT1, By
INTRCPT2, Voo 0.091930 1.096288 (0.830,1.448)
TCONTROL, Voi2) 1.057285 2.878545 (0.926,8.952)
For TASKVAR slope, B
INTRCPT2, yio2 0.030693 1.031169 (0.799,1.331)

The sets of y,, and y,, give the estimates of the change in the respective log-odds given one-unit

change in the predictors, holding all other variables constant. For instance, all else being equal, a
standard deviation increase in TCONTROL (.32) will nearly double the odds of an affirmative
response to a negative response (exp{2.090207 * .32} = 1.952). Note that the partial effect
associated with perception of task variety is statistically significant for the logit of affirmative
versus negative responses but not for the logit of undecided versus negative responses.

Below is a table for the results for the fixed effects with robust standard errors.

Final estimation of fixed effects
(with robust standard errors)

Standard Approx.

Fixed Effect Coefficient error t-ratio df p-value
For Category 1
For INTRCPTL, Boq
INTRCPT2, Yoo 1.079269 0.128263 8.415 14 <0.001
TCONTROL, Vo1 2.090207 0.409607 5.103 14 <0.001
For TASKVAR slope, Biq)
INTRCPT2 0.002
» V10w 0.398355 0.127511 3.124 630
For Category 2
For INTRCPTL, By
INTRCPT2, Yoo 0.091930 0.139637 0.658 630 0.511
TCONTROL, Yoiz) 1.057285 0.529606 1.996 630 0.046
For TASKVAR slope, B
INTRCPT2, V1o 0.030693 0.126446 0.243 630 0.808
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Fixed Effect Coefficient Roa (:i%s Igt(;r;\fllglence
For Category 1
For INTRCPTL, Boq
INTRCPT2, Yoo 1.079269 2.942528 (2.235,3.874)
TCONTROL, o1 2.090207 8.086586 (3.359,19.469)
For TASKVAR slope, Biq)
1.159,1.913
INTRCPT2, V1oa) 0.398355 1.489373 ( )
For Category 2
For INTRCPTL, By
INTRCPT2, Yoo 0.091930 1.096288 (0.833,1.442)
TCONTROL, yo12) 1.057285 2.878545 (1.017,8.145)
For TASKVAR slope, B2
INTRCPT2, Vo) 0.030693 1.031169 (0.804,1.322)

The robust standard errors are appropriate for datasets having a moderate to
large number of level 2 units. These data do not meet this criterion.

Final estimation of variance components

Standard Variance 2
Random Effect Deviation Component X
INTRCPT1(1), U, 0.09931 0.00986 16.16473

Note that the residual variance of £, is not statistically different from zero. The model may be
re-run with the coefficient set to be non-random.

8.7 Case 6: Ordinal model

The same data set, the multi-category outcome, and the same predictors in Case 5 are used here.
The procedure for specifying an ordinal model is very similar to that of a multinomial model.
Select the Ordinal instead of Multinomial option in the Basic Model Specifications — HLM2
dialog box (See Figure 8.1). Figure 8.7 displays the model specified for the example

(TCHR2.HLM).

Note: The multinomial and ordinal analyses currently produce unit-specific results only. They

do not provide population-average results.
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The threshold that separates the two cumulative logits
(automatically generated by the program when "ordinal" is selected)

& WHLM: him2 MDM File: TCHR.MDM Command File: TCHRZ.MIM" 10 x|
File Basic Settings Other Settings Run Analysis Help
& LEVEL 1 MODEL (hold: group-mean centering;{bold italic: grand-mean centering) il
>> Level-1 << BrobiR <= ilg1= # =
Level-2 ro [ - |13] & ¢? = ¢1
INTRCPT1 Prob[R <=218]= ¢, = ¢, +4,
TCOMMIT Prob[R <=3|g]=1.0
TASKVAR
by = Prob[TCOMMIT(1)=1|8]
¢, = Prob[TCOMMIT(2)=1|8]
Log[¢?f(1 - ¢1)] =8, + 5 (TASKVAR)
Log$,/(1 - 4,)] = 8, + 8,(TASKVAR) + 6(2)
LEVEL 2 MODEL (hold italic: grand-mean centering)
By = Yoo +701(TCONTROL) + U,
By = e
) 2
Mixedl v|
Automatically generated threshold

Note: there is only one set of parameters

Figure 8.7 Model specification window for the ordinal model

The output obtained for this model follows.
Specifications for this ordinal HLM run

Problem Title: Ordinal Output, HIGH SCHOOL CONTEXT DATA

The data source for this run = TCHR.MDM
The command file for this run = TCHR2.HLM
Output file name = TCHR2.HTML
The maximum number of level-1 units = 650
The maximum number of level-2 units = 16
The maximum number of micro iterations = 14
Number of categories = 3

Method of estimation: restricted PQL

Distribution at Level-1: Ordinal
The outcome variable is TCOMMIT

Summary of the model specified

Level-1 Model
Prob[R; <= 1181 = 4, = ¢,
Prob[R;; <= 2|8] = ¢; = ¢y + by

Prob[Rij <= 3|,8]] =1.0
¢, = Prob[TCOMMIT(1) = 1|g]
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¢, = Prob[TCOMMIT(2) = 1|8]
|09[¢1ij - ¢1ij )] = Bo + By*(TASKVAR;)
|09[¢2ij - ¢2ij )] = Boj + By*(TASKVAR;) + &,

Thus, the level-1 structural models are

77ilj(l) = ¢ij(vl) :ﬂo,' +ﬂ1j(TASKVAR)ij
_1_¢ij(1)

¢ij(2)

e~ [ 1-die

} = ,BOJ. +ﬁlj (TASKVAR)” + 5(2).

Level-2 Model

Boj = Yoo + Yor* (TCONTROL,)) + ug
[31] = Y10
0,

TASKVAR has been centered around the grand mean.
TCONTROL has been centered around the grand mean.

The level-2 structural model is

,Bo,' =700 +]/01(TCONTROL)”- +Uy;
ﬂlj =10

Final Results for Ordinal Iteration 9173

The extremely large number of iterations reflects the fact that the final estimate of the between-
school variance, z,,, is near zero, after adjusting for TCONTROL.

T
INTRCPT1,B 0.00010

Random level-1 coefficient  Reliability estimate

INTRCPT1,8, 0.001

The value of the log-likelihood function at iteration 2 = -1.249070E+003
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Final estimation of fixed effects:

Standard Approx.

Fixed Effect Coefficient error t-ratio d.f p-value
For INTRCPT1 slope, B
INTRCPT2, yoo 0.333918 0.089735 3.721 14 0.002
TCONTROL, yo; 1.541051 0.365624 4.215 14 <0.001
For TASKVAR slope, £,
INTRCPT2, yio 0.348801 0.087280 3.996 633 <0.001
For THOLD?2,
[ 1.054888 0.080868 13.045 633 <0.001
Fixed Effect Coefficient Od.d s Confidence
Ratio Interval
For INTRCPT1 slope,
INTRCPT2, yoo 0.333918 1.396429 (1.152,1.693)
TCONTROL, yo; 1.541051 4.669496 (2.131,10.230)
For TASKVAR slope, £,
INTRCPT2, yio 0.348801 1.417367 (1.194,1.682)
For THOLD?2,
[ 1.054888 2.871653 (2.450,3.366)

700 the unit-specific intercept, is the expected log-odds of an affirmative response relative to an

undecided or negative response for a teacher with mean perception of task variety and working
in a school with average teacher control and a random effect of zero. It is adjusted for the
between-school heterogeneity in the likelihood of an affirmative response relative to a negative
response, which is independent of the effect of task variety and teacher control. This conditional
expected log-odds, is 0.333918. The expected log-odds for a teacher to give an affirmative or
undecided response relative to a negative response is 0.333918 + 1.054888 = 1.388806. y,, and

7,0 give the estimates of the change in the respective cumulative logits, holding all other

variables constant. For instance, all else being equal, a standard deviation increase in TCONTROL
(.32) will increase the odds of an affirmative response to an undecided or negative response as
well as the odds of an affirmative or undecided response to a negative response by a factor of
1.637 (exp{1.541051 * .32} = 1.637).

Below is a table for the results for the fixed effects with robust standard errors.

Final estimation of fixed effects (with robust standard errors)

Fixed Effect Coefficient Standard t-ratio Approx. p-value
error d.f.

For INTRCPT1 slope, 8

INTRCPT2, yoo 0.333918 0.092707 3.602 14 0.003

TCONTROL, yo1 1.541051 0.340944 4.520 14 <0.001
For TASKVAR slope, £;

INTRCPT2, y10 0.348801 0.092285 3.780 633 <0.001
For THOLD2,

0, 1.054888 0.080353 13.128 633 <0.001

146



Fixed Effect Coefficient Odds Confidence

Ratio Interval
For INTRCPT1 slope, B
INTRCPT2, yoo 0.333918 1.396429 (1.145,1.704)
TCONTROL, Vo1 1.541051 4.669496 (2.247,9.702)
For TASKVAR slope, £
INTRCPT2, y10 0.348801 1.417367 (1.182,1.699)
For THOLD2,
o 1.054888 2.871653 (2.452,3.363)

The robust standard errors are appropriate for datasets having a moderate to
large number of level 2 units. These data do not meet this criterion.

Final estimation of variance components

Standard Variance 2
Random Effect Deviation Component d.f. X p-value

INTRCPT1, uq 0.01016 0.00010 14 14.57034 0.408

Note that the residual variance of £, is not statistically different from zero. In fact, it is very

close to zero, which accounts for the large number of iterations required to achieve convergence.
The model may be re-run with the coefficient set to be non-random.

8.8 Additional features
8.8.1 Over-dispersion

For binomial models with m;; >1 and for all Poisson models, there is an option to estimate a

level-1 dispersion parameter o (See Figure 8.1). If the assumption of no dispersion holds,
o” =1.0. If the data are over-dispersed, o >1.0; if the data are under-dispersed, o* <1.0.

8.8.2 Adaptive Gauss-Hermite Quadrature and Laplace approximations
for binary models

For two- and three-level binary outcome models, the highly accurate approximations to
maximum likelihood based on adaptive Gauss-Hermite Quadrature and Laplace approximation
(See Figure 8.1) can be selected. When estimating the model parameters, the program will send
messages, similar to the following, to the iteration window during computation of the results.

The following is an example of an output for Laplace6 iterations.

Results for Unit-Specific Model, EM Laplace-2 Estimation
Iteration 33

T
INTRCPT1,, 1.61733

Random level-1 coefficient  Reliability estimate
INTRCPT1,, 0.724
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The log-likelihood at EM Laplace-2 iteration 10 is -9.627480E+003

Final estimation of fixed effects (Unit-specific model)

. - Standard Ceat Approx. ;
Fixed Effect Coefficient error t-ratio a.f p-value
For INTRCPTL, Bo
INTRCPT2, Voo -2.239223 0.100384 -22.307 354 <0.001
MSESC, vo: -0.297322 0.200573 -1.482 354 0.139
For MALE slope, 8
INTRCPT2, y1o 0.533635 0.072623 7.348 7158 <0.001
For PPED slope, 8,
INTRCPT2, 20 -0.626218 0.099789 -6.275 7158 <0.001
. - Odds Confidence
Fixed Effect Coefficient Ratio Interval
For INTRCPTL, B
INTRCPT2, yoo -2.239223 0.106541 (0.087,0.130)
MSESC, Vo1 -0.297322 0.742805 (0.501,1.102)
For MALE slope, 8;
INTRCPT2, y1o 0.533635 1.705119 (1.479,1.966)
For PPED slope, 3,
INTRCPT2, V2 -0.626218 0.534610 (0.440,0.650)
Statistics for the current model
Deviance = 19254.960974
Number of estimated parameters =5
Results for Unit-Specific Model, Adaptive Gaussian Quadrature
Iteration 3
T
INTRCPT1,8, 1.68320
Standard error of T
INTRCPT1,8, 0.20904
Final estimation of fixed effects (Unit-specific model)
. - Standard o Approx. ;
Fixed Effect Coefficient error t-ratio df. p-value
For INTRCPTL, Bo
INTRCPT2, yoo -2.242961 0.106249 -21.110 354 <0.001
MSESC, vo1 -0.295119 0.215888 -1.367 354 0.172
For MALE slope, 8;
INTRCPT2, y10 0.535156 0.075975 7.044 7158 <0.001
For PPED slope, 3,
INTRCPT2, vz -0.626872 0.100135 -6.260 7158 <0.001
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Statistics for the current model

Deviance = 19255.057516
Number of estimated parameters =5

8.8.3 Printing variance-covariance matrices for fixed effects

Files containing variance-covariances for the fixed effects for the unit-specific, population-
averaged and Laplace and adaptive Gaussian quadrature estimates can be requested. See Appendix
A for more details, or Appendix J for a complete list of options available in each of the modules.

8.9 Fitting HGLMs with three and four levels

For simplicity of exposition, all of the examples above have used the two-level HGLM. These
procedures generalize directly to three-and four-level applications. Again the type of nonlinear
model desired at level-1 must be specified. There are now, however, structural models at both
levels 2 and 3 as in the case of HLM3. The same idea applies to HLM4.
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9 Conceptual and Statistical Background for Hierarchical
Multivariate Linear Models (HMLM)

One of the most frequent applications of hierarchical models involves repeated observations
(level 1) nested within persons (level 2). These are described in Chapter 6 of Hierarchical Linear
Models. In these models, the outcome Y;; for occasion i within person j is conceived as a

univariate outcome, observed under different conditions or at different times. An advantage of
viewing the repeated observations as nested within the person is that it allows each person to
have a different repeated measures design. For example, in a longitudinal study, the number of
time points may vary across persons, and the spacing between time points may be different for
different persons. Such unbalanced designs would pose problems for standard methods of
analysis such as the analysis of variance.

Suppose, however, that the aim of the study is to observe every participant according to a fixed
design with, say, T observations per person. The design might involve T observation times or T
different outcome variables or even T different experimental conditions. Given the fixed design,
the analysis can be reconceived as a multivariate repeated measures analysis. The multivariate
model is flexible in allowing a wide variety of assumptions about the variation and covariation
of the T repeated measures (Bock, 1985). In the standard application of multivariate repeated
measures, there can be no missing outcomes: every participant must have a full complement of T
repeated observations.

Advances in statistical computation, beginning with the EM algorithm (Dempster, Laird, &
Rubin, 1977; see also Jennrich & Schluchter, 1986), allow the estimation of multivariate normal
models from incomplete data. In this case, the aim of the study was to collect T observations per
person, but only n; observations were collected (n; <T ). These n; observations are indeed

collected according to a fixed design, but T —n; data points are missing at random.

HMLM allows estimation of multivariate normal models from incomplete data; HMLM2 allows for
study of multivariate outcomes for persons who are, in turn, nested within higher-level units.
Within the framework of HMLM, it is possible to estimate models having

e

An unrestricted covariance structure, that is a full T xT covariance matrix.

A model with homogenous level-1 variance and random intercepts and/or slopes at level 2.

2. A model with heterogeneous variances at level 1 (a different variance for each occasion) and
random intercepts and/or slopes at level 2.

3. A model that includes a log-linear structure for the level-1 variance and random intercepts
and/or slopes at level 2.

4. A model with first-order auto-regressive level-1 random errors and random intercepts and/or

slopes at level 2.

=

We note that applications 2 - 4 are available within the standard HLM2. However, within HMLM,
models 2 - 4 can be compared to the unrestricted model (model 1), using a likelihood ratio test.
No “unrestricted model* can be meaningfully defined within the standard HLM2; such a model is
definable only within the confines of a fixed design with T measurements.
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HMLM2 allows the five models listed above to be embedded within a nested structure, e.g., the
persons who are repeatedly observed may be nested within schools.

9.1 Unrestricted model

This model is appropriate when the aim of the study is to collect T observations per participant
according to a fixed design. However, one or more observations may be missing at random. We
assume a constant but otherwise arbitrary T xT covariance matrix for each person's “complete
data.”

9.1.1 Level-1 model

The level-1 model relates the observed data, Y, to the complete data, Y

(0.0+9)

where Y, is the r-th outcome for person i associated with time h. Here Y, is the value that

person i would have displayed if that person had been observed at time t, and m,; is an indicator
variable taking on a value of 1 if the h-th measurement for person i did occur at time t, O if not.
Thus, Y, , t=1, .., T, represent the complete data for person i while Y,;, h =1, ..., T, are the

observed data, and the indicators m,; tell us the pattern of missing data for person i.

To make this clear, consider T = 5 and a person who has data at occasions 1,2, and 4, but not at
occasions 3 and 5. Then Equation 9.1 expands to

Y1i
Y;, 1 00 0O Yz’;
Y, |=[0 1 0 0O Y; (0.080)
Ya; 0 0010 Y’;
Y,
or, in matrix notation,
Y, =M,
(0.08%)

This model says simply that the three observed data points for person i were observed at times 1,
2, and 4, so that data were missing at times 3 and 5. Although these data were missing, they do
exist, in principle. Thus, every participant has a full 5x1 vector of “complete data” even though
the T. x1 vector of observed data will vary in length across persons.

We now pose a structural model for the within-person variation in Y
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P
Yy =7y + Y pdy & (0.082)
p=1

or, in matrix notation
Yi* = Ar, +¢,
(0.083)

where we assume that ¢, is multivariate normal in distribution with a mean vector of 0 and an

arbitrary T xT covariance matrix A. In fact, A is not a “within-person” covariance. Rather, it
captures all variation and covariation among the T repeated observations.

9.1.2 Level-2 model

The level-2 model includes covariates, X., that vary between persons:

Q
ﬂpi:'BpO"'zﬂpqxqi (0.084)
g=1

or in matrix notation

Note there is no random variation between persons in the regression coefficients , because all
random variation has been absorbed into A (see the text below Equation 9.5).

9.1.3 Combined model

Substituting the level-2 model into the level-1 model gives the combined model for the complete
data, in matrix form:

Y =AX,f+&, & ~N(0,A) (0.086)

Here the design matrix captures main effects of within-person covariates (the as), main effects of
person-level covariates (Xs), and two-way interaction effects between them (ax X terms).

In sum, our reformulation poses a “multiple measures” model (Equation 9.3) that relates the
observed data Y, to the “complete data” Y;", that is, the data that would have been observed if the

researcher had been successful in obtaining outcome data at every time point. Our combined
model is a standard multivariate normal regression model for the complete data.

Algebraically substituting the combined model expression for Y, into the model for the observed
data (Equation 9.3) yields the combined model
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Y, =M,AX. B+ Mg, (0.087)

Under the unrestricted model, the number of parameters estimated is f +T (T +1)/2, where f is

the number of fixed effects and T is the number of observations intended for each person. The
models below impose constraints on the unrestricted model, and therefore include fewer
parameters. The fit of these simpler models to the data can be compared to the fit of the
unrestricted model using a likelihood ratio test.

9.2 HLM with homogenous level-1 variance

Under the special case in which the within-person design is fixed', with T observations per
person and randomly missing time points, the two-level HLM can be derived from the
unrestricted model by imposing restrictions on the covariance matrix, A . (Note: regressors A

having varying designs may be included in the level-1 model, but coefficients associated with
such A values must not have random effects at level 2). The most frequently used assumption in

the standard HLM is that the within-person residuals are independent with a constant variance,

2
o .

9.2.1 Level-1 model

The level-1 model has a similar form to that in the case of the unrestricted model

Y =Ar +¢g, &~N(OX) (0.088)
with =571, .
9.2.2 Level-2 model

The level-2 model includes covariates, X,, that vary between persons. Degrees of freedom
are now available to estimate randomly varying intercepts and slopes across people:

Q
i :ﬂp0+z xqiprq+ Lo (0.089)
g=1
or in matrix notation
=X p+r (0.099)

All of the usual forms are now available for the intercepts and slopes (fixed, randomly varying,
non-randomly varying), provided T is large enough.

9.2.3 Combined model

Substituting the level-2 model into the level-1 model gives the combined model for the

1 Thatis, A = Aforalli.
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complete data, in matrix form:

Yi* = AXiﬂ"‘Ari +€

(0.09%)
=AX,[f+¢g,
where & = Ar, +¢, has variance-covariance matrix
Var (¢, )=Var(Ar, +¢,
( 1 ) ( 1 1 ) (09_9_2)

=Atd +7°I, = A

Under the HLM with homogenous level-1 variance, the number of parameters estimated is
f +r(r+1)/2+1, where r is the dimension of z. Thus, r must be less than T.

9.2 HLM with varying level-1 variance

One can model heterogeneity of level-1 variance as a function of the occasion of measurement.
Such a model is suitable when we suspect that the level-1 residual variance varies across
occasions. The models that can be estimated are a subset of the models that can be estimated
within the standard HLM2 (see Section 2.8.8.2 on the option for heterogeneity of level-1
variance).The level-1 model is the same as in the case of homogenous variances (equations 9.11
and 9.12) except that now

Var(e ) == = diag {o; }, (0.093)

that is, = is now diagonal with elements &7, the variance associated with occasion t, t =1, ...,
T.

The number of parameters estimated is f +r(r+1)/2+T . Now r must be no larger than T —1.
When r =T —1, the results will duplicate those based on the unrestricted model.

9.3 HLM with alog-linear model for the level-1 variance

The model with varying level-1 variance, described above, assumes a unique level-1 variance for
every occasion. A more parsimonious model would specify a functional relationship between

aspects of the occasion (e.g. time or age) and the variance. We would again have X =diag {af} :
but now

|0g(0t2)=a0 +ZL:0(,CH. (0.094)
1=1

Thus, the natural log of the level-1 variance may be a linear or quadratic function of age. If the
explanatory variables c, are T-1 dummy variables, each indicating the occasion of

measurement, the results will duplicate those of the previous section.
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The number of parameters estimated is now f +r(r+1)/2+L+1. Again, r must be no larger
than T —1 and L must be no larger than T —1.

9.4 First-order auto-regressive model for the level-1 residuals

This model allows the level-1 residuals to be correlated under Markov assumptions (a level-1
residual depends on previous level-1 residuals only through the immediately preceding level-1
residuals). This leads to the level-1 covariance structure

Cov(e,,e,) =c’p"". (0.095)

Thus, the variance at each time point is o® and each correlation diminishes with the distance
between time points, so that the correlations are p, p®, p°, ... as the distance between occasions
is1, 2,3, .... The number of parameters estimated is now f +r(r+1)/2+2. Again, r must be no
larger than T —1.

Note that level-1 predictors are assumed to have the same values for all level-2 units of the
complete data. This assumption can be relaxed. However, if the design for a ; varies over i, its

coefficient cannot vary randomly at level 2. In this regard, the standard 2-level model (See
Chapters 2, 3) is more flexible than HMLM.

9.5 HMLM2: A multilevel, multivariate model

Suppose now that the persons yielding multiple outcomes are nested within higher-level units
such as schools. We can embed the multivariate model for incomplete data within this multilevel
structure.

9.5.1 Level-1 model

The level-1 model again relates the observed data, Y, to the complete data, Y". We simply add a
subscript to the HMLM model to create the HMLM equation for the observed data:

T
Yoy = Z m, Vi (0.096)

hij ' tij -
t=1

Here individual i is nested within group j (j = 1, ..., J) and we have Y,;, the h-th outcome

ij ?
observed for person i in group j. Here Yt; is the value that person i would have displayed if that
person had been observed at time t, and m,,; is an indicator variable taking on a value of 1 if the

h-th measurement for that person did occur at time t, O if not. Thus Yt;,

h=1, ..., T. are the observed data, and the

ij? i

t=1, ..., T represent the
complete data for person i in group j while Y,
indicators m,; tell us the pattern of the missing data. Again, we pose a structural model for the
within-person variation in Y
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P
Yo = o + Z”pijapt € (0.097)
-1

or, in matrix notation
YJ = Ar; +8;, (0.098)

where we assume that e; is multivariate normal in distribution with a mean vector of 0 and an
arbitrary T xT covariance matrix X .

9.5.2 The combined model

The level-2 model includes covariates, X , that vary between persons within groups:

ij ?

QPG
7oii = Boo T Z B X i (0.099)
o=1
or, in matrix notation
Ty =X, B, (0.0160)

9.5.3 Level-3 model

Now the coefficients defined on persons (in the level-2 model) are specified as possibly varying
at level-3 over groups:

S

B oai = Vpqo +Z7/pqswsqi FUg;- (0.016%)
s=1

Here the vector u;, composed of elements u , is multivariate normal in distribution with a zero

mean vector and covariance matrix t "

9.5.4 Level-2 model

The combined model can then be written in matrix notation as

Y, = AX,W, 7+ AX, U, + &, (0.0462)
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where

& = Ar te (0.0103) ‘

where &; has a variance-covariance matrix

Var(g,) =% (0.0104) ‘

and X is modeled just as in the case of HMLM, depending on which submodel is of interest. The
next chapter provides an illustration.

Note that level-1 predictors a, are assumed to have the same values for all level-2 units of the
complete data. This assumption can be relaxed. However, if the design for a_; varies over i and
J, the coefficient for a_;, thatis =, must have no random effect at level 2. In this regard, the

standard three-level model (see Chapters 3 and 4) is more flexible than is HMLM2.
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10 Working with HMLM/HMLM2

Like the other programs, HMLM and HMLM2 execute analyses using MDM (multivariate data
matrix) files, which consist of the combined level-1 and level-2 data files.

The procedures for constructing the MDM file are similar to the ones for HLM2 and HLM3 with
one major difference: the user has to create and input indicator variables for the outcome(s)
while constructing the MDM file. Model specification for HMLM and HMLM2 involves the same
mechanics as in HLM2 and HLM3 with an extra step of model covariance structure selection.

Below we provide two examples using data sets from the first cohort of the National Youth
Survey (Elliot, Huizinga, & Menard, 1989, Raudenbush, 1999) and the time-series observations
on 1,721 students nested within 60 public primary schools as described in Chapter 8. Windows
mode execution is illustrated. See Appendix E for interactive and batch mode execution.

10.1 An analysis using HMLM via Windows mode

10.1.1 Constructing the MDM from raw data

The range of options for data input are the same as for HLM2 and HLM3. We will use SPSS file
input in our example.

10.1.1.1 Level-1file

The level-1 file, NYS1.SAv, has 1,079 observations collected from interviewing annually 239
eleven-year-old youths beginning at 1976 for five consecutive years. Therefore, T = 5. The
variables and the T indicator variables are:

ATTIT

EXPO

AGE
AGE11l
AGE13
AGE11s

a 9-item scale assessing attitudes favorable to deviant behavior.

Subjects were asked how wrong (very wrong, wrong, a little bit wrong, not
wrong at all) they believe it is for someone their age to, for example, damage
and destroy property, use marijuana, use alcohol, sell hard drugs, or steal.

The measure was positively skewed, so a logarithmic transformation was
performed to reduce the skewness.

Exposure to deviant peers.

Subjects were asked how wrong their best friends thought the nine deviant
behaviors surveyed in the ATTIT scale were.

age of the participant

age of participant at a specific time minus 11
age of participant at a specific time minus 13
AGE11* AGE11
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AGE13s AGE13* AGE13

IND1 indicator for measure at time 1
IND2 indicator for measure at time 2
IND3 indicator for measure at time 3
IND4 indicator for measure at time 4
IND5 indicator for measure at time 5

The five indicators were created to facilitate use of HMLM. Data for the first two children are
shown in Fig. 10.1.

Child 15 had data at all five years. Child 33, however, did not have data for the fourth year.

Indicators for the
repeatedlmeasures

id attit age agell | ageld | agells | agel3s in|d1 ind2 | ind3 | indd inldﬁ
16 15 A4 11.00 0 -2.00 .00 400| 10| @0OO| 0Of .0O) OO
17 15 A4 12.00 1.00 -1.00 1.00 1.00 ©o| 10| 00| .00 .00
18 15 .89 13.00 2.00 a0 4.00 Qo oo| oo 10| 00| .00
19 15 75 14.00 3.00 1.00 9.00 1.00 ©o| 00 00| 1.0 .00
20 15 .80 15.00 4.00 200 1600 400| 00| OO O0Of 0O) 1.0
21 33 20 11.00 0 -2.00 .00 400| 10| @0OO| 0Of .0O) OO
22 33 B4 12.00 1.00 -1.00 1.00 1.00 ©o| 10| 00| .00 .00
23 33 B9 13.00 2.00 a0 4.00 Qo oo| oo 10| 00| .00
24 33 1 15.00 4.00 200 1600 400| 00| OO O0Of 0O) 1.0

Figure 10.1 Two children in the NYS1.SAV data set
10.1.1.2 Level-2file

The level-2 data file, NYSB.SAV, consists of three variables on 239 youths. The file has the same
structure as that for HLM2. The variables are:

FEMALE an indicator for gender (1 = female, 0 = male)
MINORITY an indicator for ethnicity (1 = minority, O = other)
INCOME income

The construction of the MDM involves three major steps:

1. Select type of input data.
2. Supply the program with the appropriate data-defining information.
3. Check whether the data have been properly read into the program.

The steps are very similar to the ones described in Section 2.5.1. Select HMLM as the MDM type
at the Select MDM type dialog box (see Figure 2.4) and inform WHLM the type of data input.
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While the structure of HMLM input files is almost the same as in HLM2, there is one important
difference: the indicator variables. In order to create these, one first needs to know the maximum
number of level-1 records per level-2 group; this determines the number of indicators. We shall
call them the number of “occasions.” (This is the number of time points in a repeated measures
study or the number of outcome variables in a cross-sectional multivariate study. Also note that
each person does not need to have this number of occasions.) Then create the indicator variables
so that a given variable takes on the value of 1.0 if the given occasion is at this time point, 0.0
otherwise. Looking at Figure 10.1, we see that IND1 is 1 if AGE11 is O, IND2 is 1 if AGE11 is 1,
IND3 is 1 if AGE11 is 2, and so on. Fig 10.2 shows the Choose variables — HMLM dialog box
where the indicator variables are checked before the MDM file is created. This dialog box can be
opened from the Level-1 specification section in the Make MDM — HMLM dialog box.

Chooze vanables - HMLM |

| in W 0T inss [ indicatar | [ i ssh [ indicster

I.&.TTIT [T ID W inssM [T indicator | [T e imssd [ indicator

IAGE oW inssM [ indicatar I Il 22 1 indizator

|AGE11 [T oW inssM [T indicatar | o inEsd T indieator

. I.ﬂ.GE13 [T IDW inssM [T indicator | [T e imsshd [ indicator
Click here to tell

HIMLM that IND IAGEHS [0 W inSsM [ indicatar | e T i e T lindizatar

is an indicator |AGE1 3s [T 1D v in =S i indicatar | 2o imEs) T indieater

IIND1 [T 0¥ inssM W indicatar | i est [ indicster

Note the five IIND2 [T D W inSsSM v indicatar I I i 22t 1 indizator

indicators for IIND3 [T D W inSsSM v indicatar I I fim 22t [ indizstor

the measures IIND4 [T 0V inSssM W indicatar | [T e imssd [ indicator

IINDS [0 b in =Sk v indicsta I ™ol 22t I indicatar,

Page 1 of 1 A | Ok | Cancel

Figure 10.2 Choose variables — HMLM dialog box
10.2 Executing analyses based on the MDM file

The steps involved are similar to the ones for HLM2 as described on Section 2.5.2. It is necessary
to specify

1. the level-1 model,
2. the level-2 structural model, and
3. the level-1 coefficients as random or non-random.

Under HMLM, level-1 predictors having random effects must have the same value for all
participants at a given occasion. If the user specifies a predictor not fulfilling this condition to
have a random effect, such coefficients will be automatically set as non-random by the program.
Furthermore, an extra step for selecting the covariance structure for the models to be estimated is
needed. Figure 10.3 displays the model specified for our example. Figure 10.4 shows the dialog
box where the covariance structure is selected.
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10.3 An annotated example of HMLM

In the example below (see NYS1.MLM) we specify AGE13 and AGE13S as predictors at level 1. At
level 2, the model is unconditional. This is displayed in Fig. 10.3. We shall compare three
alternative covariance structures:

e anunrestricted model,
e the homogeneous model, &7 = &* for all t, and

e the heterogeneous model, which allows &/ to vary over time.

File Basic Settings Other Settings Run Analysis Help

__Outcome | \;NpESTRICTED MODEL :‘:I
>> Level-1 << ) o ‘
W LEVEL 1 MODEL (bold: group-mean centering; bold italic: grand-mean centering)
INTRCPT1 ATTIT = (IND1D#ATTIT* + {(IND2)+ATTIT* + (IND3)*ATTIT* + (IND4)+ATTIT* +
ATTIT (INDS)*ATTIT*
EXPO
AGE ATTIT* = my+ 7 (AGE13) + 5,(AGE13S) +=
AGE11 . )
AGE13 LEVEL 2 MODEL (bold italic: grand-mean centering)
AGE11S T = Sy
AGE13S _
IND1 = By
IND2 =
IND3 2= P
IEBE Combined Model
ATTIT = 8y, + 8,,*AGE13 + 8, +AGE13S +e
Yarle) = A

HOMOGENEOUS MODEL

Same as below, bl /.oy = VarAr+e) = A& = AdA+54

HETEROGENEOUS MODEL

LEVEL 1 MODEL (bold: group-mean centering; bold italic: grand-mean centering)

ATTIT = (IND1)*ATTIT* + (IND2)*ATTIT* + (IND3)+ATTIT* + (INDA)+ATTIT* +
{INDS)+ATTIT*

ATTIT* = 7y + 7, (AGE13) + 7,(AGE138) +=

LEVEL 2 MODEL (hold italic: grand-mean certering)

o= Bty
oy = Bt
o = By iy

Mixed|'|

Figure 10.3 Model specification window for the NYS example

These three models are requested simply by checking the Heterogeneous option in the Basic
Model Specifications — HMLM dialog box, as shown in Fig. 10.4.
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Basic Model Specifications - HMLM i

—Treatment of Level-1 Yariance
" Unrestricted ™ Skip unrestricted

oK

¢ Homogeneous - includes unrestricted (unless skipped)

" Heterogeneous - includes homogeneous and unrestricted Cancel
{unless skipped)

" Log-linear - includes homogeneous and unrestricted
{unless skipped)

Predictors of level-1: variance

" 1st order auto-regressive - includes homogeneous and
unrestricted (unless skipped)

Title Heterogeneous level-1 variance, NYS DATA/

Output file name I NYS1.0UT

{See File->Preferences to set default output type)
v Make graph file
Graph file name | grapheq. geq

Figure 10.4 Basic Model Specifications - HMLM dialog box

Similarly, checking the Log-linear button will produce output on:
e the unrestricted model,
e the homogeneous model, and

e the log-linear model for o7 .

In this case a modified model will be displayed, as shown in Fig. 10.5. To obtain this model, the
Predictors of level-1 variance dialog box was used to select the variable EXPO.
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File Basic Settings Other Settings Run Analysis  Help

__Qutcome | \;NRESTRICTED MODEL =
*» Lewel-1 << _—
W LEVEL 1 MODEL (bold: group-mean centering; bold talic: grand-mean centering)
INTRCPTI ATTIT = (INDTj#ATTIT* + (INDZ2)#ATTIT* + INDI+ATTIT* + (INDA)+ATTIT* +
ATTIT (INDS)*ATTIT*
EXPO
AGE ATTITT = Ty +:n?[AGE13) +n2[AGE13Sj +=
AGET o )
AGE1S LEVEL 2 MODEL rhold talic: grand-mean centering)
AGE1IE Ty = E',g,;.
AGE13S _
IND1 Ty = By
IMDZ2 =
IND3 "2 = Pa
:mgg Combined Model
ATTIT = |3'.9.;. + ﬁw*f&.GEH + |320*.-&.GE138 +g
“Warlg) = A

HOMOGENEOUS MODEL

Same as below, Bl ey = varAr+e) = A = A+ ol

LOG-LINEAR MODEL

LEVYEL 1 MODEL (hold: group-mean centering; bold talic: grand-mean centering)

ATTIT = (INDTy*ATTIT* + (AMDZ)+ATTIT* + AMDF#ATTIT + (IND4=ATTIT* +
(IMDE)+ATTIT*

ATTIT = my +a, (AGET3) + 1, (AGE13S) +=

Varlr) = o and logis®) = o, + o, (EXPO)

LEVEL 2 MODEL ihold #alic: grand-mean certering)
Ty = Bog o

= Bty

Ay = bty
Combined Model
ATTIT = p, + B, *AGE13 + 5, +AGE135 + & M

Figure 10.5 Model specification window for the NYS example: loglinear model selection

And, again similarly, choosing the 1st order auto-regressive option will produce unrestricted
and homogeneous results in addition to first-order auto-regressive results.

The data source for this run = NYS.MDM
The command file for this run = nysl.him
Output file name = nysl.html

The maximum number of level-1 units = 1079
The maximum number of level-2 units = 239
The maximum number of iterations = 100

The outcome variable is ATTIT

The model specified for the fixed effects was:
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Level-1 Level-2

Coefficients Predictors
INTRCPT1, mg INTRCPT2, Boo
# AGE13 slope, m; INTRCPT2, B
# AGE13S slope, m, INTRCPT2, B2

'#' - The residual parameter variance for this level-1 coefficient has been set
to zero.

Output for the Unrestricted Model
Summary of the model specified
Level-1 Model
ATTITyi = (INDLm)*ATTITy; + (IND2m)*ATTITy + (IND3)*ATTITy + (INDAm)*ATTIT,; +
(IND5,)*ATTITs;

The level-1 model relates the observed data, Y, to the complete data, Y.

ATTIT, i* = 1o + M*(AGEL3,)) + m*(AGEL3S;)) + &;
Level-2 Model

Moi = Boo

i = Bo

i = Bao

For the restricted model, there is no random variation between persons in regression coefficient
By, B, and g, because all random variation has been absorbed into A.

Var(ej) = A

Ao
IND1 0.03507 0.01671 0.01889 0.02149 0.02486
IND2 0.01671 0.04458 0.02779 0.02468 0.02714
IND3 0.01889 0.02779 0.07272 0.05303 0.04801
IND4 0.02149 0.02468 0.05303 0.08574 0.06636
IND5 0.02486 0.02714 0.04801 0.06636 0.08985

The 5x5 matrix A contains the maximum likelihood estimates of the five variances (one for
each time point) and ten covariances (one for each pair of time points). The associated
correlation matrix is printed below.

Standard errors of A

IND1 0.00347 0.00304 0.00375 0.00413 0.00429
IND2 0.00304 0.00434 0.00430 0.00457 0.00473
IND3 0.00375 0.00430 0.00678 0.00631 0.00625
IND4 0.00413 0.00457 0.00631 0.00811 0.00736
IND5 0.00429 0.00473 0.00625 0.00736 0.00853
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A (as correlations)

IND1 1.000 0.423 0.374 0.392 0.443
IND2 0.423 1.000 0.488 0.399 0.429
IND3 0.374 0.488 1.000 0.672 0.594
IND4 0.392 0.399 0.672 1.000 0.756
IND5 0.443 0.429 0.594 0.756 1.000

The 5x5 matrix above contains estimated standard errors for each element of A.
The value of the log-likelihood function at iteration 8 = 1.891335E+002

Final estimation of fixed effects:

Fixed Effect Coefficient Standard - Approx. P
error ratio d.f. value

For INTRCPT1, m

INTRCPT2, Boo 0.320244 0.014981 21.377 238 <0.001
For AGE13 slope, m;

INTRCPT2, B1o 0.059335 0.004710 12.598 238 <0.001
For AGE13S slope, 1,

INTRCPT2, B2 0.000330 0.003146 0.105 238 0.917

The expected log attitude at age 13 is 0.320244. The mean linear growth rate of increase is
estimated to be 0.059335, t = 12.598, indicating a highly significantly positive average rate of
increase in deviant attitude at age 13. The quadratic rate is not statistically significant.

Statistics for the current model

Deviance = -378.266936
Number of estimated parameters = 18

There are 3 fixed effects (f = 3) and five observations in the “complete data” for each person (T
= 5). Thus, there are a total of f +T(T +1)/2=3+5(5+1)/2 =18 parameters. This is the end of

the unrestricted model output.

Next follows the results for the homogeneous level-1 variance.

Output for Random Effects Model with Homogeneous Level-1 Variance
Summary of the model specified

Level-1 Model

ATTITy = (INDl,*m)*ATTITli* + (IND2m)*ATTIT, + (IND3m)*ATTITs + (IND4y)*ATTIT, +
(IND5)*ATTITs;

ATTIT, i* =TT + ﬂli*(AGE13t i) + 772i*(AGE13St i) + &
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Level-2 Model

Moi = Boo + Toi
M1 = Bro + Iy
T = Boo + I

Var(s) = Var(Ar; + e) = A = ATA' + &°l
The above equation, written with subscripts and Greek letters, is

Var(Y)=A=ATA +X
where =571, .
A

IND1 1.00000 -2.00000 4.00000
IND2 1.00000 -1.00000 1.00000

IND3 1.00000 0.00000 0.00000
IND4 1.00000 1.00000 1.00000
IND5 1.00000 2.00000 4.00000

The above matrix describes the design matrix on occasions one through five.

Iterations stopped due to small change in likelihood function

Note: The results below duplicate exactly the results produced by a standard HLM2 run using
homogeneous level-1 variance.

Final Results - Iteration 5

Parameter Standard Error

o° 0.02421 0.001672

T

INTRCPTL,r, 0.04200 0.00808 -0.00242
AGE13,r, 0.00808 0.00277 -0.00012
AGE13S,r, -0.00242 -0.00012 0.00049

Standard errors of T

INTRCPTL,ro 0.00513 0.00127 0.00089
AGE13,r; 0.00127 0.00054 0.00024
AGE13S,r; 0.00089 0.00024 0.00025

T (as correlations)

INTRCPTL,ro 1.000 0.749 -0.532
AGE13,r; 0.749 1.000 -0.101
AGE13S,r; -0.532 -0.101 1.000
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A

IND1 0.03536 0.01388 0.01616 0.01801 0.01943
IND2 0.01388 0.04870 0.03150 0.03488 0.03464
IND3 0.01616 0.03150 0.06620 0.04766 0.04849
IND4 0.01801 0.03488 0.04766 0.08056 0.06095
IND5 0.01943 0.03464 0.04849 0.06095 0.09625

The 5x5 matrix above contains the five variance and ten covariance estimates implied by the
“homogeneous level-1 variance* model.

A (as correlations)

IND1 1.000 0.334 0.334 0.338 0.333
IND2 0.334 1.000 0.555 0.557 0.506
IND3 0.334 0.555 1.000 0.653 0.607
IND4 0.338 0.557 0.653 1.000 0.692
IND5 0.333 0.506 0.607 0.692 1.000

The value of the log-likelihood function at iteration 5 = 1.741132E+002

Final estimation of fixed effects:

Standard Approx.

Fixed Effect Coefficient t-ratio p-value
error d.f.

For INTRCPT1, m,

INTRCPT2, Boo 0.327231 0.015306 21.379 238 <0.001
For AGE13 slope, m;

INTRCPT2, B1o 0.064704 0.004926 13.135 238 <0.001
For AGE13S slope, 1,

INTRCPT2, B2 0.000171 0.003218 0.053 238 0.958

Statistics for the current model

Deviance = -348.226421
Number of estimated parameters = 10

There are 3 fixed effects (f = 3); the dimension of 7 is 3, and a common o? is estimated at
level-1. Thus, there are atotal of f +r(r+1)/2+1=3+3(3+1)/2+1=10 parameters.

This is the end of the output for the “homogeneous level-1 variance* model. Finally, the
heterogeneous level-1 variance solution is listed.

Output for Random Effects Model with Heterogeneous Level-1 Variance
Summary of the model specified
Level-1 Model

ATTI T = (IND1y)*ATTITy + (IND2)*ATTITy + (IND3m)*ATTITy + (IND4)*ATTIT, +
(INDSm)*ATTITsi

ATTIT, i* =TTy + ﬂli*(AGE13t i) + 772i*(AGE13St i) + &;

Level-2 Model

Toi = Boo + Toi
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11 = Bro + I
T = Boo + I

Var(s) = Var(Ar; + e) = A = A*I*A' + diag(0s,...,0%)

The above equation, written with subscripts and Greek letters, is
Var(Y") = ATA +3

where ¥ =diag{c;}, ie. that is, £ is now a diagonal matrix with diagonal elements o, the
variance associated with occasiont, t=1,2, ..., T.

A

IND1 1.00000 -2.00000 4.00000
IND2 1.00000 -1.00000 1.00000
IND3 1.00000 0.00000 0.00000
IND4 1.00000 1.00000 1.00000
IND5 1.00000 2.00000 4.00000

Iterations stopped due to small change in likelihood function

Final Results - Iteration 8

2 Standard
o
Error
IND1 0.01373 0.005672
IND2 0.02600 0.003296
IND3 0.02685 0.003658
IND4 0.02602 0.003633
IND5 0.00275 0.007377

The five estimates above are the estimates of the level-1 variance for each time point.

T

INTRCPTL,ro 0.04079 0.00736 -0.00241
AGE13,r; 0.00736 0.00382 0.00025
AGE13S,1; -0.00241 0.00025 0.00106

Standard errors of T

INTRCPTL,ro 0.00512 0.00124 0.00088
AGE13,r; 0.00124 0.00066 0.00042
AGE13S,r; 0.00088 0.00042 0.00030

T (as correlations)

INTRCPTL,rg 1.000 0.590 -0.366
AGE13,r; 0.590 1.000 0.124
AGE13S,r; -0.366 0.124 1.000
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A

IND1 0.03410 0.01707 0.01646 0.01851 0.02325
IND2 0.01707 0.05165 0.03103 0.03322 0.03223
IND3 0.01646 0.03103 0.06764 0.04574 0.04588
IND4 0.01851 0.03322 0.04574 0.08208 0.06421
IND5 0.02325 0.03223 0.04588 0.06421 0.08996

The 5x5 matrix above contains the estimates of five variances and ten covariances implied by
the “heterogeneous level-1 variance* model.

A (as correlations)

IND1 1.000 0.407 0.343 0.350 0.420
IND2 0.407 1.000 0.525 0.510 0.473
IND3 0.343 0.525 1.000 0.614 0.588
IND4 0.350 0.510 0.614 1.000 0.747
IND5 0.420 0.473 0.588 0.747 1.000

The value of the log-likelihood function at iteration 8 = 1.816074E+002

Final estimation of fixed effects:

Fixed Effect Coefficient Standard t-ratio Approx. p-value
error d.f.

For INTRCPT1, m,

INTRCPT2, Boo 0.327646 0.015252 21.482 238 <0.001
For AGE13 slope, m;

INTRCPT2, B1o 0.060864 0.004737 12.849 238 <0.001
For AGE13S slope, 1,

INTRCPT2, B2 -0.000541 0.003178 -0.170 238 0.865

Statistics for the current model

Deviance =-363.214879
Number of estimated parameters = 14

There are 3 fixed effects (f = 3), the dimension of 7 is 3, and there are five observations
intended for each person, each associated with a unique level-1 variance. Thus, there are a total
of f+r(r+1)/2+T =3+3(4)/2+5=14 parameters.

Summary of Model Fit

Number of

Model Deviance
Parameters

1. Unrestricted 18 -378.26694

2. Homogeneous 0* 10 -348.22642

3. Heterogeneous o* 14 -363.21488

Model Comparison X d.f. p-value

Model 1 vs Model 2 30.04052 8 <0.001

Model 1 vs Model 3 15.05206 4 0.005

Model 2 vs Model 3 14.98846 4 0.005

The model deviances are employed to evaluate the fits of the three models (unrestricted,
homogeneous o, and heterogeneous o). Differences between deviances are distributed
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asymptotically as chi-square variates under the null hypothesis that the simpler model fits the
data as well as the more complex model does. The results show that Model 1 fits better than does

the homogeneous sigma squared model y* = 30.04052, df = 8; it also fits better than does the
heterogeneous sigma squared model 3> = 15.05206, df = 4.

In addition to the evaluation of models based on their fit to the data, the above results can be
used to check the sensitivity of key inferences to alternative specifications of the variance-
covariance structure. For instance, one could compare the mean and variance in the rate of
change at age 13 obtained in Model 2 and Model 3 to assess how robust the results are to
alternative plausible covariance specifications. The mean rate, y,,, for Model 2 is 0.064704 (s.e.

= 0.004926), and the variance, 7,,, is 0.00277 (s.e. = 0.00054). The mean rate, G10, for Model 3
is 0.060864 (s.e. = 0.004737), and the variance, r,,, is 0.00382 (s.e. = 0.00066). The results are

basically similar. See Raudenbush (2001) for a more detailed analysis of alternative covariance
structures for polynomial models of individual growth and change using the same NYS data sets
employed here for the illustrations.

Below are partial outputs for two random effect models.

Output for Random Effects Model for Log-linear model for Level-1 Variance
Summary of the model specified
Level-1 Model

ATTI T = (INDLy)*ATTITy + (IND2)*ATTITy + (IND3m)*ATTITy + (IND4)*ATTIT, +
(IND5,)*ATTITs;

ATTIT,; i* =TT t+ ﬂli*(AGE13t i) + ﬂzi*(AGE13St i) + &;

Level-2 Model

moi = Boo + Toi
11 = Bro + i
T = Bao + I

Var(s) = Var(Ar; + e) = A = ATA' + diag(0?s,...,0%)
The above equation, written with subscripts and Greek letters, is

Var(Y) = ATA +3
where % =diag(s?), and

log(c?) = a, + oy, (EXPO),.
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IND1 1.00000 -2.00000 4.00000

IND2 1.00000 -1.00000 1.00000
IND3 1.00000 0.00000 0.00000
IND4 1.00000 1.00000 1.00000
INDS 1.00000 2.00000 4.00000

Iterations stopped due to small change in likelihood function

Final results — Iteration 7

Parameter Standard Error

Qo -3.72883 0.069238
of} -1.43639 1.053241
0_2
IND1 0.02690
IND2 0.02677
IND3 0.02419
IND4 0.02188
IND5 0.02136
T
INTRCPTL,ro 0.04255 0.00831 -0.00257
AGE13,r; 0.00831 0.00277 -0.00005
AGE13S,r, -0.00257 -0.00005 0.00051

Standard errors of T

INTRCPTL,ro 0.00517 0.00128 0.00089
AGE13,r; 0.00128 0.00054 0.00025
AGE13S,r, 0.00089 0.00025 0.00025

T (as correlations)

INTRCPTL,ro 1.000 0.766 -0.549

AGE13,r; 0.766 1.000 -0.042

AGE13S,r, -0.549 -0.042 1.000

A

IND1 0.03576 0.01267 0.01566 0.01782 0.01917
IND2 0.01267 0.05095 0.03168 0.03516 0.03464
IND3 0.01566 0.03168 0.06674 0.04829 0.04889
IND4 0.01782 0.03516 0.04829 0.07909 0.06192
IND5 0.01917 0.03464 0.04889 0.06192 0.09510

The 5x5 matrix above contains the variance and covariance estimates implied by the “log-
linear” model for the level-1 variance.
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A (as correlations)

IND1 1.000 0.297 0.320 0.335 0.329
IND2 0.297 1.000 0.543 0.554 0.498
IND3 0.320 0.543 1.000 0.665 0.614
IND4 0.335 0.554 0.665 1.000 0.714
IND5 0.329 0.498 0.614 0.714 1.000

The value of the log-likelihood function at iteration 7 = 1.749582E+002

Final estimation of fixed effects:

Fixed Effect Coefficient Standard t-ratio Approx. p-value
error d.f.

For INTRCPTL, mq

INTRCPT2, Boo 0.328946 0.015379 21.390 238 <0.001
For AGE13 slope, m;

INTRCPT2, B1o 0.064661 0.004923 13.135 238 <0.001
For AGE13S slope, 1,

INTRCPT2, B2 -0.000535 0.003222 -0.166 238 0.869

Statistics for the current model

Deviance = -349.916489
Number of estimated parameters = 11

There are 3 fixed effects (f = 3), the dimension of T is 3 (r = 3), and there is 1 intercept and 1
explanatory (H = 1) variable. Thus, there are a total of f + r(r+1)/2+ 1+ H=3+3(3+1)/2+ 1 +
1 =11 parameters.

Next are the results for the first-order auto-regressive model (Example: NYS4.MLM)

Output for Random Effects Model First-order Autoregressive Model for Level-1 Variance
Summary of the model specified

Level-1 Model

ATTI T = (INDLy)*ATTITy + (IND2)*ATTITy + (IND3m)*ATTITy + (IND4)*ATTIT, +
(IND5,)*ATTITs;

ATTIT, i* =TT + ﬂli*(AG E13; i) + 772i*(AGEl3Sti) + &

Level-2 Model

moi = Boo *+ Toi
i = B1o
T2 = Bao

Note that g, and g, are specified as non-random due to the fact that the time-series is relatively

short and therefore the data do not allow the estimation of both random slopes and an
autocorrelation parameter.

Var(fi) = Var(Ari + ei) =A=ATA' + Uzplt -t

The above equation, written with subscripts and Greek letters, is
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Var(Y) = ATA +3

where
2: O'Zplt_t,l'

A

IND1 1.00000

IND2 1.00000

IND3 1.00000

IND4 1.00000

IND5 1.00000

Iterations stopped due to small change in likelihood function

Final Results - Iteration 6

Parameter Standard Error

p 0.39675 0.053849
o’ 0.04158 0.003582

Note that the maximum-likelihood estimate of o = 0.397 is much larger than its standard error
(0.054), suggesting a significantly positive autocorrelation.

T
INTRCPTL,ro 0.02427

Standard error of T
INTRCPT1,rq 0.00450

A

IND1 0.06585 0.04077 0.03081 0.02686 0.02530
IND2 0.04077 0.06585 0.04077 0.03081 0.02686
IND3 0.03081 0.04077 0.06585 0.04077 0.03081
IND4 0.02686 0.03081 0.04077 0.06585 0.04077
IND5 0.02530 0.02686 0.03081 0.04077 0.06585

The 5x5 matrix above contains the variance and covariance estimates implied by the “auto-
correlation” model for the level-1 variance.

A (as correlations)

IND1 1.000 0.619 0.468 0.408 0.384
IND2 0.619 1.000 0.619 0.468 0.408
IND3 0.468 0.619 1.000 0.619 0.468
IND4 0.408 0.468 0.619 1.000 0.619
IND5 0.384 0.408 0.468 0.619 1.000

The value of the log-likelihood function at iteration 6 = 1.471600E+002
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Final estimation of fixed effects:

Standard Approx.

Fixed Effect Coefficient error t-ratio a.f p-value
For INTRCPTL, mq
INTRCPT2, Boo 0.327579 0.015265 21.459 238 <0.001
For AGE13 slope, m;
INTRCPT2, B1o 0.061428 0.004836 12.703 1076 <0.001
For AGE13S slope, 1,
INTRCPT2, B2 0.000211 0.003373 0.062 1076 0.951
Statistics for the current model
Deviance = -294.319916
Number of estimated parameters = 6
Summary of Model Fit
Model Number of Deviance
Parameters
1. Unrestricted 18 -378.26694
2. Homogeneous ¢° 5 -229.01630
3. First order Autoregressive 6 -294.31992

10.4 An analysis using HMLM2 via Windows mode

To illustrate how to use HMLM2, we use the data files from the public school example described
in Section 4.1.1.1. We prepared six indicators for the measures of mathematics proficiency
collected over the six years and put them in the level-1 file, EG1.SAV. The new level-1 file is
called EG1IHMLM2.SAV. The same level-2 and level-3 files, EG2.SAV and EG3.SAV are used. The
MDM file created is EGHMLM2.MDM. Like in the case in HMLM, users need to tell the program
what the indicator variables are while creating the MDM file (see Fig. 10.2).

10.5 Executing analyses based on the MDM file

The steps involved are similar to the ones for HMLM outlined previously and for HLM3 as
described in Section 4.2. The user specifies

1. the level-1 model,
2. the level-2 structural model, and
3. the level-1 coefficients as random or non-random.

In addition, the user selects the covariance structure for the models to be estimated. Below is the
output for the linear growth model specified in Section 4.2. As in the case for HMLM, the results
allow us to compare model fit and assess sensitivity of inferences with alternative specification
of variance-covariance structures.

10.5.1  Specifications for this HMLM2 run

Problem Title: no title

The data source for this run = EGHMLM2.MDM
The command file for this run = EG.HLM
Output file name = hmim2.html

The maximum number of level-1 units = 7230
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The maximum number of level-2 units = 1721
The maximum number of level-3 units = 60
The maximum number of iterations = 100
The outcome variable is MATH

The model specified for the fixed effects was:

The model specified for the fixed effects

TB(0)

Level-1 Level-2 Level-3
INTRCPT1, mo INTRCPT2, Boo INTRCPT3 ,Yooo
YEAR slope, m; INTRCPT2, B INTRCPT3 Y100

Output for the Unrestricted Model
Summary of the model specified

Level-1 Model

MATH,i = (INDLy)*MATHy; + (IND2yi)*MATHy; + (IND3y)*MATHa; + (IND4y)*MATH,; +

(IND5)*MATHg; + (IND6)*MATHg;
MATHy; = mmo; + my*(YEARy) + &

Level-2 Model

Moij = /3001
M1 = Baogj

Level-3 Model

Booj = Yooo + Uogj
B10j = Y100 + Uagj

Var(g;)) = A

IND1 0.04268 0.01233 0.01919 0.01968
IND2 0.01233 0.60634 0.35457 0.42101
IND3 0.01919 0.35457 0.76957 0.62363
IND4 0.01968 0.42101 0.62363 1.15453
IND5 0.01506 0.31132 0.42394 0.67302
IND6 0.00898 0.24927 0.35205 0.52773
INTRCPT1 YEAR
INTRCPT2 800 INTRCPT2 ,810

0.20128 0.01542

0.01542 0.01608

The value of the log-likelihood function at iteration 1 = -8.445655E+003
The value of the log-likelihood function at iteration 2 = -8.228973E+003
The value of the log-likelihood function at iteration 3 = -8.166659E+003
The value of the log-likelihood function at iteration 4 = -8.126574E+003
The value of the log-likelihood function at iteration 5 = -8.097070E+003
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0.42394
0.67302
0.81870
0.55086

0.00898
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Iterations stopped due to small change in likelihood function

Final Results - Iteration 32

A

IND1 0.67340 0.31616 0.38755 0.52412 0.53030 0.38971
IND2 0.31616 0.77832 0.47127 0.56726 0.54171 0.50187
IND3 0.38755 0.47127 0.91072 0.76829 0.66199 0.64640
IND4 0.52412 0.56726 0.76829 1.24542 0.88364 0.81782
IND5 0.53030 0.54171 0.66199 0.88364 1.05646 0.84356
INDG 0.38971 0.50187 0.64640 0.81782 0.84356 0.98722

Standard errors of A

IND1 0.08003 0.05328 0.07256 0.02999 0.02811 0.04341
IND2 0.05328 0.05757 0.06998 0.02542 0.03289 0.03656
IND3 0.07256 0.06998 0.07252 0.02966 0.03284 0.03565
IND4 0.02999 0.02542 0.02966 0.02844 0.03044 0.03913
IND5 0.02811 0.03289 0.03284 0.03044 0.03030 0.03518
INDG 0.04341 0.03656 0.03565 0.03913 0.03518 0.03859

A (as correlations)

IND1 17, 1.000 0.437 0.495 0.572 0.629 0.478
IND2 ,mm; 0.437 1.000 0.560 0.576 0.597 0.573
IND3 , 17, 0.495 0.560 1.000 0.721 0.675 0.682
IND4 17 0.572 0.576 0.721 1.000 0.770 0.738
IND5 , 17, 0.629 0.597 0.675 0.770 1.000 0.826
IND6 , 175 0.478 0.573 0.682 0.738 0.826 1.000
T
INTRCPT1 YEAR
INTRCPT2 ,Bo0 INTRCPT2 ,B10

0.14824 0.01268

0.01268 0.00935

Standard Errors of 13

INTRCPT1 YEAR

INTRCPT2 ,Bo0 INTRCPT2 ,B10
0.03286 0.00626
0.00626 0.00218

T (as correlations)
INTRCPTYINTRCPT2,B00 1.000 0.341
YEAR/INTRCPT2,810 0.341 1.000

The value of the log-likelihood function at iteration 32 = -7.980254E+003
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Final estimation of fixed effects:

. - Standard . Approx.
Fixed Effect Coefficient error t-ratio d. fp-)p p-value
For INTRCPTL, mq
For INTRCPT2, Boo
INTRCPT3 ,Vo00 -0.824938 0.054960 -15.010 59 <0.001
For YEAR slope, m;
For INTRCPT2, B1
INTRCPT3, V100 0.755026 0.014229 53.062 59 <0.001

Statistics for the current model

Deviance = 15960.507331
Number of estimated parameters = 26

Output for Random Effects Model with Homogeneous Level-1 Variance

Summary of the model specified

Level-1 Model

MATH, = (INDLy)*MATHy; + (IND2yi) *MATH,; + (IND3pj)*MATHs; + (IND4y)*MATH,; +

(IND5,j)*MATHs; + (IND6)*MATHg;

MATH,; = 1mo; + my*(YEARy) + &

Level-2 Model

Mo = Booj + Toj
M = Bioj + j

Level-3 Model

Booj = Yooo + Uogj
B10j = Y100 + Uagj

Var(s)) = Var(Ar; + e)) = A= AT,A" + &’

A
IND1 1.00000 -2.50000
IND2 1.00000 -1.50000
IND3 1.00000 -0.50000
IND4 1.00000 0.50000
IND5 1.00000 1.50000
IND6 1.00000 2.50000

The value of the log-likelihood function at iteration 1 = -7.980254E+003
The value of the log-likelihood function at iteration 2 = -8.271230E+003
The value of the log-likelihood function at iteration 3 = -8.163134E+003
The value of the log-likelihood function at iteration 4 = -8.163116E+003

Iterations stopped due to small change in likelihood function
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B

Final Results - Iteration 5

Parameter Standard Error

o’ 0.30144 0.006598
Tn
INTRCPT1,rq 0.64046 0.04679
YEAR,, 0.04679 0.01126
Standard errors of T,
INTRCPT1,rq 0.02515 0.00499
YEAR,r; 0.00499 0.00197
Tr (as correlations)
INTRCPT1,rq 1.000 0.551
YEAR,r; 0.551 1.000
A
IND1 0.77832 0.49553
IND2 0.49553 0.82687
IND3 0.51417 0.55533
IND4 0.53282 0.58523
IND5 0.55146 0.61513
IND6 0.57011 0.64503
A (as correlations)
IND1 ,mm, 1.000 0.618
IND2 11y 0.618 1.000
IND3 ,m, 0.615 0.644
IND4 ,175 0.607 0.646
INDS 174 0.594 0.643
IND6 , 175 0.579 0.635
INTRCPT1 YEAR
INTRCPT2 800 INTRCPT2 ,B10
0.16532 0.01705
0.01705 0.01102

Standard Errors of g

INTRCPT1 YEAR

INTRCPT2 ,Bo0 INTRCPT2 ,B10
0.03641 0.00720
0.00720 0.00252

Tg (as correlations)
INTRCPT1/INTRCPT2,840
YEAR/INTRCPT2,81

The value of the log-likelihood function at iteration 5 = -8.163116E+003

1.000
0.399

0.51417
0.55533
0.89793
0.63765
0.67880
0.71996

0.615
0.644
1.000
0.676
0.681
0.681

0.399
1.000
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0.53282
0.58523
0.63765
0.99150
0.74247
0.79489

0.607
0.646
0.676
1.000
0.709
0.715

0.55146
0.61513
0.67880
0.74247
1.10758
0.86981

0.594
0.643
0.681
0.709
1.000
0.740

0.57011
0.64503
0.71996
0.79489
0.86981
1.24618

0.579
0.635
0.681
0.715
0.740
1.000



Final estimation of fixed effects:

. - Standard . Approx.
Fixed Effect Coefficient error t-ratio d. fp-)p p-value
For INTRCPTL, mq
For INTRCPT2, Boo
INTRCPT3 ,Vo00 -0.779305 0.057829 -13.476 59 <0.001
For YEAR slope, m;
For INTRCPT2, B1
INTRCPT3, V100 0.763028 0.015262 49.996 59 <0.001

Statistics for the current model

Deviance = 16326.231108
Number of estimated parameters = 9

Output for Random Effects Model with Heterogeneous Level-1 Variance

Summary of the model specified

Level-1 Model

MATH,i = (INDLy)*MATHy; + (IND2yi)*MATH,; + (IND3y)*MATHs; + (IND4y)*MATH,; +

(IND5,j)*MATHs; + (IND6y)*MATHg;

MATH,; = 1mo; + my*(YEARy) + &
Level-2 Model

Mo = Booj + Toj
M = Bioj + j

Level-3 Model

Booj = Yooo + Uog
B10j = Y100 + Uagj

Var(s) = Var(Ar; + e) = A = A*r,*A' + diag(0”y,...,07)

A

IND1 1.00000 -2.50000
IND2 1.00000 -1.50000
IND3 1.00000 -0.50000
IND4 1.00000 0.50000
IND5 1.00000 1.50000
IND6 1.00000 2.50000

The value of the log-likelihood function at iteration 1 = -8.163116E+003
The value of the log-likelihood function at iteration 2 = -8.072345E+003
The value of the log-likelihood function at iteration 3 = -8.070198E+003
The value of the log-likelihood function at iteration 4 = -8.070086E+003
The value of the log-likelihood function at iteration 5 = -8.070080E+003

Iterations stopped due to small change in likelihood function
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Final Results - Iteration 7

o2 Standard
Error

IND1 0.34891 0.059597
IND2 0.38314 0.020556
IND3 0.31846 0.014915
IND4 0.37849 0.015840
IND5 0.20344 0.011466
IND6 0.15546 0.014216
Tr
INTRCPTL1,ro 0.62722 0.04769
YEAR,r; 0.04769 0.01386
Standard errors of T,
INTRCPTL1,ro 0.02499 0.00495
YEAR,r; 0.00495 0.00205
T, (as correlations)
INTRCPTL1,rg 1.000 0.511
YEAR,r; 0.511 1.000
A
IND1 0.82432 0.48844 0.50148
IND2 0.48844 0.89848 0.54224
IND3 0.50148 0.54224 0.90146
IND4 0.51451 0.56913 0.62376
IND5 0.52755 0.59603 0.66452
IND6 0.54058 0.62293 0.70528
A (as correlations)
IND1 ,1m 1.000 0.568 0.582
IND2 ,1m; 0.568 1.000 0.603
IND3 ,mm; 0.582 0.603 1.000
IND4 175 0.551 0.584 0.639
IND5 , 14 0.580 0.627 0.698
INDG6 ,17s5 0.566 0.624 0.706
Tp
INTRCPT1 YEAR
INTRCPT2 800 INTRCPT2 ,810

0.16531 0.01552

0.01552 0.00971

Standard Errors of T,

INTRCPT1 YEAR
INTRCPT2 800 INTRCPT2 ,810

0.03637 0.00677

0.00677 0.00225
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0.51451
0.56913
0.62376
1.05687
0.73300
0.78762

0.551
0.584
0.639
1.000
0.711
0.728

0.52755
0.59603
0.66452
0.73300
1.00493
0.86997

0.580
0.627
0.698
0.711
1.000
0.825

0.54058
0.62293
0.70528
0.78762
0.86997
1.10778

0.566
0.624
0.706
0.728
0.825
1.000



Tg (as correlations)
INTRCPTY/INTRCPT2,600 1.000 0.387
YEAR/INTRCPT2,81 0.387 1.000

The value of the log-likelihood function at iteration 7 = -8.070079E+003

Final estimation of fixed effects:

Fixed Effect Coefficient Standard t-ratio Approx. p-value
error d.f.
For INTRCPT1, m,
For INTRCPT2, Boo
INTRCPTS3 ,Vo00 -0.781960 0.057792 -13.531 59 <0.001
For YEAR slope, m;
For INTRCPT2, B1
INTRCPTS3 V100 0.751231 0.014452 51.983 59 <0.001
Statistics for the current model
Deviance = 16140.158919
Number of estimated parameters = 14
Summary of Model Fit
Number of
Model Parameter Deviance
S
1. Unrestricted 26 15960.50733
2. Homogeneous o* 9 16326.23111
3. Heterogeneous o* 14 16140.15892
Model Comparison X d.f. p-value
Model 1 vs Model 2 365.72378 17 <0.001
Model 1 vs Model 3 179.65159 12 <0.001
Model 2 vs Model 3 186.07219 5 <0.001
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11 Special Features

11.1 Latent variable analysis

Researchers may be interested in studying the randomly varying coefficients not only as
outcomes, but as predictors as well. For instance, in a two-level repeated measures study of
adolescents' tolerance of deviant behaviors, a user may choose to use the level-1 coefficient
capturing the level of tolerance at the beginning of the study to predict the coefficient tapping the
linear growth rate.

Treating these coefficients as latent variables, the HLM2, HLM3, HMLM, HMLM2 modules allow
researchers to study direct as well as indirect effects among them and to assess their impacts on
coefficients associated with observed covariates in the model. Furthermore, using HMLM with
unrestricted covariance structures, one may use latent variable analysis to run regressions with
missing data.

Below are two examples of latent variable analysis via Windows mode. See Appendix F for
batch and interactive modes.

11.1.1 A latent variable analysis using HMLM: Example 1

The first example employs the National Youth Survey data sets described in Section 10.1. The
MDM file is NYS.MDM, the level-1 data file is NYS1.SAv, and the level-2 file is NYS2.SAv. Figure
11.1 displays a linear growth model with gender as a covariate. The command file that contains
the model specification information is NYS2.MLM.

We use 7, the level of tolerance at age 11, to predict 7, the linear growth rate, controlling for
gender. Note that FEMALE must be in the model for both 7, and 7, to control for gender fully.
Note also that 7, and 7, are latent variables, that is, they are free of measurement error, which is

contained in e. Furthermore, we assess whether the effect of gender on the linear growth rate
may change after controlling for the initial status at age 11. We select the homogeneous level-1
variance option for this model. Thus, using HLM2 will yield identical results in this case.

Below are the steps for setting up a latent variable analysis.
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File Basic Settings Other Settings  Run &nalysis  Help

__OQuicome | yRESTRICTED MODEL il
»> Lewvel1 <<

W LEVEL 1 MODEL ihold: group-mean certering; bold italic: grand-mean certering)
INTRCETI ATTIT = {INDT)*ATTIT* + (INDZ)+=ATTIT* + (IND3)+ATTIT* + (INDA)+ATTIT* +
ATTIT (INDS)+ATTIT*
EXPO
AGE ATTITT = Ty +n?(AGE11j +=
AGET o ]

AGE13 LEVEL 2 MODEL rhold italic: grand-mean certering)

igg;g Ty = Pt [ﬁm(FEMALEj
IND1 Ay = Byg By, (FEMALE)
:Hg% Combined Model
MDA ATTIT = |3'.;|.;. + ﬁm*FEM."-\LE + [im*AGE'I'I + ﬁ”*FEMALE*AGEH +=
INDE

“arig) = &

HOMOGENEOUS MODEL

LEVEL 1 MODEL (bold: group-mean centering; bold italic: grand-mean centering)

ATTIT = (IMD1U#ATTIT* + (IND2+ATTIT + (INDI#ATTIT® + (IMDA)+ATTIT* +
(IMDE)+ATTIT*

ATTIT = Ty +11?[AGE11:| +=

LEVEL 2 MODEL thold italic: grand-mean certering)
n = E’ﬂﬂ + ﬁm[FEMALEj tr

ny = Pyt By, (FEMALE) + 1,

Combined Model

ATTIT = g+ B *FEMALE + b, #AGET + f, sFEMALE*AGET +e

e =, +r?*AGE11 +ea

Varlg) = VarfAr +e) = A = AtA' +o°l

Mixedl v|

Figure 11.1 Model screen for the NYS example

To set up alatent variable analysis
1. After specifying the model, select the Estimation Settings option from the Other
Settings menu.

2. Choose Latent Variable Regression to open the Latent Variable Regression
dialog box (Figure 9.2 shows an example for the NYS example).

3. Select the predictor(s) and outcome(s) by clicking the selection buttons in front of
them (for our example, select INTRCPT1, z,, as the predictor and AGE11, 7, as the
outcome).

Select HMLM output to illustrate latent variable regression follows.
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Latent ¥ariable Regression

" lgnore  Cutcome
" lgnore & Outcome
& |gnore ¢ Outcome
& |gnore © Outcome
 gnore. ¢ Outcore
 lgnore. ¢ Dutconme
! lgnore. ) Dutcome
O gnore. 0 Dutcorme
 gnore. ) Dutcore
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! lgnore. ) Dutcome
! lgnore. ¢ Dutconme
 gnare ) Outeorme
C lgnore € Qutcome
 lgnore. ¢ Dutconme
]34

-
-
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-
-
-
-
-
-

Predictor INTRCPTT, [50
Predictor AGE11, By
Predictor

Predictor

Fredictor

Fredictor

Predictor

Predictor

Fredictor

Fredictor

Fredictor

Predictor

Fredictor

Fredictor

Fredictar

Cancel

Figure 11.2 Latent Variable Regression dialog box for the NYS example

Final estimation of fixed effects:

Fixed Effect Coefficient Standard t-ratio Approx. p-value
error d.f.
For INTRCPT1, m,
INTRCPT2, Boo 0.221755 0.015961 13.894 237 <0.001
FEMALE, Bo; -0.048274 0.022926 -2.106 237 0.035
For AGE11 slope, m;
INTRCPT2, Bio 0.070432 0.006781 10.386 237 <0.001
FEMALE, 1, -0.012003 0.009826 -1.222 237 0.222

The results indicate that there is a significant linear growth rate in the attitude toward deviant
behaviors (coefficient = 0.070432, s.e. = 0.006781) for males. Also, there is no gender effect on

the linear growth rate.

Latent Variable Regression Results

The model specified (in equation format)

m= BlO* + 311* (FEMALE) + ,312* (o) + rl*
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Estimated Standard

Outcome Predictor Coefficient Error t-ratio p-value

AGE11,ry,m; INTRCPT2 ,B10 0.024765 0.024807 0.998 0.319
FEMALE ,B.; -0.002062 0.013058 -0.158 0.875
TMo,B1z 0.205934 0.105410 1.954 0.050

The results indicate that, controlling for gender, the initial status at age 11 has a marginally
significant effect on the linear growth rate (coefficient = 0.205934, s.e. = 0.105410). There is no
statistically significant partial gender effect, however. Indeed, the gender effect on 7, appears

somewhat reduced after controlling 7.

Latent Variable Regression: Comparison of Original and Adjusted Coefficients

Original Adjusted Standard
Outcome Predictor gna Juste Difference Error of
Coefficient Coefficient )
Difference
AGE11,r,m; INTRCPT2 0.07043 0.02477 0.045667 0.024311
FEMALE -0.01200 -0.00206 -0.009941 0.006941

This table lists the original coefficients, the adjusted coefficients, and the difference between the
two for the intercept and the gender effect. For the variable FEMALE, the “original coefficient”
describes the total association, the “adjusted coefficient” describes the direct association, and the
“difference” is the indirect association between gender and the linear growth rate, respectively.

var(r’)
AGE1l,n, 0.00196

An estimate of the variance of 1", the residual variance in 7, controlling both FEMALE and 7,
is also given.

As mentioned earlier, a latent variable analysis using HLM2 will reproduce identical results. The
same procedures generalize to three-level applications (HMLM2, HLM3, & HGLM) to model
randomly varying level-2 coefficients as outcome variables. See Raudenbush and Sampson
(1999) for an example that implemented a latent variable analysis with a three-level model. In
the study, they investigated the extent to which neighborhood social control mediated the
association between neighborhood social composition and violence in Chicago.

11.1.2 A latent variable analysis using HMLM: Example 2

In this example, we illustrate how to use latent variable analysis to run regression with missing
data with an artificial data set. We are interested in estimating regression coefficients that relate
two predictors to the outcome. There are three intended measures, an outcome (OUTCOME) and
two predictors (PRED1 and PRED2) for 15 participants in the data. Some participants are missing
one or two measures. To use HMLM to run regression with missing data, we first re-organize the
data and re-conceive the three measures for each participant j as “occasions of measurement. « If
the data are complete, each case has R = 3 occasions. If participant j is missing one value, there
will only be 2 occasions for that participant, and if participant j is missing 2 values, there will be

only 1 occasion for that case. The measure is then re-conceived as MEASURE;; , that is, the value
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of the datum collected at occasion i for participant j, with i=1,2,

the data are complete for participant j, then:

Three indicators IND,;,

PRED, ;,

IND
or PRED,; are added to the data set.

2j

MEASURE,; = OUTCOME,

MEASURE,; = PRED,;,
MEASURE,; = PRED,;.

and IND,;

Data for the first three participants are shown in Fig. 11.3.

Ny and with n; < R=3.If

indicating whether MEASURE;; is OUTCOME,

Figure 11.3 First three participants for Example 2

id MEeasures ind1 indZ2 ind3 ﬂ
1 1 45.92 1.00 .00 .00
2 1 41.86 .00 1.00 .00
3 1 B0.41 .00 .00 1.00
4 2 BE.0E 0o 1.00 0o
5 2 £2.99 0o 0o 1.00
B 3 58,49 1.00 0o o),
|4 [ * ]\ Data view £ variskls view 7 || 4] | Ll_l

Note that Participant 1 has complete data, Participant 2 has data on PRED1 and PRED2 but not
the outcome, and the Participant 3 has data only on OUTCOME.

Data on the measures and the three indicators constitute the level-1 data file, MISSING1.SAv, for
the example. The level-2 file, MISSING2.SAV, contains a dummy variable, DUMMY, which is not
to be used in the analysis. A MDM file, MISSING.MDM, is created. Figure 11.4 displays the model
specified with unrestricted covariance structure for the missing data example. The file that
contains the file specification information is MISSING1.MLM.

To regress OUTCOME (IND1) on PRED1 (IND2) and PRED2 (IND3), select IND1 as the outcome and
IND2 and IND3 as predictors in the Latent Variable Regression dialog box.
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File Basic Settings Other Settings Run Analvsis  Help

__Outcome | \;npESTRICTED MODEL il
>> Level1 <<
W LEVEL 1 MODEL (bold: group-mean centering, bold talic: grand-mean centering)
INTRCPTY MEASURES = (INDTi+MEASURES™ + (IND2j+MEASURES™ +
MEASURES (INDI*MEASURES™
:mg; MEASUIRES® = n?(INDH +112(|ND2) +113|:|ND3:|
IND3 LEVEL 2 MODEL ibald italic: grand-mean centering)
Ty = Bag Y
Ty = Fag T
Ty = Fag Ty

Combined Model
MEASURES = |3w*IND1 + |3.20*|ND2 + ﬁSG*INDB
“arlu] = A

Mixedl "|

Figure 11.4 Model window for the missing data example

The following selected output (example MISSING1.MLM) gives the latent variable regression
results.

Latent Variable Regression Results

The model specified (in equation format)

m = Bio + B (M) + P12 (M3) +11

Estimated Standard

Outcome Predictor Coeffici t-ratio p-value
oefficient Error
IND1 ,m; INTRCPT2 ,B10 -23.966159 14.173726 -1.691 0.117
o,B11 0.879462 0.232665 3.780 0.003
175,810 0.544410 0.220194 2.472 0.029

Latent Variable Regression: Comparison of Original and Adjusted Coefficients

Original Adjusted Standard
Outcome Predictor . L Difference Error of
Coefficient Coefficient )
Difference
IND1 , 17 INTRCPT2 52.25565 -23.96616 76.221809 14.285875
var(r’)
IND1 33.51133

The results indicate that 7z, (associated with IND2) and 7z, (associated with IND3) have
statistically significant effects on IND1 (OUTCOME)*.

*Raudenbush and Bryk (Hierarchical Linear Models, 2002) have shown that using this
approach with complete data replicated the results of SPSS regression analysis for the regression
coefficients. As HMLM adopts the full maximum likelihood estimation approach and the SPSS uses
the restricted maximum likelihood approach, the two sets of standard errors estimated differ by a
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11.2 Applying HLM to multiply-imputed data

A satisfactory solution to the missing data problem involves multiple, model-based imputation
(Rubin, 1987, Little & Rubin, 1987, Schafer, 1997). A multiple imputation procedure produces
M “complete” data sets. Users can apply HLM2 and HLM3 to these multiply-imputed data to
produce appropriate estimates that incorporate the uncertainty resulting from imputation.

There can be multiply-imputed values for the outcome or one covariate, or for the outcome
and/or covariates.

HLM has two methods to analyze multiply-imputed data. They both use the same equations to
compute the averages, so the method chosen depends on the data you are analyzing.

“Plausible Values™ as described in Sections 11.2.1 and 11.2.3. This method is usually preferable
for data sets that have only one variable (outcome or predictor) for which you have several
plausible values. In this case, you need to make one MDM file containing all of the plausible
values, plus any other variables of interest.

“Multiple Imputation™ as described in Section 11.2.4. This method is necessary if you have more
than one variable for which you have multiply-imputed data. This method also requires a
different way of setting up MDM files. Here, you have to create as many MDMs as you have
plausible vales. When making these MDMs, you should use the same level-2 file (and level-3 file
if using HLM3), but several level-1 files are needed.

Those variables that are not multiply imputed should be the same in all these level-1 files. The
variables that are multiply imputed should be separated into the separate level-1 files, but they
must have the same variable names across these level-1 files, since the same model is run on
each of these MDMs.

11.2.1 Data with multiply-imputed values for the outcome or one
covariate

HLM2 and HLM3 enable users to produce correct HLM estimates when using data sets that contain
two or more values or plausible values for the outcome variable or one covariate. One such data
set is the National Assessment of Educational Progress (NAEP), an U.S. Department of
Education achievement test given to a national sample of fourth, eighth, and twelfth graders.

Due to the use of balanced incomplete block (BIB) spiraling in the administration of the NAEP
assessment battery, special procedures and calculations are necessary when estimating any
population parameters and their standard errors with data sets such as NAEP. Every student was
not tested on the same items, so item response theory (IRT) was used to estimate proficiency
scores for each individual student. This procedure estimated a range or distribution of plausible
values for each student's proficiency rather than an individual observed score. NAEP drew five

factor of
J

Q-1 , where in this case J = 15and Q = 2.

J -
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plausible values at random from the conditional distribution of proficiency scores for each
student. The measurement error is due to the fact that these scores are estimated, rather than
observed.

In general, these plausible values are used to produce parameter estimates in the following way.

e Each parameter is estimated for each of the five plausible values, and the five estimates
are averaged.

e Then, the standard error for this average estimate is calculated using the approach
recommended by Little & Schenker (1995).

e This formula essentially combines the average of the sampling error from the five
estimates with the variance between the five estimates multiplied with a factor related to
the number of plausible values. The result is the measurement error.

In an HLM analysis, with either two- or three-levels, the parameter estimates are based on the
average parameter estimates from separate HLM analyses of the five plausible values. That is, a
separate HLM analysis is conducted on each of the five plausible values.

Without HLM, these procedures could be performed by producing HLM estimates for each
plausible value, and then averaging the estimates and calculating the standard errors using
another computer program. These procedures are tedious and time-consuming, especially when
performed on many models, grades, and dependent variables.

HLM takes the plausible values into account in generating the HLM estimates. For each HLM
model, the program runs each of the five (or the number specified) plausible values internally,
and produces their average value and the correct standard errors. There will seem to be one
estimate, but the five HLM estimates from the five plausible values are produced and their
average and measurement error calculated correctly, thus ensuring an accurate treatment of
plausible value data. The output is similar to the standard HLM program output, except that all the
components are averaged over estimates derived from the five plausible values. In addition, the
output from the five plausible value runs is available in a separate output file.

11.2.2 Calculations performed

The program conducts a separate HLM analysis for each plausible value. The output of the
separate HLM analyses is written to files with consecutive numbers, for example, OUT.1, OUT.2,
OUT.3, etc. Then, HLM calculates the average of the parameter estimates from the separate
analyses and computes the standard errors. The output of the average HLM parameter estimates
and their standard errors is found in the output file with the extension AVG.

11.2.2.1 Average parameter estimates

The following parameter estimates are averaged by HLM:
e The fixed effects (gammas)
e The reliabilities
e The parameter variances (tau) and its correlations
e The chi-square values to test whether the parameter variance is zero
e The standard errors for the variance-covariance components (full maximum
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likelihood estimates)
Multivariate hypothesis testing for fixed effects

11.2.2.2 Standard error of the gammas

The standard error of the averaged fixed effects (gammas) is estimated as described below. The
Student's t-value is calculated by dividing the average gamma by its standard error, and the
probability of the t-value is estimated from a standard t-distribution table.

The standard error of the gammas consists of two components — sampling error and
measurement error. The following routine provided in the NAEP Data Files User Guide (Rogers,

et al.,

1992) is used to approximate the component of error variance due to the error in

imputations and to add it to the sampling error.

Let On (Mm=1,...,M) represent the m-th plausible value. Let tm represent the parameter estimate

based on the m-th plausible value. Let U represent the estimated variance of tm.

Five HLM runs were conducted based on each plausible value é&.. The parameter
estimates from these runs were averaged:

M A
t* — Zm=ltm
M
(09.0%)

The variances of the parameters from these runs were averaged:
M
* =1U

U =Lmim 09.02
M (09.02)

The variance of the m estimates, fm, was estimated:

The final estimate of the variance of the parameter estimate is the sum of the two
components:

V=U"+(1+M")B, (09.04)

where the degrees of freedom is computed:

d.f.=(M -1+,
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where

The square root of this variance is the standard error of the gamma, and it is used in a standard
Student's t formula to evaluate the statistical significance of each gamma.

11.2.3 Working with plausible values in HLM

Below is the procedure for running a plausible value analysis via Windows mode:

To run a plausible value analysis

1. After specifying the model, select the Estimation Settings option from the Other
Settings menu.

2. Choose Plausible Values to open the Select Plausible Value Outcome Variables
dialog box (See Figure 11.5 for an example).

3. Select the first plausible value (either the outcome or a covariate) from the Choose first

variable from level 1 equation drop-down menu.

Double-click the other plausible values from the Possible choices box.

Click OK.

o s

Select Plauzible Value Dutcome Yariablez |

Choose first variable from level 1 equation

INune j
Double-click to move variables between colurmns
Fossible choices Flausible values
P
P2
3

(0] | Cancel |

Figure 11.5 Select Plausible Value Outcome Variables dialog box
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11.2.4 Data with multiply-imputed values for the outcome and
covariates

There may be multiply-imputed values for both the outcome and the covariates. To apply HLM to
such data, it is necessary to prepare as many MDM files as the number of imputed data sets. Thus,
if there are five imputed data sets, five MDM files with identical variable labels need to be
prepared. To run these models in batch mode, refer to Section F.3 in Appendix F.

Below are the commands for running an analysis with multiply-imputed data sets via Windows
mode.

To run an analysis with multiply-imputed data sets

1. After specifying the model, select the Estimation Settings option from the Other
Settings menu.

2. Choose Multiple Imputation to open the Multiple Imputation MDM files dialog box
(See Figure 11.6 for an example).

3. Enter the names of the MDM files that contain the multiply-imputed data either by typing
into the File # edit boxes or clicking Browse to open them.

4. Click OK. Model specification follows the usual format.

The calculations involved are very similar to the ones mentioned in Section 11.2.2.

File 10: | Browse |
File11: | Browse |
File 122 | Browse |
| Fie1 | Browse |
E Fie14: | Browse |
Fie1s: | Broswe |
i Fie16: | Browse |
File 17: | Browse |
' File18: | Browse |
File1s: | Browse |
File 20: | Browse |

Figure 11.6  Multiple Imputation MDM files dialog box
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11.3 “V-Known” models for HLM2

The V-known option in HLM2 is a general routine that can be used for applications where the
level-1 variances (and covariances) are known. Included here are problems of meta-analysis (or
research synthesis) and a wide range of other possible uses as discussed in Chapter 7 of
Hierarchical Linear Models. The program input consists of Q random level-1 statistics for each
group and their associated error variances and covariances.

We illustrate the use of the program with the following data from the meta-analysis of teacher
expectancy effects described on pp. 210-216 of Hierarchical Linear Models. Here we show the
process of V-known analysis in its most generic form, which requires using the interactive mode.
See Section 11.3.4 for an easier alternative method for Q = 1 using the Windows interface.

1 0.030 0.016 2.000
2 0.120 0.022 3.000
3 -0.140 0.028 3.000
4 1.180 0.139 0.000
5 0.260 0.136 0.000
6 -0.060 0.011 3.000
7 -0.020 0.011 3.000
8 -0.320 0.048 3.000
9 0.270 0.027 0.000
10 0.800 0.063 1.000
11 0.540 0.091 0.000
12 0.180 0.050 0.000
13 -0.020 0.084 1.000
14 0.230 0.084 2.000
15 -0.180 0.025 3.000
16 -0.060 0.028 3.000
17 0.300 0.019 1.000
18 0.070 0.009 2.000
19 -0.070 0.030 3.000

11.3.1 Datainput format

Unlike the standard HLM2 program, the V-known routine uses only a single data input file. It
consists of the following information:

1. The first field is the unit ID in character format.

2. This is followed by the Q statistics from each unit. In the teacher expectancy effects
meta-analysis, Q equals one, the experiment effect size. (The effect size estimate appears
in the third column of Table 7.1 in Hierarchical Linear Models.)

3. Next are the Q(Q + 1)/2 error variances and covariances associated with the set of Q
statistics. These variance-covariance elements must be specified in row-column sequence

from the lower triangle of the matrix, i.e., Vy;,V},,V,5, ...V 0.1, Voo FOr the meta-

analysis application only a single error variance is needed. (Note the values in the third
column above are the squares of the standard errors that appear in the fourth column of
Table 7.1.)

4. Last are the potential level-2 predictor variables. In the teacher expectancy effects meta-
analysis, there was only one predictor, the number of weeks of prior contact. (See
column 2 of Table 7.1).
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The Q statistics, their error variances and covariances, and the level-2 predictors must be ordered
as described above and have a numeric format.

11.3.2 Creating the MDM file

The V-known program must be implemented in batch or interactive mode; it is not available in
Windows mode.

We present below an example of an HLM2 session that creates a multivariate data matrix file
using the VV-known routine on the teacher expectancy effects data.

C:\HLM>HLM2

Will you be starting with raw data? y

Is the input file a v-known file? y

How many level-1 statistics are there? 1

How many level-2 predictors are there? 1

Enter 8 character name for level-1 variable number 1: EFFSIZE

Enter 8 character name for level-2 variable number 1. WEEKS
Input format of raw data file (the first field must be the character ID)
format: (a2,3f12.3)

What file contains the data? expect.dat

Enter name of MDM file: expect. MDM
19 groups have been processed

The file, EXPECT.DAT, contains the input data displayed above and the resulting multivariate
data matrix are saved in the EXPECT.MDM file. Note that the input format has been specified for
the character ID, the level-1 statistic (EFFSIZE), the associated variance, and the level-2 predictor
(WEEKS).

11.3.3 Estimating a V-known model

Once the MDM file has been created, it can be used to specify and estimate a variety of models as
in any other HLM2 application. The example below illustrates interactive use of the V-known
program (example EXPECT.HLM).

C:\HLM>hIm2 expect. MDM

SPECIFYING AN HLM MODEL
Level-1 predictor variable specification

Which level-1 predictors do you wish to use?
The choices are:
For EFFSIZE enter 1

level-1 predictor? (Enter O to end) 1
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Level-1 predictor variable specification

Which level-1 predictors do you wish to use?
The choices are:
For EFFSIZE enter 1

level-1 predictor? (Enter O to end) 1

Level-2 predictor variable specification
Which level-2 variables do you wish to use?

The choices are:
For WEEKS enter 1

Which level-2 predictors to model EFFSIZE?
Level-2 predictor? (Enter O to end) 1

ADDITIONAL PROGRAM FEATURES

Select the level-2 variables that you might consider for
inclusion as predictors in subsequent models.

The choices are:

For WEEKS enter 1

Which level-2 variables to model EFFSIZE?
Level-2 variable? (Enter O to end) 0

Do you want to run this analysis with a heterogeneous sigma”2? n
Do you wish to use any of the optional hypothesis testing procedures? n

OUTPUT SPECIFICATION
Do you want a residual file? n
How many iterations do you want to do? 10000
Do you want to see OLS estimates for all of the level-2 units? n
Enter a problem title: Teacher expectancy meta-analysis
Enter name of output file: expect.lis

Computing . . ., please wait
Problem Title: Teacher expectancy meta-analysis

The data source for this run = expect. MDM

The command file for this run =

Output file name = expect.lis

The maximum number of level-2 units = 19

The maximum number of iterations = 10000
Method of estimation: restricted maximum likelihood
Note: this is a v-known analysis

The outcome variable is INTRCPT1

The model specified for the fixed effects was:

Level-1 Level-2
Effects Predictors

EFFSIZE, B1 INTRCPTZ, G10
WEEKS, G11

The model specified for the covariance components was:
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Variance(s and covariances) at level-1 externally specified

Tau dimensions
EFFSIZE slope

Summary of the model specified (in equation format)

Level-1 Model

Y1=Bl1l+E1l

Level-2 Model

Bl =G10 + G11*%(WEEKS) + U1
STARTING VALUES

Tau(0)
EFFSIZE,B(null)  0.02004

Estimation of fixed effects
(Based on starting values of covariance components)

Standard Approx.
Fixed Effect Coefficient Error T-ratio d.f. P-value

For EFFSIZE, B1
INTRCPT2, G10 0.433737 0.109700 3.954 17 0.001
WEEKS, G11 -0.168572 0.046563 -3.620 17 0.002

The value of the likelihood function at iteration 1 = -3.414348E+001
The value of the likelihood function at iteration 2 = -3.350241E+001
The value of the likelihood function at iteration 3 = -3.301695E+001
The value of the likelihood function at iteration 4 = -3.263749E+001
The value of the likelihood function at iteration 5 = -3.121675E+001

The value of the likelihood function at iteration 7849 = -2.979898E+001
The value of the likelihood function at iteration 7850 = -2.979898E+001
The value of the likelihood function at iteration 7851 = -2.979897E+001
The value of the likelihood function at iteration 7852 = -2.979897E+001

Iterations stopped due to small change in likelihood function
*kkkkkk ITERATION 7853 *kkkkkk

Tau
EFFSIZE,B 0.00001

Tau (as correlations)
EFFSIZE,B 1.000

Random level-1 coefficient Reliability estimate

EFFSIZE, B 0.000
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The value of the likelihood function at iteration 7853 = -2.979897E+001

Final estimation of fixed effects:

Standard Approx.
Fixed Effect Coefficient Error T-ratio d.f. P-value

For EFFSIZE, B1
INTRCPT2, G10 0.408572 0.087146 4.688 17 0.000
WEEKS, G11 -0.157963 0.035943 -4.395 17 0.000

Final estimation of variance components:

Random Effect Standard Variance df Chi-square P-value
Deviation Component

EFFSIZE, U 0.00283 0.00001 17 16.53614 >.500

Statistics for current covariance components model

Deviance = 59.59795
Number of estimated parameters= 2

In general, the HLM2 results for this example closely approximate the more traditional results that
would be obtained from a graphical examination of the likelihood function. (For this particular
model, the likelihood mode is at zero.) Note that the value of the likelihood was still changing
after 7850 iterations. Often, HLM2 converges after a relatively small number of iterations. When
the number of iterations required is large, as in this case, this indicates that the estimation is
moving toward a boundary condition (in this example it is a variance estimate of zero for Tau).
This can be seen by comparing the starting value estimate for Tau, 0.02004, with the final
estimate of 0.00001. (For a further discussion see p. 202 of Hierarchical Linear Models.)

11.3.4 V-known analyses where Q =1

There is an alternative and appealing method for analysis for V-known analyses when Q =1. This
may be accomplished as follows:

1. Select the Estimation Settings option from the Other Settings menu.
2. Use the pull down menus to select the variable that represents the known level-1
variance.

This may be accomplished in either the two-level or the three-level HLM programs.

11.4 Spatial dependence models for HLM2

The spatial dependence option in HLM2 allows researchers to handle nested data collected in
spatial settings. In addition to the clustering effects, the spatial HLM2 models accommodate
dependence induced by contiguity or proximity in geographic locations. This type of models has
applications for clustered data collected from contiguous geographic locations such as school
districts, counties, neighborhoods, and countries. Verbitsky-Savitz and Raudenbush (2009), for
example, applied these models to exploit the spatial dependence of neighborhood social
processes to considerably improve the precision and validity of assessment of neighborhoods.
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Below is an example of a spatial HLM2 model.

11.4.1 A spatial analysis using HLM2

This example uses data collected by the Project of Human Development in Chicago
Neighborhoods (Sampson, Raudenbush, & Earl, 1997) on 7,729 residents living in 342
neighborhoods. It is an unconditional model with a ten-item collective efficacy scale, defined as
the fusion of social cohesion and informal social control, as the outcome.

For spatial HLM2 models, the level-1 and level-2 models have the same structure as those
described in Section 2.5. These two data files for the example, linked by level-2 neighborhood
cluster IDs, are RESIDENT.SAV and NEIGHBOR.SAV. In the level-1 data file, there is one variable,
collective efficacy (COLLEFF). In the level-2 data file, a dummy variable is included. The spatial
dependence analysis requires another data file with information on spatial contiguity. The
information allows the program to create a spatial weight matrix, W, which is a binary contiguity
matrix indicating that sites are contiguous to each other. ROOK.SAV, contains such information
for our illustrative example. The variables followed by the neighborhood cluster IDs are:

e N1 - N10 (the first to the tenth adjoining neighborhoods, if any)
e COUNT (the total number of contiguous neighborhoods)

The data for the first ten neighborhoods are displayed in Fig 11.7. Note that neighborhood 1 (that
is, the neighborhood with ID = 1) shares a common boundary with two neighborhoods,
specifically, neighborhoods 2 and 3. In contrast, neighborhood 2 shares a boundary with 4
neighborhoods, neighborhoods 8, 6, 3, and 1.
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Figure 11.7 First ten cases in ROOK.SAV

The file SPATIAL.MDMT stores the commands for creating the two-level multivariate data matrix
file, SPATIAL.MDM. The procedure is very similar to those described in Section 2.5.1. An extra
step needed is to instruct the program to include spatial dependence information with the
following procedure:
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Make MDM - HLM2

MDM template file
Fila Mame: CAHLMExamplesispatial mdmt

Open mdmt file | Save mdmtﬂle| Edit

MO File Mame (use .mdm suffix)

|spatia|.mdm

mdmtﬂle|

Structure of Data - this affects the notation onlky!
f* cross sectional {persons within groups)

" longitudinal {occasions within persons)

Level-1 Specification

Missing Data?

O Mo Yes & making mdm

Level-2 Specification

Spatial Dependence Specification

[v Include spatial dependence matrix

Browse

Spatial Dep. File Mame:

Make WD

" measures within groups

Level-1 File Mame: CAHLM\Examplesiresident.sav

Delete missing level-1 data when:

 running analyses

Browse Level-2 File Mame: CAOHLMExamplesineighbor.say

CAHLMExamplesirook sav

Check Stats

Input File Type | SPESMYindows

[~

Choose Variables

Choose Variables

Choose Variables
Daone

Figure 11.8 Make HLM - Dialog Box

At the Make MDM — HLM2 dialog box,

1. Check the box for Include spatial dependence matrix (see Figure 11.8).

2. Click Browse to select ROOK.SAV.

3. Click Choose Variables to include the ID and the variables N1-N10 and COUNT.

The file SPATIAL.HLM contains the commands for setting up the unconditional model. The
procedure follows the steps outlined and illustrated in Section 2.5.2.5. An additional step is to
instruct HLM2 to run the model as a spatial dependence model by the following procedure:

1. Open the Other Settings menu and select the Estimation Settings.
2. Check the box for Run as spatial dependence model (see Figure 11.9).
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- — = N
Estimation Settings - HLM2

~ Type of Likelihood
" Restricted maximum likelihood & Full maximum likelihood

-Adaptive Gaussian Quadrature Iteration Control

Maximum number of iterations

[~ Do adaptive Gaussian iterations

I

Number of quadrature points

" First derivative " Second derivative

-LaPlace Iteration Control
I~ Do EM Laplace itera

tions

Maximum number of iterations l

I~ Fixed Intercept, Random Coeffcient [ Diagonalize Tau ¥ Run as spatial dependence model

Constraint of fixed effectsl Heterogeneous sigma"2| Automatic Ir iml Multiple imputation!

I Level-1 Deletion

Weighting I Latent Variable Regressionl Plausiblevaluesl

Variable Selection Modell ITT effects l IV Effects I
Fix sigma*2 to specific value | computed
(Set to "computed” if you want sigma*2
random or if over-dispersion is desired)

Figure 11.9 Estimation Settings — HLM2

The model window for our illustrative example in Figure 11.10 gives the model specifications.

BWHLM: him2 MDM File: spatial.mdm... [= [8|X]
File Basic Settings Other Settings Run Analysis

Help

Outcome LEVEL 1 MODEL (bold: group-mean centering; bold italic: grand-mean centering) b’
>» Level1 << COLLEFF = N

Level-2 =g m
INTRCPT1 LEVEL 2 MODEL thold talic: grand-mean certering)
COLLEFF

By = Mt by

SPATIAL DEPENDKhald ttalic: grand-mean centering)
by = pWh, +u,

Mixedl v

Figure 11.10 Specification of the spatial dependence uncondtional model

Note that a model for the spatial dependence model is given:
b, = PWh, +u
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where as described in Verbitsky-Savitz and Raudenbush (2009),

e Db, is a vector of level-2 random spatially autoregressive effects;

e 7 isaspatial correlation parameter with zero indicating no spatial dependence and positive or
negative values indicating whether a site is typically surrounded by other sites with similar or

different values on the outcome;

o Wis the spatial weight matrix used in the analysis. As discussed earlier, it is constructed from

ROOK.SAV; and
e U jsthe level-2 error.

A spatial dependence analysis using HLM2 provides two sets of results, one for regular HLM and
the other HLM with spatial dependence. A comparison test of the fit of these models is performed

and the result is given. Below is a partial output of the results of the unconditional model.

Here are the partial results for the regular HLM:

Iterations stopped due to small change in likelihood function
o® =0.42136

Standard error of ° = 0.00693
T
INTRCPT1,8, 0.08904

Standard error of T
INTRCPT1,8, 0.00850

Random level-1 coefficient Reliability estimate

INTRCPT1,8, 0.799

The value of the log-likelihood function at iteration 6 = -7.911855E+003

Final estimation of fixed effects:

Fixed Effect Coefficient Standard t-ratio Approx. p-value
error d.f.
For INTRCPT1, B,
INTRCPT2, yoo 3.433243 0.018056 190.142 341 <0.001
Final estimation of fixed effects
(with robust standard errors)
Fixed Effect Coefficient Standard t-ratio Approx. p-value
error d.f.
For INTRCPT1, B,
INTRCPT2, Voo 3.433243 0.018056 190.144 341 <0.001
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Final estimation of variance components

Standard Variance df

2

Random Effect Deviation Component X p-value
INTRCPT1, ug 0.29839 0.08904 341 1870.37148 <0.001
level-1, r 0.64913 0.42136

Statistics for the current model

Deviance = 15823.710765
Number of estimated parameters = 3
HLM with Spatial Dependence Model Results - Iteration 135
The value of the log-likelihood function at iteration 135 = -7.835990E+003
Iterations stopped due to small change in likelihood function
o’ =0.42149
T

INTRCPT1,8 0.03477
P

INTRCPTL1,8 0.81701
Final estimation of fixed effects:
Fixed Effect Coefficient Standard t-ratio Approx. p-value

error d.f.
For INTRCPT1, B,
INTRCPT2, yoo 3.404181 0.056443 60.312 341 <0.001

Statistics for the current model

Deviance = 15671.980461
Number of estimated parameters = 4

Regular HLM vs. HLM with spatial dependence model comparison test

X2 statistic = 151.73030
Degrees of freedom = 1
p-value = <0.001

Average Level-2 Variance = 0.088502

Average Level-2 Covariance = 0.005961

The average level-2 variance is the average of the neighborhood-specific variance. These depend
on 7, but also on the magnitude of the spatial dependence correlation, p, and the configuration

of neighborhoods near that neighborhood. The average level-2 covariance is the average

covariance between pairs of contiguous neighborhoods.
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Two features of the results are noteworthy:

e The result of the comparison test provides evidence that the HLM with spatial dependence
provides a better fit, as indicated by the y* statistic of 151.73, df = 1, p <.001.

e A comparison of the standard errors for 7, the regular HLM and HLM with spatial
dependence (.018 vs .056) suggests that, given pis equal to .8, that there is an
underestimation of the standard errors when spatial dependence is ignored.

Users can also obtain spatial empirical Bayes estimates of the neighborhood collective efficacy
measures by following the procedure as specified in Section 2.5.4.2. Figure 11.11 gives the ten
records of the residual file for the uncondtional model.

Figure 11.11 Level-2 Residual File

[2id nj u_intrcp b intrcp fuintrcp il
1 1 39 =213 -.420 3.404
2 2 43 -.168 -.292 3.404
3 3 15 021 -214 3.404]
4 4 41 -.128 -.203 3.404
A 8 15 01 -.021 3.404
5 5 13 -.099 -.155 3.404
7 7 39 - 113 -.138 3.404
a8 8 14 192 178 3.404
9 9 45 287 328 3.404

10 10 17 281 376 3.404 |,

<[> |\Data vView £ Variable View / || 4] | ) ’J

U_INTRCP and B_INTRCP are the two Empirical Bayes for the regular HLM and the HLM with
spatial dependence. For a discussion of the properties of the empirical Bayes estimator that
exploits spatial dependence, see Verbitsky-Savitz and Raudenbush (2009).

11.4.2 Other outcome variables

Spatial dependence models handles continuously distributed as well as discrete outcomes,
including binary outcomes, counted data, ordered categories, and multinomial outcomes.
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12 Conceptual and Statistical Background for Cross-classified
Random Effect Models (HCM2)

All of the applications discussed thus far have involved a strictly hierarchical data structure.
Such nesting structures would occur, for example, in a study of neighborhood and school effects
on child development in which all children living in the same neighborhood attended the same
school, with multiple neighborhoods per school. In this case we would have children at level 1
nested within neighborhoods at level 2 and neighborhoods nested within schools at level 3.
Alternatively, we might have a nested structure in which every child attending a given school
lived in the same neighborhood, with multiple schools per neighborhood. In this case, we would

have children nested within schools nested within neighborhoods. HLM3 can be used to
accommodate such three-level nested data structures. However, we typically find, in fact, that

children who reside in a specific neighborhood can enroll in one of several schools, and each
school might draw students from several neighborhoods. In this case, the data gathered will no
longer have a purely nested structure. Instead, a cross-classification of students by two higher-
level factors, neighborhoods and schools, arises. To handle this more complex data structure

while modeling the developmental influences of neighborhoods and schools requires the use of

cross-classified random effects models (HCM2).

Chapter 12 of Hierarchical Linear Models discusses two applications of cross-classified random

effects models, one with cross-sectional, and the other with longitudinal data. The first

application is from a study of neighborhood and school effects on educational attainment in
Scotland (Garner & Raudenbush, 1991). Some of the children in this study enrolled in schools

located in neighborhoods that were different from the ones they resided in. These students were

thus cross-classified by neighborhoods and schools. The second case is an assessment of the

effects of classrooms on children's cognitive growth during the primary school years

(Raudenbush, 1993) using longitudinal data collected from the Immersion Study (Ramirez,
Yuen, Ramey, & Pasta, 1991). As there were changes in classroom memberships among the
students during the course of the investigation, the repeated assessments on cognitive growth

were cross-classified by teachers. A similar data structure was displayed in Sampson, Sharkey

and Raudenbush'’s (2008) longitudinal study on the impact of concentrated disadvantage on the

verbal ability of African American children. During the seven years of data collection, some of

the participants moved to live in different neighborhoods. Consequently, the repeated measures
of their verbal ability were cross-classified by children and time-varying neighborhoods.

12.1 The general cross-classified random effects models

A general random cross-classified model consists of two sub-models: the level-1 or within-cell

model and level-2 or between-cell model. The cells refer to the cross-classifications by the two
higher-level factors. For example, if the research problem consists of data on students cross-

classified by neighborhoods and schools, a cell consists of a set of students who live in the same

neighborhood and attend the same school. The level-1 or within-cell model will represent the
relationships among the student-level variables for those students while the level-2 or between-
cell model will capture the influences of neighborhood- and school-level factors. Formally, there

are i=12,...,n; level-1 units (e.g., students) nested within each cell cross-classified by j = 1,...,
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J units of the first higher-level factor (e.g., neighborhoods), designated as rows, and k = 1,..., K
units of the second higher-level factor (e.g., schools), designated as columns. For a graphical
representation of this data layout in Garner and Raudenbush (1991), see Table 12.1 in Chapter
12 of Hierarchical Linear Models.

In HLM7, HCM2 handles continuously distributed as well as discrete outcomes, including binary
outcomes, counted data, ordered categories, and multinomial outcomes. We use the continuous
outcome models in the following discussion. The logic of HGLM, as described and illustrated in
Chapter 5, applies and extends to analyses with any of the four types of discrete outcomes with
HCM2.

12.1.1 Level-1 or “within-cell” model

We represent in the level-1 or within-cell model the outcome for case i nested within row j and
column k of the two-way classification:

Yijk =Tojk T i Qi T T R0k T G (12.1)

where

7o 1S the intercept, the expected value of Y;;, within cell jk when all explanatory variables

are set to zero;
7, are the level-1 coefficients of predictors a

&;c Is the level-1 or within-cell random effect; and
o’ isthe variance of e, that is the level-1 or within-cell variance. Here we assume that the

forp=1,...,P;

random term e, ~ N(0,5?).

12.1.2 Level-2 or “between-cell” model

Each of the 7, coefficients in the level-1 or within-cell model becomes an outcome variable in

the level-2 or between-cell model:

o = oo +(,Bpl+bplj)x1k +(,b’p2 +bp2j)X2k +---+(ﬂpr +prpj)Xka +
(Vpl"'cplk )le +(7p2 +Cp2k )sz' +"'+(7pRp +CpRpk)WRpj + (12-2)

bpo i +Coox
where

0,, is the model intercept, the expected value of 7, when all explanatory variables are set

to zero;
B, are the fixed effects of column-specific predictors X,,,q=1,...,Q,;

b,,; are the random effects associated with column-specific predictors X, . They vary
randomly over rows j = 1,..., J;

pjk
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7, are the fixed effects of row-specific predictors W, ;, r =1,...,R ;

C, are the random effects associated with row-specific predictors W, ; . They vary randomly

over columnsk=1,..., K, and;

b,,;and c,, are residual row and column random effects, respectively, on =, , after taking

pik
into account X, and W, ;. We assume that by,; ~ N (0,700 Cpox = N (0,70 ), and
that the effects are independent of each other.

The vector of random row effects b, (p=0,...,P; 4 =0,...,Qp ;) is assumed multivariate normal

with a mean zero and a full covariance matrix 7. Similarly the vector of random column effects
Coe (P=0,...,P;r=0,...,Ry ;) is assumed multivariate normal with mean vector zero and full

covariance matrix A.
12.2 Parameter estimation

For continuous outcomes, three kinds of parameter estimates are available in HCM2: empirical
Bayes estimates of random coefficients; maximum-likelihood estimates of the fixed regression
coefficients; and maximum likelihood estimate of the variance-covariance components. The
estimation procedure uses a full maximum likelihood approach (Raudenbush, 1993).

For discrete outcomes, the parameter estimates of the fixed regression coefficients are based on
the method of penalized quasi-likelihood. Unlike HGLM, however, unit-specific but not
population-averaged results are available.

12.3 Hypothesis testing

As in the case of HLM2, HCM2 routinely prints standard errors and t-tests for each of the fixed
level-2 coefficients as well as a chi-square test of homogeneity for each random effect. In
addition, optional “multivariate hypothesis tests” are available in HCM2. Multivariate tests in the
case of continuous outcomes parallel those described in Section 2.8.8. For discrete outcomes,
hypothesis testing parallels those described in Section 5.10.
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13 Working with HCM2

13.1 An example using HCM2 in Windows mode

HCM2 analyses can be executed in Windows, interactive, and batch modes. We describe a
Windows execution below. We consider interactive and batch execution in Appendix G. A
number of special options are presented at the end of the chapter.

Chapter 12 in Hierarchical Linear Models presents a series of analyses of data from a study of
neighborhood and school contribution to educational attainment in Scotland (Garner &
Raudenbush, 1991). We use the data from the study, provided along with the HLM software, to
illustrate the operation of the HCM2 program.

13.1.1 Constructing the MDM file from raw data

In constructing the MDM file, there are the same range of options for data input as for HLM2.
Similar to HLM3, HCM2 requires two IDs, one for each higher-level unit, and the IDs have to be
sorted. The two higher-level units in our example are neighborhoods and schools. Whereas the
user can choose either higher-level unit as the row or column factor, we adopt the convention
that the data are arranged such that the level with more units becomes the row factor and the
level with fewer units becomes the column factor. Thus, we will designate the neighborhood (N
= 542) as the row factor and school (N = 17) as the column factor.

13.1.1.1 SPSSinput

Data input requires a level-1 file (student-level file), a level-2 row-factor (neighborhood-level)
file, and a level-2 column-factor (school-level) file.

Level-1 file. The level-1 or within-cell file, ATTAINW.SAV has 2,310 students and 8 variables. The
two IDs are NEIGHID for neighborhoods and SCHID for schools. The variables are:

ATTAIN (a measure of educational attainment)

P7VRQ (Primary 7 verbal reasoning quotient)

P7READ (Primary 7 reading test scores)

DADOCC (father's occupation scaled on the Hope-Goldthorpe scale in conjunction with the

Registrar General's social-class index (Willms, 1986))

DADUNEMP, an indicator for father's unemployment status (1 if unemployed, O otherwise)

e DADED, an indicator for father's educational level (1 if schooling past the age of 15, 0
otherwise)

e MOMED, an indicator for mother's educational level (1 if schooling past the age of 15, 0
otherwise)

e MALE, an indicator for student gender (1 if male, O if female)

Data for the first 15 observations are shown in Figure 13.1. Note that five students from
Neighborhood 26 and one from Neighborhood 27 attended School 20. These first six
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observations provided information about two neighborhood-by-school combinations or cells.
One of the next nine students living in Neighborhood 29 attended School 18 and the other eight
went to School 20. They provided data for two cross-classified neighborhood-by-school cells
(see Table 12.1 in Hierarchical Linear Models, p. 374, for a display of the organization of the
data by counts in each neighborhood-by-school cell).

neighid schid attain pivrg piread dadocc | dadunemp daded mamed male |
1 26.00 20.00 -1.33 -1.03 -87 -3.45 A0 00 .00 1.00
2 26.00 20.00 -1.33 -10.03 27 ET -3.44 a0 a0 0o an
3 26.00 20.00 1452 1.97 11.13 -804 A0 00 .00 a0
4 26.00 20.00 el 257 6.13 232 a0 a0 0o an
5 26.00 20.00 1452 17.97 1713 16.20 A0 00 .00 1.00
] 27.00 20.00 - 13 387 87 -3.44 a0 a0 1.00 an
7 29.00 18.00 a3 857 £.13 16.20 A0 1.00 1.00 1.00
g 29.00 20.00 -1.33 -17.03 -23.87 -3.44 a0 a0 0o 1.00
9 29.00 20.00 -1.33 -8.03 -4.87 -3.45 A0 00 .00 a0
10 29.00 20.00 V16 1.97 -4.87 -11.44 a0 a0 0o an
i 29.00 20.00 A6 -03 587 -3.45 A0 00 .00 a0
12 29.00 20.00 V16 487 11.13 -11.44 a0 a0 0o 1.00
13 29.00 20.00 74 -4.03 A3 -3.45 A0 00 .00 1.00
14 29.00 20.00 -1.33 -15.03 2587 -3.44 a0 a0 0o an
15 29.00 20.00 -36 -8.03 -13.87 -3.45 A0 00 .00 a0

Figure 13.1 First 16 cases in the ATTAINW.SAV dataset
13.1.1.2 Level-2 row-factor file

For our neighborhood example, the level-2 row-factor (neighborhood) level file, ATTAINR.SAV,
consists data on 1 variable for 542 neighborhoods. The variable is DEPRIVE (a scale measuring
social deprivation, which incorporates information on the poverty concentration, health, and
housing stock of a local community).

Figure 13.2 shows data from the first 4 neighborhoods.

heighid deprive 3
1 26 -85
2 27 A
3 28 -a1
4 29 -08|
4 | » |\ Data View ,G| 1| _h’_l
s

Figure 13.2 First 4 cases in the ATTAINR.SAV data set
13.1.1.3 Level-2 column-factor file

The level-2 column-factor (neighborhood) file, ATTAINCO.SAV, has 17 schools and 1 variable.
The variable is DUMMY, a dummy variable. Figure 13.3 shows data for the first 4 schools.
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schid durnmy ﬂ

1 1.00 1.00
2 2.00 1.00
3 3.00 1.00

4 4.00 1.00(,
(4 [ » ] Data view £ +]] L’J
4

Figure 13.3 First 4 cases in the ATTAINCO.SAV data set

The steps for the construction of the MDM for HCM2 are similar to the ones described earlier.
Select HCM2 in the Select MDM type dialog box (see Figure 2.5). Note that the program can
handle missing data at level 1 or within-cell only. The MDM template file, ATTAIN.MDMT, contains
a log of the input responses used to create the MDM file, ATTAIN.MDM, using ATTAINW.SAV,
ATTAINR.SAV, and ATTAINCO.SAV. Figure 13.4 displays the dialog box used to create the MDM
file. Figures 13.5 to 13.7 show the dialog boxes for the within-cell file, ATTAINW.SAV, the row-

factor file, ATTAINR.SAV, and the column-factor file, ATTAINCO.SAV.

Make MDM - HCM2

MO template file

MOM File Bame (use mdm suffix)
File Mame: CAHLMExamplesWWTTAIN. MOMT IA‘I‘I’AIN.MDM
Cpen mdmtﬂlel Save mdmt file Edit mdmtﬂlel Input File Type | SPESAMIndows j

—Leval-1 Specification

Browse | Level-1 File Mame: CIHLMEzamplesiattainw sav Choose Variables |

Missing Data?
’76‘ Mo 7 Yes

—Row-Level Specification

!

Browse Fowe-Level File Mame: COHLMIExamplesiattaing sav Choose Yariahles |

—Column-Level Specification

Browse | Column-Lewel File Mame: CAHLMIExamplesiattainco. saw Chunse\-’ariablesl

fizke WD | Check Stats | Done |

Figure 13.4 Make MDM — HCM2 dialog box for ATTAIN.MDMT
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Choose variables - HCM2

[MEGHD W orowid [ oeoid [inmoM [ T rowdl Iocold T inon
[scoo T orowid Wocoid nmow [ [ o oo T mmom
[aTram™ [ rowid [ ocoid onwow [ [ o oo T mom
[PrvRe rowid ol FinmoM [ T rowil [ ocog T inow
[PrREAD [ rowid [ coiid [FinmoM [ [ o ool T on
[papoce [ rowid [ ocoid Ronwow [ T o ool T inon
[cepuneMF T rowid [ ocoid R onmow [ T rowd ol T non
[papED T orowid [ ocoid Fnmow [ [ o oo T mmom
[MomED ™ [ rowid [ ocoid Ronmow [ [ o oo T mom

IMALE [ rowid [ colid v ;nMDM I [ roweid [ colid [ im A

I [T rowid [T colid [ im MG I [ rowid [ calid [ Lin G
| [T rowid [T colid [ im MG | [T rowid [T colid [T |im D6

Page 1 of 1 4 | i Ok, | Cancel

Figure 13.5 Choose variables — HCM2 dialog box for level-1 or within-cell file,
ATTAINW.SAV

Choose variables - HCM2

INEIGHID W roweid [T colid [ in MDM | [T rovwid [T colid [T |im MG

IDEPRIVE [~ rowid [T colid [ in WD | [T lrowid [T calid [T imhiDm

[ Flrowd Flesid Flowow [ Flrowid [ eoid [ inbion
[ Frowd ool Foowow [ Flrowi o T inbon
[ Frowd el Fawow [ Flrowid e [ inbon
[ Flrowd oo Flowow [ Flrowid [ oeoid [ inboH
[ Frowd ool Foowow [ Flrowi e [ innon
[ Frowd el Fowow [ Flrowid e [ innon
[ Flrowd Flesid Flowow [ Flrowid [ eoid [ inbion
[ Frowd ool Foowow [ Flrowi e [ inbon
[ Frowd ool Fomwow [ Flrowi o [ innon
[ Flrowd oo Flowow [ Flrowid [ ocoid 7 inbon

Page 1 of 1 1 | | Ol | Cancel

Figure 13.6 Choose variables — HCM2 dialog box for level-1 or row-factor file,
ATTAINR.SAV
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Choose variables - HCM2

ISCHID [T rowvicd W colid [ in MO I [ rowiddl [ ealid [ im A

IDLIMMY [~ rowid [ colid [ in MO | [T rowid [T caolid [T |im RGN

[ Flrowd Fleoid Fonwow [ Frowi e i
[ Clrowid Foeoie Fliavow [ Flrowdl [ cog 1 inboH
[ Flrowid Moo Fnwow [ rawi el 17 in ko
[ Flrowid Fleoid Fnwow [ Frowi e i o
[ Flrowid Feoid Tnwon [ lrowl I leoidl 1 in b
[ Flrowd oo Fonwow [ Frawi e [ inbom
[ Flrowd Fleoid Fonwow [ Frawi e 7 inbom
[ FClrowid Foeofe Fliavow [ Flrowil [T eofid 1 inboH
[ Flrowid Moo Fnwow [ rawi el 17 in ko
[ Flrowd Fleoid Fonwow [ Frowi e i

Page 1 of 1 4 | i Ok, | Cancel

Figure 13.7

Choose variables — HCM2 dialog box for level-1 or column-factor file,

ATTAINCO.SAV

13.2 Executing analyses based on the MDM file

Once the MDM file is constructed, it can be used as input for the analysis. Model specification
has three steps:

1.

Specification of the level-1 or within-cell model. In our example, we shall model
educational attainment (ATTAIN) as the outcome. We first formulate an unconditional
model that includes no predictor variables at any level. In the second or conditional
model, we use prior measures of cognitive skill, verbal reasoning quotient and
reading achievement, father's employment status and occupation and father's and
mother's education to predict attainment.

Specification of the row- or column-factor prediction model. In the second or
conditional model, we shall predict each student's intercept with social deprivation.
Specification of the residual row, column, and cell-specific effects as random or non-
random, the effects associated with row-specific predictors as varying randomly or
fixed over columns, and the effects associated with column-specific predictors as
varying randomly or fixed over rows. We shall test whether the association between
social deprivation (a row-specific predictor) and attainment varies over schools in the
third model.

Following the three steps above, we first specify a model with no student-, neighborhood-, or
school-level predictors. The purpose is to estimate the components of variation that lie between
neighborhoods, between schools, and within cells.

1.
2.

3.

From the WHLM window, open the File menu.

Choose Create a new model using an existing MDM file to open an Open MDM
File dialog box. Open the existing MDM file (ATTAIN.MDM in our example).

Click on the name of the outcome variable (ATTAIN in our example). Click Outcome
variable. The specified model will appear in equation format (see Figure 13.8).
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[ WHLM: hcmn2 MDM File: ATTAIN.MDM i B ]

File Basic Settings  ©Other Settings  Fun Analysis  Help

M LEVEL 1 MODEL ¢hold italic: grand-mean centering ﬂ
»» Level-1 <<
—_— ATTAIN = a, + e
Row 7
Column LEVEL 2 MODEL chald italic: grand-mean certering)
INTRCPTT e e—— ‘
ATTAIN T N
PR Grand[mean Random main effect
PYREAD attainment of of schoal k
DADDCC all children
DADUNERP
DADED Random main effect
MOMED of neighborhood §
FEMALE
Mixedlvl

Figure 13.8 Unconditional model for the attainment example

The results of the analysis are given below.

Problem Title: Unconditional model

The data source for this run = ATTAIN.MDM
The command file for this run = attainl.him
Output file name = hcm2.html

The maximum number of level-1 units = 2310
The maximum number of row-level units = 524
The maximum number of column-level units = 17
The maximum number of iterations = 100
Method of estimation: full maximum likelihood
The maximum number of iterations = 100
Z-structure: independent

The outcome variable is ATTAIN
Summary of the model specified
Level-1 Model

ATTAINj = moj + €k

Level-2 Model

Tojk = B0 + Dogj + Cook

For starting values, data from 2310 level-1, 524 row-level and 17 column-level records were used

212



Final Results - iteration 21
Iterations stopped due to small change in likelihood function

o2 = 0.79909

Trows

INTRCPT1
ICPTROW, byg;
0.14105

Tcolumns

INTRCPT1
ICPTCOL,Cqox
0.07546

The intra-neighborhood correlation, the correlation between outcomes of two students who live
in the same neighborhood but attend different schools, is estimated to be:

A

)_ Thoo

Corr(Yijk,Yijk.g = = =
Thoo +Tco0o + O

0.141

~ 0.141+0.075+0.799
~0.139.

Thus, about 13.9% of the total variance lies between neighborhoods.

The intra-school correlation is the correlation between outcomes of two students who attend the
same school but live in different neighborhoods:

A

) Tc00

— R

Corr (Y, Vi

~

Tboo + Tcoo + &
0.075

~ 0.141+0.075+0.799
=0.074,

That is, about 7.4% of the variation lies within schools.

The intra-cell correlation is the correlation between outcomes of two students who live in the
same neighborhood and attend the same school:

A A

R Thoo + Tco0
Corr(Yijk,Y. ): .

ijk'e

~

%bOO + Tcoo +0'2
0.141+0.075

~ 0.141+0.075+0.799
~0.212.
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Thus, according to the fitted model, about 21% of the variance lies between cells.

The value of the log-likelihood function at iteration 21 = -3.178356E+003

Final estimation of fixed effects:

Fixed Effect Coefficient Standard t-ratio Approx. p-value
error d.f.
For INTRCPTL, mq
INTERCEPT,8, 0.075357 0.072226 1.043 1769 0.297
Final estimation of row and level-1 variance components:
Standard Variance 2
Random Effect Deviation Component df. x p-value
INTRCPT1/ ICPTROW,bgy; 0.37556 0.14105 523 904.83225 <0.001
level-1, e 0.89392 0.79909
Final estimation of column level variance components:
Standard Variance 2
Random Effect Deviation Component df. ¥ p-value
INTRCPT1/ ICPTCOL,Coox 0.27470 0.07546 16 120.45262 <0.001

Statistics for the current model

Deviance = 6356.711470
Number of estimated parameters = 4

13.3 Specification of a conditional model with the effect associated
with a row-specific predictor fixed

The above example involves a model that is unconditional at all levels. In this model we set up a
level-1 and a row-factor prediction model.

To set up the level-1 model:

At the model specification dialog box, select P7VCR, P7TREAD, DADOCC, DADUNEMP, DADED,
MOMED, and MALE and grand-mean center all the predictors. Figure 13.9 shows the model with
the level-1 predictors. In the interest of parsimony, given the small cell sizes and within-
neighborhood sizes, all level-1 coefficients are fixed. (To specify any of them as randomly
varying, select the equation containing a specific regression coefficient, 7, and click on b;).
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B WHLM: hcm2 MDM File: ATTAIN.MDM O] x|

File Basic Settings Other Settings  Run Analysis  Help

OUtCOME | | FyE) 1 MODEL thold talic: grand-mean certering) i’
>:E|::;t1<< ATTAIMN = nyt n?(PTURQ:I + nE[PTREﬂD:l + nS[DﬂDOCCJ + ﬂ‘F[D,ﬂDLWEMPJ +
Column 1 (DADED) + n [MOMED) + z [MALE) + &
::(]:IS;'IEI?;I!EV LEVEL 2 MODEL thald italic: grand-mean centering)
T, = Bﬂ+bm+cm
w9
T =9
w3 T 9
ny = 9y
T = 85
nL = BE
. = E!?
Mixed| |

Figure 13.9 Level-1 Prediction Model for the Attainment Study

To set up the level-2 row-factor prediction model:

Select the equation containing 7,. A list box for row-factor variables (>>Row<<) will appear.

Click DEPRIVE and apply the grand-mean centering scheme. In the level-2 model, we treated the
association between social deprivation and educational attainment as fixed across all schools.
We relax this assumption in our next model. Figure 13.10 displays the conditional model. Note
that co; is disabled.
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B WHLM: hcm2 MDM File: ATTAIN.MDM i ] B

File Basic Settings Other Settings  Fun Analvsis  Help

OUICOME | | Fy/F| 1 MODEL thold ialic: granc-mean certering) i’
>::::L< ATTAIN = m, + n?[P?URQ:I + nz[P?REﬂDj + nS[DﬂDOCCJ + ﬂ4[D,ﬂ.Df_WEMPJ
Column + 1 (DADED) + n (MOMED) + z [MALE) + &
gg;gﬂg LEVEL 2 MODEL (bold italic: grand-mean centering)
Ty = 8, +bﬂﬂ+ Coo
+ (g, * *, \DEPRIE
ny =y
T =9,
my = 9
ny = 9y
g = 8 5
g = 8
— Mixed]~|

Figure 13.10 Conditional Model for the Attainment Study, with Social Deprivation Effect
Fixed

The results of the analysis are given below.

Problem Title: Conditional Model, with social deprivation effect fixed
The data source for this run = ATTAIN.MDM

The command file for this run = ATTAIN2.him
Output file name = hcm2.html

The maximum number of level-1 units = 2310
The maximum number of row-level units = 524
The maximum number of column-level units = 17
The maximum number of iterations = 100
Method of estimation: full maximum likelihood
The maximum number of iterations = 100
Z-structure: independent

The outcome variable is ATTAIN
Summary of the model specified

Level-1 Model

ATTA|NiJ'k = Tk + ﬂljk*(P7VRQijk) + ﬂzjk*(P7READijk) + TT3jk*(DADOCCijk) + 7T4jk*(DADUNEMPijk)
+ TT5jk*(DADEDijk) + TTij*(MOMEDijk) + 777jk*(MA|_Eijk) + €jjk
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Level-2 Model

TTojk = 0o + bOOj + Coox + (Yol)*DEPR|VE]
Mk = 6,
Mok = 6
MM3jk = 03
Mo = 64
Msik = B5
ik = B
7 = 67

P7VRQ P7READ DADOCC DADUNEMP DADED MOMED MALE have been centered around the grand
mean.

DEPRIVE has been centered around the grand mean.

For starting values, data from 2310 level-1, 524 row-level and 17 column-level records were used

Final Results - iteration 34

Iterations stopped due to small change in likelihood function

o2 = 0.45891

Trows

INTRCPT1
ICPTROW, bg;
0.00014

Tcolumns
INTRCPT1
ICPTCOL,Coox
0.00389

The value of the log-likelihood function at iteration 34 = -2.384802E+003

Final estimation of fixed effects:

Standard Approx.

Fixed Effect Coefficient error t-ratio df p-value

For INTRCPTL, mo

INTERCEPT,8, 0.094740 0.021133 4.483 1769 <0.001

DEPRIVE, yo:1 -0.156676 0.025178 -6.223 522 <0.001
For P7VRQ, m;

INTERCEPT,6, 0.027556 0.002263 12.176 1769 <0.001
For P7TREAD, m;

INTERCEPT,6, 0.026291 0.001749 15.028 1769 <0.001
For DADOCC, 13

INTERCEPT,6; 0.008165 0.001359 6.008 1769 <0.001
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For DADUNEMP, 14

INTERCEPT,8, -0.120771 0.046779 -2.582 1769 0.010
For DADED, 15

INTERCEPT,65 0.144426 0.040782 3.541 1769 <0.001
For MOMED, 17¢

INTERCEPT,64 0.059440 0.037381 1.590 1769 0.112
For MALE,

INTERCEPT, 06, -0.056058 0.028401 -1.974 1769 0.049

Final estimation of row and level-1 variance components:

Standard Variance 2
Random Effect Deviation Component df. x p-value
INTRCPT1/ ICPTROW, b 0.01184 0.00014 522 548.81015 0.202
level-1, e 0.67743 0.45891

Final estimation of column level variance components:

Standard Variance 2
Random Effect Deviation Component d.f. X p-value

INTRCPT1/ ICPTCOL,Cgox 0.06239 0.00389 15 36.38151 0.002

Statistics for the current model

Deviance = 4769.604659
Number of estimated parameters = 12

Several features of the results are remarkable:

e Several level-1 covariates are significantly related to educational attainment, with especially
large effects for P7READ and P7VRQ.

e The residual level-1 variance is estimated to be 0.459, implying that 43% of the
unconditional level-1 variance (estimated at 0.799) is accounted for by the covariates.

e Controlling these level-1 effects, a highly significant negative effect of social deprivation
appears (7, = -0.157, t = -6.22).

e The residual variation between neighborhoods, z,,,, (estimated at 0.0001), and between
schools, 7., (estimated at 0.004) are close to zero, compare to the unconditional variance

estimates (0.141 and 0.075). The level-2 neighborhood variance component was substantially
reduced.

13.4 Specification of a conditional model with the effect associated
with the row-specific predictor random

In the previous model, the relationship between social deprivation and attainment was assumed
invariant across schools. Now we test the tenability of this assumption.
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5 WHLM: hcm2 MDM File: ATTAIN.MDM -0 x|

File Basic Settings Other Settings  Fun Analysis  Help

OUtCOME | | Fy/E) 1 MODEL (hold talic: gran-mesn certering) ﬂ
>:T:::::L{ ATTAIN = n, t n?[P?VRQ:I + ﬂz[P?REﬂD] + nS[DﬂDOCC] + n4[D,ﬂDLWEMPJ
Column + 2 (DADED) + 2 [MOMED) + = (MALE) + &
::?Ilfj l;l,— SS&F LEVEL 2 MODEL (hold italic: grand-mean centering)
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+ {3y + Cp JDEPRIVE
my =8y
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ny = 9y
ny = 9y
5 = 9
g = 9
T =9 _
Mlxedl v|

Figure 13.11 Conditional Model for the Attainment Study, with Social Deprivation Effect
Random

To specify the effect of the row-specific predictor random, select the equation containing =, .
Click on c,,. Figure 13.11 displays the conditional model with the social deprivation effect

specified as random. We compare the model deviance of this model against the one estimated in
the last analysis. The procedure is the same as described in Section 2.9.6.

The results of the analysis are given below.

0% = 0.45519

Trows
INTRCPT1
ICPTROW,bgy;

0.00371

Tcolumns
INTRCPT1 INTRCPT1
ICPTCOL,Coox DEPRIVE,Co1x
0.00391 0.00159
0.00159 0.00067

The point estimate of the variance of the unique contribution of school k to the association
between social deprivation and attainment is .001 and that of the covariance between the effect
with the school random effect is .002.
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Teolumns (&S correlations)
INTRCPT1/ ICPTCOL,Cqok 1.000 0.984
INTRCPT1/ DEPRIVE,Co1x 0.984 1.000

The value of the log-likelihood function at iteration 865 = -2.384254E+003

Final estimation of fixed effects:

Fixed Effect Coefficient Standard t-ratio Approx. p-value
error d.f.
For INTRCPTL, mq
INTERCEPT,8, 0.092434 0.021354 4.329 1752 <0.001
DEPRIVE, yo:1 -0.159051 0.026763 -5.943 522 <0.001
For P7VRQ, m;
INTERCEPT,8; 0.027636 0.002263 12.211 1752 <0.001
For P7TREAD, 1,
INTERCEPT,8, 0.026242 0.001750 14,992 1752 <0.001
For DADOCC, 173
INTERCEPT,0; 0.008112 0.001360 5.964 1752 <0.001
For DADUNEMP, 4
INTERCEPT,8, -0.120306 0.046759 -2.573 1752 0.010
For DADED, 175
INTERCEPT,8s 0.142622 0.040753 3.500 1752 <0.001
For MOMED, m1¢
INTERCEPT, 85 0.060870 0.037358 1.629 1752 0.103
For MALE, 11,
INTERCEPT, 6, -0.056139 0.028383 -1.978 1752 0.048
Final estimation of row and level-1 variance components:
Standard Variance 2
Random Effect Deviation Component d.f. X p-value
INTRCPT1/ ICPTROW,bqg; 0.06087 0.00371 522 545.30137 0.232
level-1, e 0.67468 0.45519
Final estimation of column level variance components:
Standard Variance 2
Random Effect Deviation Component d.f. X p-value
INTRCPTL/ ICPTCOL,Cqok 0.06255 0.00391 15 32.32912 0.006
INTRCPT1/ DEPRIVE,Cok 0.02582 0.00067 15 9.67718 >0.500

Statistics for the current model

Deviance = 4768.508277
Number of estimated parameters = 14

Model comparison test

¥’ statistic = 1.09638
Degrees of freedom = 2
p-value = >.500

The result of the deviance test is not significant. There is no evidence that the association
between neighborhood social deprivation and attainment varies over schools. Not surprisingly,
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the standard error for y,,, the social deprivation effect, remains nearly unchanged, as do all
inferences about the fixed effects.

13.5 Other program features

HCM models provide options for multivariate hypothesis tests for the fixed effects and the
variance-covariance components. A “no-intercept” model is available for the level-1, level-2 and
between-cell models. Figure 13.12 displays the Basic Model Specifications - HCM2 dialog
box.

-~

- = =
Basic Model Specifications - HCM2

Distribution of Outcome Variable

& Normal (Continuous)
" Bemoulli (0 or 1)
" Poisson (constant exposure)

" Binomial ber of trial
| |n.0m|a (nu.m er of trials) IHone :I
||| ¢ Poisson (variable exposure)
| e Multinomial
Number of categories
" Ordinal -
=

~Z-structure model
& Independent " Cumulative

Create Level-1 Residual FiIeI Create Row Residual File| Create Column Residual Filel

Output file name Iattain1.html
= Cancel
(See File->Preferences to set default output type)

v Make graph file
Graph file name Iattaintgeq

Fig 13.12 The Basic Model Specifications — HCM2 dialog box

The options are similar to the corresponding dialog box for HLM2 (see Section 2.5.2). Unlike
HLM2, the user has the option to create a level-1, row and column residual file. There is an option
unique to HCM2. When modeling longitudinal, repeated measures, it is possible to select a
cumulative effect model to allow carry-over treatment effects by specifying a cumulative Z-
structure model. See Hierarchical Linear Models, p. 390, for an example. HCM2 also allows
users to diagonalize the 7z s for rows and columns and weigh the cases within cells and rows (see
Fig 13.13).

The Fixed Intercept, Random Coefficient option on the Estimation Settings dialog box is
used to invoke the fiting of fixed intercepts random coefficients in models as discussed in
Chapter 19. The Diagonalize Tau options constrain the variance-covariance matrices to diagonal
matrices; in other words no covariation between random coefficients are assumed or estimated if
this option is checked.
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I~ Diagonalize Tau(rows) |~ Diagonalize Tau(columns)
I” Fixed Intercept, Random Coefficient

Fix sigma*2 to specific value I computed

(Set to "computed” if you want sigma*2
random or if over-dispersion is desired)

Weighting |

Figure 13.13 The Estimation Settings — HCM2 dialog box
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14 Conceptual and Statistical Background for Three-Level
Hierarchical and Cross-classified Random Effects Models
(HCM3)

The HCM2 models discussed in the previous chapters allow researchers to analyze data that
display structures in which the lower-units are cross-classified by two higher-level factors.
Suppose, however, that one of the higher-level factors is itself nested within a yet-higher level
factor. The three-level hierarchical and cross-classified random effects models (HCM3) represent
this case, where level-1 units are cross-classified by two higher-level factors, with units from one
of the higher-level factors nested within a next higher-level unit.

Hong and Raudenbush (2008) used three-level hierarchical and cross-classified random effects
models to investigate how schools and their teachers may contribute to student growth, taking
into account also the student-level variables. In their study, students were moving over time
across teachers and the teachers were nested within schools. We can say that the repeated
measures (level-1) were cross-classified by students (rows) and teachers (columns) with teachers
nested within schools (clusters). The model is sufficiently flexible to allow the students also to
change schools over the course of the study. In general, we may say that level-1 observations are
crossed by rows and columns and the columns are nested within clusters.

14.1 The general 3-level hierarchical and cross-classified random
effects models

A general three-level hierarchical and cross-classified model consists of three sub-models: level-
1 or within-cell, level-2 or between-cell, and a level-3 or between-cluster model. As in HCM2, the
cells refer to the cross-classifications by rows and columns. The columns, however, are nested
within clusters.

For example, if the research problem consists of repeated developmental data on students cross-
classified by student and teachers, with teachers clustered within schools, the level-1 or within-
cell model will represent the relationship between time and development for each child. The
level-2 or between-cell model will capture the influences of student- and teacher-level
predictors, and the level-3 or between-cluster model will examine the effects of school-level
variables. Formally, there are i=1,2,..., nj level-1 units (e.g., repeated measurement of student
achievement) nested within cells cross-classified by j = 1,..., J rows (e.g., students) and k =
1,...., Kcolumns, with columns with cluster I =1, ...., L.

Here is an example of a data layout for three waves of developmental data (nj = 3) for J = 4
students crossed by K = 9 teachers, with the teachers nested within L = 3 schools:
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Table 14.1 Organization of data of the HCM3 example

School, School, Schools;
Teacher, | Teacher, | Teachers | Teacher, | Teacher, | Teacher; | Teacher; | Teacher, | Teachers;
1 1 1 2 2 2 3 3 3
Stud 1 Y1111 Y101 Y3131
Stud 2 Y1212 Y222 Yao
Stud 3 Y1313 Yas3s
Stud 4 Y1411 Ya422 Y3433

Table 14.1 indicates that the repeated assessments are cross-classified by students and teachers,
with teachers clustered within schools. Student 1 stayed in school 1 over three years of
observation, changing teachers each year. Similarly Student 2 stayed in school 2 while changing
teachers each year. Student 3 stayed in the same school, but was not observed during year 2.
Student 4 had all three observations, but changed schools after year 1 and year 2.

HCM3 can handle continuously distributed as well as binary outcomes. We use the continuous
outcome models in the following discussion. The logic of HGLM, as described and illustrated in
Chapter 7, applies and extends to analyses with binary outcomes with HCM3.

14.1.1 Level-1 or “within-cell” model

We represent in the level-1 or within-cell model the outcome for case i in individual cells cross-
classified by level-2 units j and k, with unit k nested within cluster |.

Yiin = Toju T Tajaaia + T2 jaBaia + -+ 7 pja i + Eija

P (14.1)
=Thja t Z”pjklapijkl + €
p=1

where
7o 18 the intercept, the expected value of Y, when all explanatory variables are set to

zero;
7 are level-1 coefficients of predictors a, (p=1, 2, ..., P) for case i in cell jkI;

e;q IS the level-1 or within-cell random effect, and;

o’ is the variance of e, , that is the level-1 or within-cell variance. Here we assume that the

random term e, ~ N(0,5?).

14.1.2 Level-2 or “between-cell” model

Each of the 7, coefficients in the level-1 or within-cell model becomes an outcome variable in
the level-2 or between-cell model:
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i = O +(18pll +D) X +(18p2| +D 5 ) Xgy +oo (ﬂprl +prpj)Xkal +

(7/p1| +C g Wy + (7/p2| +Cppg Wy +-+-+ (7pRpI +Cr )WRij +
Buoj + Cpou (14.2)

Qp Rp
=0, + Z(ﬂpql +0 )X g + Z(?’pn + Cora Wit + D505 +Cron
q=1 r=1

where
0, is the level-2 model intercept, the expected value of 7, when all explanatory variables

are set to zero;

B,q are the level-2 coefficients of column-specific predictors X, q=1...,Q,,
b,; are the random effects associated with column-specific predictors X, . They vary
randomly overrowsj=1,...,J;

7, are the level-2 coefficients of row-specific predictors W, r =1,...,R ;
C, are the random effects associated with row-specific predictors W, . They vary

randomly over columns k=1,..., K;and clusters | =1,..., L; and
b,,; andc,,, are residual row- and column-specific random effects, respectively, on 7,

after  taking into account X, and W,

The vector of row random effects, containing b,; ..., by is assumed multivariate normal with

a mean zero and a full covariance matrix 7. Similarly the vector with elements ¢ ,,...,Cpgq IS
assumed multivariate normal with mean vector zero and full covariance matrix A.

14.1.3 Level-3 model

Each of the level-2 coefficients become an outcome variable at level 3:

epl = 5poo + (5p01 + bpo1j )2y + (§p02 + bp02j )2y +-o+ (5,305pO + bpospoj )Zspol + deI

Spo

= 5p00 + Z (5p05 + prsj )Zsl + d po

ﬂpql pqO + (5pql qu)zll + (5pq2 qZJ)ZZI +eeet (5pqqu + pas J)ZS | + d
S (14.3)
= 5Pq0 + z (5pqs + bpqu )Zsl +d pal

yprl prO + (5prl prlj)zll + (5pr2 prZJ)ZZI toeet (5prs + bprsprj)zsprl + dprl
Sor

= 5pr0 + Z (5prs + bprsj )Zsl + d prl
s=1

where

O, IS the intercept, the expected value of 6, when all explanatory variables are set to zero;
0,05 are the coefficients of cluster-specific predictors Z,, for 6 ;
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O, IS the intercept, the expected value of B, when all explanatory variables are set to
zero;

0, are the coefficients of cluster-specific predictors Z,s=1,...,S  for g, ;

b, are the random effects associated with cluster-specific predictors Z . They vary

randomly overrowsj=1,..., J;

O, 1S the intercept, the expected value of y , when all explanatory variables are set to zero;
o, are the coefficients of cluster-specific predictors Z, for y,;
b,.; are the random effects associated with cluster-specific predictors Z . They vary

randomly overrowsj=1,...,J;and
d,, d,,and d,, are residual random effects. We assume these to be multivariate normal

in distribution with zero means and variances 7, 7,

pol ?

o » Fespectively.

14.2 Parameter estimation

Three kinds of parameter estimates are available in HCM3. For continuous outcomes, empirical
Bayes estimates of random effects, maximum-likelihood estimates of the level-3 coefficients,
and maximum likelihood estimates of variance-covariance parameters are available. In nonlinear
models, the level-3 coefficients are estimated via penalized quasi-likelihood. Unlike HGLM,
however, only unit-specific and not population-averaged results are available.

14.3 Hypothesis testing

As in the case of HLM2, HCM3 routinely prints standard errors and t-tests for each of the fixed
level-2 coefficients as well as a chi-square test of homogeneity for each random effect. In
addition, optional “multivariate hypothesis tests* are available in HCM3. Multivariate tests in the
case of continuous outcomes parallel those described in Section 2.8.8. For binary outcomes,
hypothesis testing parallels those described in Section 5.10.
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15 Working with HCM3

15.1 An example using HCM3 in Windows mode

HCM3 analyses can be executed in Windows, interactive, and batch modes. We describe a
Windows execution below. We consider interactive and batch execution in Appendix H. A
number of special options are presented at the end of the chapter.

To illustrate the operation of the program, we use the data from Hong and Raudenbush's (2008)
study on the effects of time-varying instructional treatments (intensive vs. conventional math
instruction) on student achievement.

15.1.1 Constructing the MDM file from raw data

In constructing the MDM file, there is the same range of options for data input as for HCM2. HCM3
requires three IDs, one for each of two level-2 factors, and one for the level-3 clusters. The two
level-2 factors in our examples are student and teacher. As teachers (N = 498) were clustered
within schools (N = 67) and the model allows students (N = 4216) to change schools, we will
designate teacher as the column factor and student as the row factor.

Note: The level-1 file is to be sorted on ascending row (student) IDs, and, in this file, sorting by
column 1Ds within clusters. The level-2 row file is to be sorted on ascending row (student) IDs.
The level-2 column file is to sorted by column IDs within clusters. The cluster file is to be sorted
by cluster 1Ds.

15.1.2 Statistical package input

Data input requires a level-1 file (a time-series student achievement data file in our example), a
level-2 row-factor (student-level) file, a level-2 column-factor (teacher-level) file, and a level-3
cluster-level (neighborhood-level) file. Our illustration uses SPSS file input, but the procedure
for all other statistical packages is analogous.

Level-1 file. The level-1 or within-cell file, GROWTH.SAV has 7342 repeated measures collected
on 4216 students. Figure 15.1 shows the time series data for the first four students. Following the
school, student, and teacher ID fields are students' values on six variables:

e MATH
A Stanford Achievement Test math test score.
e YEAR (year of the study minus 2)

This variable can take on values of -1, 0, and 1 for the three years of data collection
from grade 3 to grade 5.

e G4D1 is an indicator that that takes on a value of 1 if a child receives intensive math
instruction in grade 4 and if the outcome is observed at grade 4. This will be used to
assess the effect of grade-4 intensive math instruction on grade-4 outcome.
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e G4D21 is an indicator that a child receives intensive math instruction in grade 4 and if
the outcome is observed at grade 5. This will be used to test the effect of grade-4
intensive math instruction on grade-5 outcome for those who do not receive intensive
math instruction in grade 5.

e G5D22

An indicator that a child receives intensive math instruction in grade 5 and if the
outcome is observed at grade 5. This will be used to test the effect of intensive math
instruction in grade 5 on grade 5 outcome for those who did not have intensive math
instruction in grade 4.

e TWOWAY

A product term of a two-way interaction between G4D21 with G5D22. It will thus be an
indicator that the child received intensive math instruction in both grades 4 and 5 and if
the outcome is observed at grade 5. This will test whether having intensive math
instruction in both years has an effect that exceeds the sum of the separate effects.

schid | stuid | tehid | math | year | gtdl | wdd2 | g2 | twoway
1 15 i & 509.00 .00 0.0 0.0 0.00 0.00
2 15 | 104 592,00 0.00 0.00 0.00 0.00 0.00
3 15 | 1% 536.00 1.00 0.00 0.00 0.00 0.00
4 15 2 G 566,00 .00 0.00 0.00 0.00 0.00
5 15 2 104 592,00 0.00 0.00 0.00 0.00 0.00
B 15 2 185 529,00 1.00 0.0 0.0 .00 0.00
7 15 3 14 561,00 0.00 0.00 0.00 0.00 0.00
8 15 3 135 564,00 .00 0.0 0o 0.00 0.00
9 15 4 G 593,00 .00 0.00 0.00 0.00 0.00
10 15 4 14 621,00 0.0 0.0 0o 0.00 0.00

Figure 15.1 First 10 records in the GROWTH.SAV dataset

We see that student 1 attended school 15 and was taught by teachers 83, 104, and 135. None of
the teachers adopted intensive math instruction. In addition, student 3 had data for the second
and third year only.

Level-2 row-factor file. The level-2 row-factor units in the illustration are 4216 students. The data
are stored in the file STUDENT.SAV. The level-2 data for the first ten children are listed in Figure
15.2. The file has one dummy variable.
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studid durnrmy
1 0.00

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

L0 T T I T T SN A Y 8
L T BN R 3 N R R E B N

O
o]

Figure 15.2 First 10 cases in the STUDENT.SAV dataset

Level-2 column-factor file. The level-2 column-factor (teacher) file, TEACHER.SAV, has two IDs
and a dummy variable. The first ID is the level-3 (i.e., school) ID and the second ID is the level-2
column factor (i.e., teacher) ID. Figure 15.3 lists the data for the first ten records.

schid | tchrid | durnrmy
1 1 35963 0.00
2 1 3574 0.00
3 1 4025 0.00
4 2 g263 0.00
&5 2 9263 0.00
B 2 9273 0.00
7 2 g304 0.00
= 2 8315 0.00
g 2 g324 0.00
10 2 8335 0.00

Figure 15.3 First 10 cases in the TEACHER.SAV data set

Level-3 file. The level-3 (school) level file, SCHOOL.SAvV, has the level-3 (school) ID and a
dummy variable. Figure 15.4 lists the data for the first ten records.

schid | dummy
1 1 0.00
2 2 0.00
3 3 0.00
4 4 0.00
& & 0.00
a a 0.00
il 7 0.00
g g 0.00
a a 0.00
10 10 0.00

Figure 15.4 First 10 cases in the SCHOOL.SAV data set

In sum, there are six variables at level 1 and one dummy variable for each of the level-2 row-
and column-factor files and the level-3 file. The steps for the construction of the MDM for HCM3
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are similar to the ones described in Section 2.5.1.1. The user will select HCM3 in the Select
MDM type dialog box (see Figure 2.5). Note that the program can handle missing data at level 1
or within cell only. The MDM template file, GROWTH.MDMT, contains a log of the input
responses used to create the MDM file, GROWTH.MDM, using GROWTH.SAV, STUDENT.SAV,
TEACHER.SAV, and SCHOOL.SAV. Figure 15.5 displays the dialog box used to create the MDM
file. Figures 15.6 show the dialog boxes for the level-1 file.

Response File MDM File Mame (use .mdm suffiz)

Response File CAHLMExamplesigrowth. mdmt |gr0wth.mdm

Open mdmtfile |  Save mdmtfile] Edit mdmtﬂle| Input File Type | SPSSAIind ows ﬂ

Level-1 Specification

Level-1 File Mame: CIHLMExamplesigrowth.say Choose Variables

Mizsing Data? Delete missing level-1 data when:

(o Mo i Yes " making mdm " running analyses

Row-Level Specification
Browse Row-Level File Name: CAOHLMIExamplesistudent say Choose Yariables

Column-Level Specification

Browse | Column-Level File Mame: CiHLWMiExamplesiteacher.say Choose VYariahles

Cluster-Level Specification
Browse Cluster-Level File Mame:  CAOHLMExamplesischool sav Choose Variahles

Make MO Check Stats Done

Figure 15.5 Make MDM - HCM3 dialog box for GROWTH.MDMT

!

I

SCHID [ rowid [ colid [ clusid [ [ O r r r
STLIDID W orowid [ calid [ oclusid [ [ r r r
TCHRIO [~ rowid [V colid [ clusid [ ’7 M I ™ r
MATH ™ rowid [ coid [ ousid Mowom | [ r - r
YEAR [ rowid [~ colid [ clusid v MDM ’7 r r I ]
G4D rowid [ ocold [ oclusid mom | T r r r
4021 [~ rowid [ colid | clusid W MDW ]7 r r ™ I
G802z ™ rowid [ coid [ ousd Mowom | [ r I_ r
TURICHAA Y [~ rowid [~ colid [~ clusid [ MDM ’7 r r I r
[ r r r r I r r r
- r r r r | r n r
[ r r r [ r r r r
Page 1 of 1 [ o] Cancel

Figure 15.6 Choose variables - HCM3 dialog box for level-1 file, GROWTH.SAV

15.2 Executing analyses based on the MDM file

Once the MDM file is constructed, it can be used as input for the analysis. Model specification
has five steps:
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1. Specification of the level-1 model. In our case we shall model mathematics
achievement (MATH) as the outcome, to be predicted by YEAR, G4D1, G4D21, G5D22,
and TWOWAY. Hence, the level-1 model will have six coefficients for each student: the
intercept and the partial slopes for the five variables. For longitudinal analysis, it is
possible to select a cumulative effect model to allow carry-over treatment effects by
specifying a cumulative Z-structure model (see Hierarchical Linear Models, p.390);
we use this option in the analysis.

2. Specification of the level-2 row- or column-factor prediction model. Here each level-1
coefficient — the intercept and the five slopes in our example — becomes an outcome
variable. One may use variables on student and teacher characteristics (not supplied
with the example data files) to predict each of these level-1 coefficients.

3. Specification of row- or column effects as random or non-random. We shall model the
intercept and the YEAR slope as varying randomly over rows and columns.

4. Specification of the level-3 prediction model. Here each level-2 coefficient becomes an
outcome, and one may select school variables (not included in the example data files)
to predict school-to-school in these level-2 coefficients.

5. Specification of the level-2 coefficients as random or non-random. We let two of the
six level-2 intercepts vary over schools.

Following the five steps above, we specify a model to study the effects of time-varying
instructional treatments on student achievement. The Windows execution is very similar to the
one for HCM2 as described in Section 13.4. The command file, GROWTH1.MLM, contains the
model specification input responses. Figure 15.7 displays the model specified.
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! ) 2" grQ o i |
File _Basic Sd ™®P' jther Settings Run Analysis

Hel Outcome YEAR slope
Helj
Outcome | LEVEL 1 MODEL (bold it}(grand-mean centering)
Level-1
R MATH = |+, (YEAR) + a,(GAD1) + 5,(GAD21) + £,(GED22) + 2, (TWOWAY) + e
Column LEVEL 2 MODEL (hold italic: granc-mean certering)
»> Cluster << my = G+ bao +Cpg
ICPTCLUS _ b
DUMMY M Oyttt
my = By
T = By
T, = B .
"t 4 The level-1 intercept and YEAR slope
5 = 8y vary randomly over rows and columns
LEVEL 3 MODEL (hold italic: grand-mean centering)
B = Sa00 T g
By = Bagp Ty
Oar = oy
B = Jagg
These two level-3 8y = Cun
coefficients are specified o =g
as randomly varying 5 Tobo

Figure 15.7 Unweighted model for the growth example

The results of the analysis are given below.

Problem Title: Unweighted model

The data source for this run = growth.mdm
The command file for this run = growth1.him
Output file name = growth1.html

The maximum number of level-1 units = 7342
The maximum number of row units = 4216
The maximum number of column units = 498
The maximum number of cluster units = 67
The maximum number of iterations = 100
Method of estimation: full maximum likelihood
Z-structure: cumulative across columns

Data design: (row by column) within clusters

The outcome variable is MATH
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Summary of the model specified
Level-1 Model

MATHiu = Mo + M *(YEARG ) + oa*(GADLij) + Maji*(G4D21iw) + Maja*(GSD22i)
+ M *(TWOWAY i) + €jja

Level-2 Model

oji = Ba1 + Dooji + Cooud
My = By + Digj + Ciou

o = By
i = B4
T4 = O
sk = Bs)
Level-3 Model

B0 = Gooo + dooi
011 = 0100 + digi

02 = 0200
83 = 300
041 = Ba0o
Os1 = Os00

For starting values, data from 5299 level-1 records, 2173 rows, 498 column, and 65 cluster records
were used

Final Results - iteration 485
Iterations stopped due to small change in likelihood function

o = 304.82130

Tr
YEAR
B0,bgo 01,b10
769.17514 -18.09880
-18.09880 21.22623
T, (as correlations)
1.000 -0.142
-0.142  1.000
Tp
YEAR
80,Coo 61,C10
133.52764 -24.04565
-24.04565 48.79836
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T (as correlations)

1.000 -0.298
-0.298 1.000
Ty
YEAR
8o,doo 61,d10
169.31794 28.10279
28.10279 29.76755

Ty (as correlations)
1.000 0.396
0.396 1.000

The value of the log-likelihood function at iteration 485 = -3.536565E+004

Final estimation of fixed effects:

Standard

Approx.

Fixed Effect Coefficient error t-ratio daf p-value
For INTRCPT1
For INTERCEPT
80,0000 609.850986 1.962504 310.751 66 <0.001
For YEAR
For INTERCEPT
01,0100 21.064011 1.140716 18.466 66 <0.001
For G4D1
For INTERCEPT
02,8200 2.753381 2.371599 1.161 7338 0.246#
For G4D21
For INTERCEPT
03,0300 0.231710 3.584218 0.065 7338 0.949#
For G5D22
For INTERCEPT
04,0400 7.507799 2.332107 3.219 7338 0.002#
For TWOWAY
For INTERCEPT
05,0500 1.160337 4.322456 0.268 7338 0.788#

The p-vals above marked with a “#” should regarded as a rough approximation.
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Final estimation of fixed effects (with robust standard errors)

. - Standard . Approx.
Fixed Effect Coefficient error t-ratio d. fp-)p p-value
For INTRCPT1
For INTERCEPT
80,0000 609.850986 1.954775 311.980 66 <0.001
For YEAR
For INTERCEPT
01,0100 21.064011 1.112653 18.931 66 <0.001
For G4D1
For INTERCEPT
02,0200 2.753381 2.927131 0.941 7338 0.347#
For G4D21
For INTERCEPT
03,0300 0.231710 4.389057 0.053 7338 0.958#
For G5D22
For INTERCEPT
04,0400 7.507799 3.019164 2.487 7338 0.013#
For TWOWAY
For INTERCEPT
05,0500 1.160337 6.470068 0.179 7338 0.858#
The p-vals above marked with a “#” should regarded as a rough approximation.
Final estimation of row and level-1 variance components:
Standard Variance 2
Random Effect Deviation Component d.f. X p-value
B0,b00 27.73401 769.17514 2172 11413.58016 <0.001
YEAR/B1,by 4.60719 21.22623 2172 2177.42726 0.463
level-1, e 17.45913 304.82130

Note: The chi-square statistics reported above are based on only 2173 of 4216 units that had sufficient
data for computation. Fixed effects and variance components are based on all the data.

Final estimation of column level variance components:

Standard Variance

2
Random Effect Deviation Component d.f. X p-value
80,Coo 11.55542 133.52764 429 539.50878 <0.001
YEAR/61,C10 6.98558 48.79836 429 0.01770 >0.500

Note: The chi-square statistics reported above are based on only 495 of 498 units that had sufficient
data for computation. Fixed effects and variance components are based on all the data.

Final estimation of cluster level variance components:

Standard Variance 2

Random Effect Deviation Component d.f. X p-value
80,doo 13.01222 169.31794 64 256.96222 <0.001
YEAR/0;,d;0 5.45596 29.76755 64 136.92770 <0.001

Note: The chi-square statistics reported above are based on only 65 of 67 units that had sufficient data
for computation. Fixed effects and variance components are based on all the data.
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As reported by Hong and Raudenbush (2008), no significant causal effect of Grade 4 treatment
on Grade 4 outcomes. A positive and significant effect of Grade 5 treatment on Grade 5

outcome, &,y = 7.51 (SE = 3.019, t = 2.487) °,

Statistics for the current model

Deviance = 70731.304874
Number of estimated parameters = 16

15.3 Other program features

HCM3 models provide options similar to those of HCM2. It also allows users to diagonalize the t,
13, and t, when estimating the variance components if interests focus only on the diagonal
elements of any of the three matrices. In addition, design weights are allowed for level-1, level-2
row factor and level-3 units.

®We used an improved algorithm here and thus the results are a bit different from those published in
Hong and Raudenbush (2008).
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16 Conceptual and Statistical Background for Hierarchical
Linear Model with Cross-Classified Random Effects (HLMHCM)

In HCM2, level-1 units are nested within cells and cross-classified by two higher-level factors.
HLMHCM adds a level within the cells. For example, we may have a growth model for each of a
set of students, all of whom live in the same neighborhood and attend the same school. We
would say that level-1 units (repeated measures) are nested within level-2 units (children); level-
2 units are crossed by rows (neighborhoods) and columns (schools). Another example might
involve repeated item responses at a given time for a student encountering a given teacher. The
level-1 units are the item responses, nested within occasions (level-2) crossed by rows (students)
and columns (teachers).

16.1 The general hierarchical linear model with cross-classified random
effects

A general hierarchical HLMHCM has three sub-models: a level-1 model and a level-2 model
within each cell; and a level-3 model or between-cell model that incorporates row and column
effects.

Formally, there are m = 1,2,..., njk level-1 units (e.g., repeated measurement of student
achievement) nested within level-2 (e.g., students) I =1,..., ny nested within cells cross-
classified by j = 1,..., J rows (e.g., neighborhoods) and k = 1,..., K columns (e.qg., schools).

Here is an example of a data layout for three waves of developmental data (nix = 3) nested within
J = 10 students nested within cells cross-classified by J = 3 neighborhoods (rows) and K = 3
schools (columns):

Table 16.1 Organization of data of the HLMHCM example

School; School, School;

Neighborhood; Y1111, Y2111, Y111 Of Stud 1 Y1311, Yo311, Ya311 Of Stud 3
Y1211, Y2211, Y311 Of Stud 2

NEighborhOOdg Yia11, Yoa1, Yaans of Stud 4 Y1511, Yos11, Yas11 of Stud 5 Y1711, Y711, Y3711 of Stud 7
Y1611, Y211, Yaer1 OF Stud 6

Neighborhoods; Yig11, Yog11, Yag11 OF Stud 8 Y1011, Y1011, Ya1011 OF Stud 10
Y1911, Y2011, Yao11 OF Stud 9

Table 16.1 indicates that the repeated developmental data are nested within individual students
nested within cells cross-classified by neighborhoods and schools. Note that unlike in HCM3, the
students never leave the neighborhood or school of origin.
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16.1.1 Level-1 or “within-unit” model

We represent in the level-1 model the outcome Y for response m of the level-2 unit i cross-
classified by row j and column k.

Ymijk = Wik T Wik + Vaijk @i+ + W pijk ik T Sl

P (16.1)
=Woij + Zl/lpijkapijk + Stk
p=1
where
Wi IS the intercept, the expected value of Y, when all explanatory variables are set to
zero;

i are level-1 coefficients of predictors a; (p=1,2,...,P) ;
& 1 the level-1 random effect; and
o’ is the variance of &, , that is the level-1 variance. Here we assume that the random term

égmijk ~ N(O,Gz) .

16.1.2 Level-2 or “between-unit” or “within-cell” model

Each of the v (p=0,1,...,P) coefficients in the level-1 model becomes an outcome variable in
the level-2 or within-cell model:

Witk = Zpojk T Tk @pork T Tp2jkXpoak T+ F Zpg, ik, ik  Epik
Q (16.2)
= oo + 2 oo * Eig
q=1

Taoj 1 the intercept, the expected value of v, when all explanatory variables are set to

zero;
7w are level-1 coefficients of predictors o (p=1.2,...,P);

e IS the level-2 or within-cell random effect, and

7 is the variance-covariance matrix of e . , that is the level-2 variance. Here we assume that

pijk 1

the random term e, ~N(0,z) . The vector containing elements e is assumed

multivariate  normal with a mean zero and a full covariance matrix, 7.

pijk

16.1.3 Level-3 model or “between-cell” model

Each of the 7, (0 =0, 1, ..., Qp) coefficients in the level-2 or within-cell model becomes an
outcome variable in the level-3 or between-cell model:

ﬂ.quk = Hpqo + (ﬁpql + bpqu)xlk + (/quz + bpqzj)xzk +oot (ﬁqup + bqupj)quj +
(}/pql + Cpqlk )le + (J/pqz + Cpszk )sz +et (;/pqsp + Cpqspk )Wspj +

b _.+cC

paoj pqok

(16.3)
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where

0.+ Byo are the fixed effects of column-specific predictors X, r=1...,R

Ry,
b,,; are the random effects associated with column-specific predictors X, . They vary

randomly over rowsj=1,..., J;
¥0qs are the fixed coefficients of row-specific predictors W,

sj?

s=1..,S;
] ) p b
C,qs are the random effects associated with row-specific predictors W . They vary randomly

over columnsk=1,..., K; and

b...,and c . are residual row- and column-specific random effects, respectively, on =

pgrj pask pajk !

after taking into account X, and W;.

The vector containing elements b__. is assumed multivariate normal with a mean zero and a full

parj
covariance matrix Q. Similarly, the vector with elements c

with mean vector zero and full covariance matrix A.

osc 1S assumed multivariate normal

16.2 Parameter estimation

Three kinds of parameter estimates are available in HLMHCM. For continuous outcomes,
empirical Bayes estimates of random effects, maximum-likelihood estimates of the level-3
coefficients, and maximum likelihood estimates of variance-covariance parameters are available.
In nonlinear models, the level-3 coefficients are estimated via penalized quasi-likelihood. Unlike
HGLM, however, only unit-specific and not population-averaged results are available.

16.3 Hypothesis testing

As in the case of HLM2, HLMHCM routinely prints standard errors and t-tests for each of the fixed
level-3 coefficients as well as a chi-square test of homogeneity for each random effect. In
addition, optional “multivariate hypothesis tests“ are available in HLMHCM. Multivariate tests in
the case of continuous outcomes parallel those described in Section 2.8.8. For discrete outcomes,
hypothesis testing parallels those described in Section 7.10.
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17 Working with HLMHCM

17.1 An example using HLMHCM in Windows mode

HLMHCM analyses can be executed in Windows, interactive, and batch modes. We describe a
Windows execution below. We consider interactive and batch execution in Appendix 1. A
number of special options are presented at the end of the chapter.

Chapter 8 in Hierarchical Linear Models and Chapter 4 of this manual provide examples of
HLM3 analyses of repeated measures data nested within students within schools collected by the
US Sustaining Effects Study and by an urban school effects study, respectively. To illustrate the
operation of the HLMHCM program, we perform another achievement growth analysis. Unlike the
previous examples, however, this analysis considers not only the school but the neighborhood
contexts within which the students resided in as well. The data were obtained from 567 students
from 224 schools in 74 urban neighborhoods in which repeated achievement measures are nested
within students cross-classified by schools and neighborhoods. We chose a similar set of
covariates to allow users to compare and contrast these set of models with those HLM3 models
executed in Chapter 4.

17.1.1 Constructing the MDM file from raw data

In constructing the MDM file, there is the same range of options for data input as for HLM2.
HLMHCM requires three IDs, one for the level-2 (students in our illustration) units, and one for the
units of each of the higher-level factors (school and neighborhood), and the level-2 IDs have to
be sorted. As there are more schools than neighborhoods in our example, we follow the
convention adopted for HCM2 and designate school as the row factor and neighborhood as the
column factor.

17.1.2 Statistical package input

Data input requires a level-1 within-unit file (a time-series student achievement data file in our
example), a level-2 or between unit (student-level) file, a level-3 row-factor (school-level) file,
and a level-3 column-factor (neighborhood-level) file.

Level-1 file. The level-1 or within-cell file, GROWTH.SAV has 2008 observations collected on 567
students beginning at grade one and followed up annually thereafter for six years. Figure 17.1
shows the time series data for the first three students. All of them have complete data; typically
there are three or four observations per child. Following the student ID field are that student's
values on two variables:
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e AGES8

The age of the child minus 8 at each testing occasion. Therefore, it is O at age 8, 1 at age
9, etc.
e MATH

A math test score in an IRT metric.

studid | aged math
1 1 0420 2100
2 1 0.5s0 =000
3 1 1.530 <4 .Z00
4 1 2. 530 5.200
=] 1 3.580 .00
(=] 1 4530 2,100
Gl 2 -0.05= 2.s00
(=] 2 0.947 2,933
=] 2 1.947 3,500
10 2 2.947 A4 000
11 2 3.947 S.400
12 2 4,947 200
13 = -0.299 2.700
14 = 0701 3,400
15 = 1.701 4. 400
16 = 2.701 S.200
17 = 3.701 7100
15 = 4701 S.a00

Figure 17.1 First 18 records in the GROWTH.SAV dataset

We see that the first student was about seven and a half years old (AGE8 = —0.420) during the
first data collection wave with a math score of 2.1.

Level-2 file. The level-2 units in the illustration are 567 students. The data are stored in the file
STUDENT.SAV. The level-2 data for the first eight children are listed in Figure 17.2. The first ID
is the level-3 row-factor (i.e., school) ID, the second ID is the level-3 column factor (i.e.,
neighbor) 1D, and the third 1D is the level-2 (i.e., student) ID. Note that the level-2 files must be
sorted in the same order of level-2 ID.

There are three variables:

e FEMALE (1 =female, 0 = male)
e BLACK (1 = African-American, 0 = other)
e HISPANIC (1 = Hispanic, 0 = other)

We see, for example, that student 1 who attended school 175 and resided in neighborhood 68 is a
African-American male (FEMALE = 0, BLACK = 1, HISPANIC = Q).
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schid neighid studid female hlack hispanic
1 175 B3 1 0.000 1.000 0.00
2 59 B3 2 0.000 1.000 0.00
3 59 B3 3 0.000 1.000 0.00
4 109 23 4 1.000 0.000 0.00
] 165 72 ] 0.000 1.000 0.00
B 207 72 b 1.000 1.000 0.00
7 b 72 7 1.000 1.000 0.00
5 143 72 5 0.000 0.000 0.00
Figure 17.2 First 10 cases in the STUDENT.SAV dataset

Level-3 row-factor file. The level-3 row-factor (school) level file, SCHOOL.SAvV, consists of data
on 1 variable for 224 schools. The variable is SCHPOV, which is an indicator of school poverty,
as measured by the percentage of the total number of students enrolled in free or subsidized
lunch programs.

We see that the first school, school 1, has 91% of its students enrolled in free or subsidized lunch
programs.

schid schpay
91.400

/8.900
B3.200
83.000
71.800
H2.600
Hk.200
§3.400

bt I o O - T O O

[ I R Y s SR < A B L I

8

Figure 17.3 First 8 cases in the SCHOOL.SAV data set

Level-3 column-factor file. The level-3 row-factor (neighborhood) level file, NEIGH.SAV, consists
of data on 1 variable for 74 neighborhoods. The variable is DISADV (a scale measuring social
deprivation, which incorporates information on the poverty concentration, health, and housing
stock of a local community). A measure of neighborhood disadvantage, constructed through an
oblique factor analysis from the 1990 decennial census data, tapped the level of poverty and
unemployment, and the percentage of families that were headed by females and percentage on
welfare (Sampson & Raudenbush, 1999; Sampson, Raudenbush, & Earls, 1997).

242



neighid disadw

| 1 0.445

2 -0.553
3 -0.352
4 -0.563
g -0.313
B
7
g

-0.566
0.160
1,222

Lo e O 1 O Y S T O O

Figure 17.4 First 8 cases in the NEIGH.SAV data set

In sum, there are two variables at level 1, three at level 2, and one for each of the level-3 factors.

Make MDM - HLMHCM

Response File MDM File Name (use .mdm Sufiix)
Respaonse File CAHLM? Examplesigrowth.mdmt l growth.mdm
IOpen mdmtﬁlel Save mdmtﬂlel Edit mdmtﬂlel Input File Type l SPSSMIndows :J

—Level-1 Specification

Browse | Level-1 File Name: growth.sav ChooseVariablesI

(Missing Data? — Delete missing level-1 data when:

* No  Yes " making mdm {" running analyses

—Level-2 Specification

Browse | Level-2 File Name: student.sav Choose Variables |

—Row-Level Specification

Browse l Row-Level File Name: school.sav Choose Variahles |

‘rColumn-Level Specification

Browse I Column-Level File Name: neigh.say ChooseVariablesl
Make MDM l CheckStatsl Done |

Figure 17.5 Make MDM- HLMHCM dialog box for GROWTH.MDMT

The steps for the construction of the MDM for HLMHCM2 are similar to the ones described in
Section 2.5.1.1. The user will select HLMHCM in the Select MDM type dialog box (see Figure
2.5). Note that the program can handle missing data at level 1 or within cell only. The MDM
template file, GROWTH.MDMT, contains a log of the input responses used to create the MDM file,
GROWTH.MDM, using GROWTH.SAV, STUDNET.SAV, SCHOOL.SAV, and NEIGH.SAV. Figure 18.5
displays the dialog box used to create the MDM file. Figures 17.6 to 17.9 show the dialog boxes
for the level-1 file, GROWTH.SAV, the level-2 file, STUDENT.SAV, the level-3 row file,
SCHOOL.SAV, and the level-3 column file, SCHOOL.SAV.
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Choose variables - HLMHCM

I~ rowid I colidl [T
,._] vicl I

I WD
I~ Won

;I MBI
J D

e ‘

_] rowid I

I~ | rowid [ eolid
= rowid | _] colid

I rowid __] colid

Figure 17.7 Choose variables HLMHCM dialog box for level-2 file, STUDENT.SAV
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Choose variables - HLMHCM ik

W [~ 12id vV rowid |~ colid [ MDM l— =z I rowid T eolid [T DK
[seeov Fizd  rowd o Rowom [ @ T rewid I coid I DM
[ Fiz Frowd T cod T won [ iz T rowid I colid [ WD
D = e e [ Fed I rowid 7 colid [7HOM
D = e e e [ [=2d T rowid IT cdid. [© WD
[ o T rowid I ool T DM [ Fzd Frowid [T caidl [inoN
L = e e el [ =iz I rowid T colid [ WD
B = e e [ Tz T rowid T colidl [7iHON
[ Flizn Frowid T oo I Mo [ lid I rowid T colid. [ WD
[ Fliad Frowdfed Fwow [ iz T rowid I coid o
[ Flzd T rowid I coid I MM [ = i2d I rowid I cdlid [ WD
[ Fzd T rowid T coid T MM [ Fed FrowdlT coid [ HOM

Page 1 of 1

Al |

Choose variables - HLMHCM

o]

Cancel

Figure 17.8 Choose variables HLMHCM dialog box for level-3 row-factor file, SCHOOL.SAV

[NEGHD Iz rowdWoeold [woM | T izd T rowid [T coid [ oM
[ossov FTizd Frowis Ccoid wom [ iEd T rowid [T coid [T mom
[ Fzd T rowd T eoid [T w0 [ Fzd T orowid ol ivon
[ Fzd Frewdied Fiow [ izl T rewid I colid [ bON
[T FEm Fvowid o oD I T i
| = zid T rewid T colid T WDM |— = zid I rowid T colid [T MDY
[ e FlrowlT coid = oM [ Fzd T rowid I o [ nDN
l— = 12id I rowid J© cofid | DK r— [=hzide [T irowid I colid. [2 B
I = i2idl I= rowid [ colid. =MD I olzd T rewid T leolids [T RO
| [ zd T orowid [ leoid [ MDM |_ T ozid T rowid I colid [ MDM
[ g rowd T eod 1w [ Fzd T rowid I looidl uOM
[ g orowd T eod 1w | Fled S rowid I oot DM
Page 1 of 1 A 2 OK I Cancel |

Figure 17.9 Choose variables HLMHCM dialog box for level-3 column-factor file,
NEIGH.SAV

17.2 Executing analyses based on the MDM file

Once the MDM file is constructed, it can be used as input for the analysis. Model specification
has three steps:

1. Specification of the level-1 model. In our case we shall model mathematics achievement
(MATH) as the outcome, to be predicted by AGES8. Hence, the level-1 model will have two
coefficients for each student: the intercept and the AGE slope.

2. Specification of the level-2 prediction model. Here each level-1 coefficient — the intercept
and the AGES slope in our example — becomes an outcome variable. We may select certain
student characteristics to predict each of these level-1 coefficients. In principle, the level-2
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parameters then describe the distribution of growth curves cross-classified by schools and
neighborhoods.

3. Specification of level-1 coefficients as random or non-random across level-two units. We
shall model the intercept and the AGES slope as varying randomly across the students cross-
classified by schools and neighborhoods.

4. Specification of the level-3 row- and/or column-factor prediction model. Here each level-2
coefficient becomes an outcome, and we can select row- and/or column-factor variables to
predict school-to-school and neighbor-to-neighbor variation in these level-2 coefficients. In
principle, this model specifies how schools and neighborhoods differ with respect to the
distribution of growth curves within them.

5. Specification of the residual row and column as random or non-random, the effects
associated with row-specific predictors as varying randomly or fixed over columns, and the
effects associated with column-specific predictors as varying randomly or fixed over rows.
We shall test whether the associations between neighborhood disadvantage (a column-
specific predictor) and growth parameters vary over schools.

Following the five steps above, we first specify a model with no student-, neighborhood-, or
school-level predictors. The Windows execution is very similar to the one for HCM2 as described
in Section 11.2. The command file, GROWTH1.HLM, contains the model specification input
responses. Figure 17.10 displays the model specified.

File Basic Settings Other Settings Run Analysis
Help
Outcome h -~
Level1 Outcome Intercept AGES o]
>> Level-2 << NIHIIE\HmW‘ B 0** T g S1ope
= LEVEL 2 MODEL
olumn —
W = Mo + 8.
INTRCPTZ | S~
FEMALE W = Tagp S
BLACK
HISPANIC LEVEL 3 MODEL
%o = Poo * Poogy t Cocon

910”3

T 100, T a0k

Both level-2 coefficients are
specified as randomly varying
across schools and neighbors

Both level-1 coefficients
are specified as randomly
varying

Figure 17.10 Unconditional model for the growth example

The results of the analysis are given below.

Specifications for this HLM-HCM run
Problem Title: UNCONDITIONAL LINEAR GROWTH MODEL

The data source for this run = growth.mdm
The command file for this run = growth1.him
Output file name = growth1.html
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The maximum number of level-1 units = 2008
The maximum number of level-2 units = 567
The maximum number of row units = 224
The maximum number of column units = 74
The maximum number of iterations = 100
Method of estimation: full maximum likelihood
The outcome variable is MATH
Summary of the model specified

Level-1 Model

MATHuii = Woik + Wi (AGE8nii) + Emii

Level-2 Model

Woik = ook t+ €ojk
Wi = Mok + €1k

Row/Column Model

Tloojk = Boo + Doooj + Coook
1ok = B10 + Digoj + Cio0k

For starting values, data from 1967 level-1, 526 level-2, 219 rows, and 74 column records were used

Final Results - iteration 814

Iterations stopped due to small change in likelihood function

6% = 0.16452
T
INTRCPT1 AGES
INTRCPT2,e, INTRCPT2,e1
0.27574 0.07972
0.07972 0.03283

T (as correlations)
1.000 0.838
0.838 1.000

Note that the estimated correlation between true status at AGE = 8 and true rate of change is
estimated to be 0.838 for students in the same cell cross-classified by schools and
neighborhoods.

Q
INTRCPT1 AGES8
INTRCPT2 INTRCPT2
ICPTROW,bgqo ICPTROW,bjq0
0.10927 -0.00606
-0.00606 0.00580
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Q) (as correlations)
1.000 -0.241
-0.241 1.000

Note that the estimated correlation between true school mean status at AGE = 8 and true school-
mean rate of change is estimated to be -0.241.

A
INTRCPT1 AGES
INTRCPT2 INTRCPT2
ICPTCOL,Cqqo ICPTCOL,C100
0.02840 0.01363
0.01363 0.00720

A (as correlations)
1.000 0.954
0.954 1.000

Note that the estimated correlation between true neighborhood mean status at AGE = 8 and true
neighborhood-mean rate of change is estimated to be 0.954.

The value of the log-likelihood function at iteration 814 = -1.917348E+003

Final estimation of fixed effects:

Fixed Effect Coefficient

Standard t-ratio Approx. p-value

error d.f

For INTRCPT1,
INTRCPT2,

INTERCEPT, 8¢9 2.257403 0.042925 52.589 274 <0.001
For AGES, m;

INTRCPT2,
INTERCEPT, 8,9 0.880177 0.016734 52.598 274 <0.001

The above table indicates that the average growth rate is significantly positive at 0.880 logits per
year, t = 52.598.

Final estimation of level-1 and level-2 variance components

Standard Variance 2
Random Effect Deviation Component d.f. X p-value
INTRCPT1, e 0.52510 0.27574 268 4818.18751 <0.001
AGES8, e 0.18119 0.03283 268 1465.94774 <0.001
o’ 0.40561 0.16452

Note: The chi-square statistics reported above are based on only 526 of 567 units that had sufficient
data for computation. Fixed effects and variance components are based on all the data.

The results above indicate significant variability among children cross-classified by schools and
neighborhoods in terms of mean status at AGE = 8 (x> = 4818.18751, df = 268) and in terms of
yearly rate of change (y*= 1465.94774, df = 268).
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Final estimation of row level variance components

Standard Variance

2
Random Effect Deviation  Component df. ¥ p-value
INTRCPTL1/ INTRCPT2/ ICPTROW,bgqo 0.33055 0.10927 224  87.39230 >0.500
AGES8/ INTRCPT2/ ICPTROW,b1q 0.07616 0.00580 224 201.21512 >0.500

The results above indicate there is no significant variability among schools in terms of mean
status at AGE = 8 (y° = 87.39230, df = 224) and in terms of yearly rates of change (* =
201.21512, df = 224).

Final estimation of column level variance components

Standard Variance f 2

Random Effect -~ X p-value
Deviation Component

INTRCPTL/INTRCPT2/ ICPTCOL,Cooo 0.16851 0.02840 73 1316.77855  <0.001

AGES8/INTRCPT2/ ICPTCOL,Cy49 0.08484 0.00720 73 831.88840 <0.001

The results above indicate significant variability among neighbors in terms of mean status at
AGE = 8 (= 1316.77855, df = 73) and in terms of yearly rates of change (x> = 831.88840, df =
73).

Statistics for the current model

Deviance = 3834.695088
Number of estimated parameters = 12

17.3 Specification of a level-2 and level-3 conditional model, with the
effect associated with a column-specific predictor fixed

The above example involves a model that is unconditional at all levels. In this model we set up a
level-2 and a row-factor prediction model.

To set up the level-2 model:

Select the equation containing w ;, to be modeled, a list box for level-2 variables (>>Level-2<<)

will appear. Figure 17.12 shows the models with BLACK and HISPANIC as the level-2 predictors.
In the interest of parsimony, all level-2 coefficients are fixed. (To specify either of them as

randomly varying, select the equation containing a specific regression coefficient, =, , and

click on b, and/or ¢, ).

parj
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Figure 17.12 Level-2 prediction model for the growth study

To set up the level-3 row or/and column-factor prediction model:

Select the equation containing 7. to be modeled, a list box for level-3 row-factor variables

pajk

(>>Row<<) will appear. To display level-3 column-factor variables, click on E and
the corresponding list box of variables. Figure 17.13 shows the level-3 column-factor prediction
model with DISADV as the covariate. In the level-3 model, we treated the association between
neighborhood disadvantage and the growth parameters as fixed across all schools. Note that by,,;

and by, ; are disabled. We relax this assumption in our next model.
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Figure 17.13 Conditional model for the growth study, with neighborhood disadvantage
effect fixed

The results of the analysis are given below.

Specifications for this HLM-HCM run

Problem Title;: CONDITIONAL LINEAR GROWTH MODEL, WITH NEIGHBORHOOD DISADVANTAGE
The data source for this run = growth.mdm
The command file for this run = growth2.him
Output file name = growth1.html

The maximum number of level-1 units = 2008
The maximum number of level-2 units = 567
The maximum number of row units = 224
The maximum number of column units = 74
The maximum number of iterations = 100
Method of estimation: full maximum likelihood
The outcome variable is MATH
Summary of the model specified

Level-1 Model
MATHmix = Woik *+ W1k (AGE8mik) + Emik
Level-2 Model
Woik = Mook + Moa*(BLACK) + moz*(HISPANICy) + egi

Wi = Mok + T (BLACK ) + T3 *(HISPANICy) + ey
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Row/Column Model

ook = B0 *+ Doooj + Coook

+ DISADV*(Boo1)

TTo1jk = Bo1
TTozik = 802
1ok = 810 + D1goj + C1o0k

+ DISADV*(B101)

Tk = 611
Tk = O12

For starting values, data from 1967 level-1, 526 level-2, 219 rows, and 74 column records were used

Final Results - iteration 1300

Iterations stopped due to small change in likelihood function

o2 = 0.16386

INTRCPT1

INTRCPT2,eq
0.27546
0.08088

T (as correlations)
1.000 0.819
0.819 1.000

Q
INTRCPT1
INTRCPT2
ICPTROW,bgqo
0.09506
-0.00711

Q (as correlations)
1.000 -0.408
-0.408 1.000

A
INTRCPT1
INTRCPT2
ICPTCOL,Cqqg
0.01332
0.00656

A (as correlations)
1.000 0.979
0.979 1.000

AGES
INTRCPT2,e4
0.08088
0.03538

AGES
INTRCPT2
ICPTROW, D100
-0.00711
0.00320

AGES8
INTRCPT2
ICPTCOL,C100
0.00656
0.00338

The value of the log-likelihood function at iteration 1300 = -1.900326E+003
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Final estimation of fixed effects:

Standard

Approx.

Fixed Effect Coefficient error t-ratio a.f p-value
For INTRCPT1, 11

INTRCPT2,

INTERCEPT, 699 2.639580 0.090173 29.272 270 <0.001

DISADV, Yoo1 -0.001726 0.050288 -0.034 222 0.973

BLACK,

INTERCEPT, 6o, -0.443355 0.103660 -4.277 270 <0.001

HISPANIC,

INTERCEPT, 6,2 -0.468207 0.098680 -4.745 270 <0.001
For AGES, m;

INTRCPT2,

INTERCEPT, 69 0.933753 0.035488 26.312 270 <0.001

DISADV, Y101 -0.050330 0.020853 -2.414 222 0.016

BLACK,

INTERCEPT, 6,1 -0.105109 0.040518 -2.594 270 0.010

HISPANIC,

INTERCEPT, 6,2 -0.036124 0.038978 -0.927 270 0.354
Final estimation of level-1 and level-2 variance components

Standard Variance 2

Random Effect Deviation Component d.f. X p-value
INTRCPTL, eq 0.52484 0.27546 268 6019.63723 <0.001
AGES, e 0.18811 0.03538 268 1363.77540 <0.001
o’e 0.40480 0.16386

Note: The chi-square statistics reported above are based on only 526 of 567 units that had sufficient

data for computation. Fixed effects and variance components are based on all the data.

Final estimation of row level variance components

Standard Variance

Random Effect Deviation ~ Component

df. ¥°

p-value

INTRCPT1/ INTRCPT2/ ICPTROW,bggo 0.30832 0.09506
AGES/ INTRCPT2/ ICPTROW, b0 0.05653 0.00320

224  79.66634

>0.500

224  182.46985 >0.500

Final estimation of column level variance components

Standard Variance

2
Random Effect Deviation  Component df. x p-value
INTRCPTL/INTRCPT2/ ICPTCOL,Cooo 0.11543 0.01332 73 2085.34935 <0.001
AGES/INTRCPT2/ ICPTCOL,Cy09 0.05810 0.00338 73 1337.03181 <0.001

Statistics for the current model

Deviance = 3800.651318
Number of estimated parameters = 18
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The results suggest that:

e Compared to their reference group (non-Black and non-Hispanic); African and Hispanic
American students on average had a lower mathematics score at age 8 than did white
students. Also, African American students had a significantly lower growth rate in

mathematics achievement (&11= -0.105, t = -2.594) than did white students.
e Neighborhood disadvantage had a negative association with the growth rate of the

reference group (y,, =-0.050, t =-2.414).

e The column level variance at level 3 of each growth parameter was substantially reduced
(> 50%). The residual variation between neighborhoods in cggo (estimated at 0.01332)
and in cygo (estimated at 0.00338) are less than half of those in the unconditional models
(0.02840 and 0.00720).

17.4 Other program features

HLMHCM models provide options for multivariate hypothesis tests for the fixed effects and the
variance-covariance components. A “no-intercept” option is available for the level-1, level-2,
and the level-3 row and column models. In addition to continuous outcomes, they handle binary
and count outcomes. HLMHCM also allows users to diagonalize the 1, Q , and A when interests
focus only on the diagonal elements.
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18 Graphing Data and Models

HLM2 and HLM3 provide the ability to make data-based and model-based graphs. Data-based graphs
allow examination of univariate and bivariate distributions. Model-based graphs, which can be
produced by the HLM2, HLM3, HMLM, HMLM2 and HCM2 modules of WHLM, facilitate visualization
and presentation of analytic results for the whole or a subset of the population of interest. They also
enable users to check the tenability of underlying model assumptions.

18.1 Data — based graphs —two level analyses

18.1.1 Box-and-whisker plots

We first illustrate how to use box-and-whisker plots to display univariate distributions of level-1
variables for each level-2 unit, with and without a level-2 classification variable. Using the
HS&B data (see Section 2.5.1.1), we display graphical summaries of the mathematics
achievement variable, MATHACH, and simultaneously show differences in the student scores
within a school and among schools.

To prepare box-and-whisker plots

1.
2.

3.

o s

From the HLM window open the File menu.

Choose Create a new model using an existing MDM file to open an Open MDM File
dialog box. Open HSB.MDM.

Open the File menu, choose Graph Data ... box-whisker plots to open an Choose Y for
box plot dialog box (see Figure 18.1).

Select MATHACH in the Y-axis drop-down list box.

Choose the number of groups to be used for graphing. There are three options: (a) First ten
groups; (b) Random sample of spec'd prob (specified probability) and (c) All groups (n
= total number of groups) for users to choose from in the Number of groups drop-down list
box. The selection of option (b) requires the user to specify the proportion or percent of the
level-2 units to be included. to do so, enter a probability into the text box for Probability (O
to 1). In our example, we randomly select 10 percent of the schools to illustrate. we select
Random sample of spec'd prob from the Number of groups drop-down list box. Enter 0.1
into the text box for Probability (0 to 1) to indicate that 10 percent or a proportion of .1 of
the schools will be used.

Specify the arrangement of the plots by either (a) the original order of the groups as they
appear in the data set or (b) the median in an ascending order. Click on the selection button
for median in the Sort by section to arrange the box-and-whisker plots of MATHACH by
median in an ascending order (see Figure 18.2).
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Choose ¥ for box plok

sort by:
& ariginal arder

Y-axis

I(nnt chosen) j

 median
—Z-focus
I(nnt chosen) j
| 25this0th/75th percentiles ]
~MNumber of groups
IFirSt ten groups j
Prabability {0 ta 1) |—

Cancel |

Figure 18.1 Choose Y for box plot dialog box

Choose ¥ for box plok

Sor by:
& original order

Y-axis

[maTHACH =]

" median
—-focus
I(nnt chosen) j
| 25th/a0thi75th percentiles =

—Mumber of groups

IRandUm sample of spec'd prob j

Frobahility (0 to 1) |.1
Cancel |

Figure 18.2 Choose Y for box plot dialog box for the MATHACH example

7. Click OK to display the plots (see Figure 18.3).
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Figure 18.3 Box and whisker plot for MATHACH

The figure gives side-by-side graphical summaries of the distributions of MATHACH for the
sixteen schools sorted by median. The x-axis denotes number of schools in the display and the y-
axis mathematics achievement. The plot tells us that the first school from the left has a median
score of about 6.05, which is the lowest school median in this group. The distribution of the
scores of the students in this school is positively skewed and there is an outlier at the upper end.

The third and the fourth schools from the left have similar distributions of mathematics scores.
Compared to the distribution of the scores of the adjacent school on the right, however, the
scores of these two schools display greater variability, as defined by the lengths of the boxes or
interquartile ranges. In addition, there is an outlier at the upper end of the distribution for the
fifth school. The highest median mathematics score among the 16 schools was 19.08.

8. (Optional) wHLM allows users to list the raw data of a specific group that is graphically
summarized in one of the box-and-whisker plots as well. To see the data of a specific level-2
unit, click on one of the box-and-whisker plots (near the median is usually a good place) in
Figure 18.3, which brings up the following dialog box:
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Box & Whisker Attributes X|

— Midpaint —Whizker—————
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— Outliers and E stremes

¥ Outlier Enable Outlier Marker... | Data.
¥ Estieme Enable  Extreme Marker...l 0

Dutlier Coefficient I'I A Cancel

dil

Figure 18.4 Box & Whisker Attributes dialog box

For a description of the options, see Table 18.1.

Click Data and then a dialog box containing the data of a specific group will appear. In our
example, we examine the raw scores of the school with the highest median (see Figure 18.5).
The title bar of Figure 18.5 tells us the level-2 ID of the box-and-whisker plot we selected is
3427. #is a zero-based counter for group plots.

Lev-id 3427 =10l =l
Copy  Format
Y2 Y3 Y4 Y5 Y6 YT
3.085 3.612 5.507 6.734 6.68 7.071

Figure 18.5 Data for School 3427 dialog box

As the box-and-whisker plots are plotted individually in the example, it is 0. X tells us that the
data are from the thirteenth school displayed on the plot. Y1 to Y11 list the mathematics scores
for the first eleven students in School 3427. Move the bottom scroll box to the left to display
more scores for the other students.

9. (Optional) To edit the graph, open the Edit menu and choose Graph Parameters.... The user
can change attributes such as size and color of the graph, border, and plotting area. By
choosing Copy graph or Copy current page (when there are more than one pages of
graphs), users can directly copy and paste the graph or current page into a word processing or
graphics document.

10. (Optional) To print the graph, open the File menu, select Print current page or Print
selected graph when there are more than one graph. Users can choose Printing Options...
to change printing parameters such as choice of background, border type, aspect ratio (the
ratio of the x-axis length to the y-axis length, the default is 5/3), and printing style.
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Table 18.1 Definitions and options in the Box & Whisker Attributes dialog box

Key terms Function Option Definition
1 | Midpoint Specify the type of average used 2 choices | 1. Median
2. Mode
2 | BoxSize Specify the width in units of the axis
that the box width is parallel to.
3 |Min, Max, and|[Min and Max specify the box
Coefficient for box | percentage minimum and maximum
or  whisker and |when the box or whisker Type is
Constant for box PERCENT. The coefficient is the
box or whisker coefficient by which
the selected range value will be
multiplied. The Constant is the box
constant, valid when the box Type is
CONSTANT.
4 | Midpoint marker Display a Marker Attributes
dialog box that allows the user to
specify the shape, color, size, and
style of the midpoint marker.
5 | Line attributes Display a Line Parameters dialog
box that allows the user to specify
the thickness, color, and style of the
whisker.

11. To save the graph for future use by opening the File menu and choose Save as metafile. A
Save as dialog box will open. Enter a filename for the file and click OK. The file can be
saved as an Enhanced Metafile (.EMF) (default and preferred as it holds more information
than the other option) or Windows Metafile (\WMF). Users can use word processing
programs to insert the graph file into the text. For example, to insert the saved .EMF file into
Word, choose Insert-...Picture-...From File from Word's main menu.

12. (Optional) To make modifications to the specifications, select Graph Settings. The

Equation Graphing dialog box will appear. We are going to illustrate this by adding a level-
2 classification variable next.

To include a level-2 classification variable

13.

After choosing the Y-Axis variable, select the level-2 classification variable in the Z-focus
drop-down list box. There are two types of level-2 classification variables, categorical and
continuous. For categorical variables, WHLM will classify the plots with the levels of the
variables. For continuous variables, users can choose either to dichotomize them usin%
median splits, or trichotomize them into three groups: (a) 0 to 24" percentile; (b) 25" to 75'
percentile; and (c) 76™ percentile and above. These two options, available when a continuous
classification variable is chosen, can be found in the lower Z-focus drop-down list box. In
our example, we will choose school sector, Catholic vs. public school, as the classification
variable. To continue working on the plot we have just made, click Graph Settings to open
the Equation Graphing dialog box. Select SECTOR in the Z-focus dialog box. The
following graph will be displayed (see Figure 18.6).
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Figure 18.6 Box-and-whisker plots for MATHACH for a random sample of schools as
classified by school sector

In the graph, the box-and-whisker plots for Catholic and public schools are coded differently
(red for Catholic and blue for public schools). The colored graphs (not showed here) suggest that
the three schools that have the highest median mathematics scores are Catholic schools. The
school with the lowest average belongs to the public sector.

Users can edit the legends by clicking on them in the graph above to open the Legend
Parameters dialog box (see Figure 18.7), which allows them to make changes in the titles of the
legends, their sizes and font types, and the display of the legend box. For example, one may like
to change SECTOR = 0 in the text box of Figure 18.7 to PUBLIC = 0 and SECTOR = 1 to
CATHOLIC = 1.

Legend Parameters

— Legend Rectangle

Left [ % widh [290 % Color [Transparent =]
Top[150 % Height [66 %

I~ Border BDHDEH&TTHIBUTES...'
SECTOR =0 ] 0K |
SECTOR =1

Cancel |

;l TERT F'.-’-‘-.FI.-’-‘-.METEFES...'

Figure 18.7 Legend Parameters dialog box
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18.1.2 Scatter plots

In the previous section, we illustrated how to graphically summarize and compare univariate
distributions of level-1 variables, with and without a level-2 classification variable. Now we
demonstrate how to use data-based scatter plots to explore bivariate relationships between level-
1 variables for individual or a group of level-2 units, with and without controlling level-2
variables. We will continue to use the HS&B data set and we are going examine the relationships
between MATHACH and SES for a group or individual schools, with and without controlling for
the sector of the school.

To prepare a scatter plot
1. From the HLM window, open the File menu.

2. Choose Create a new model using an existing MDM file to open an Open MDM File
dialog box. Open HSB.MDM.

3. Open the File menu, choose Graph Data .... line plots, scatter plots to open a Choose X
and Y variables dialog box (see Figure 18.8).

4. Select SES from the X-axis drop-down list box.
5. Select MATHACH from the Y-axis drop-down list box.

6. Select number of groups. In this example, select Random sample of spec'd prob and enter
.2 into the textbox to select 20 percent of the schools.

Choose X and ¥ variables

H-axis Y-axis Mumber of groups

I[nnt chosen) j I(nnt chosen) j IFirstten groups

[
Frabability {0 ta 1) I

~Z-focus
I[nut chosen) j IEEtthDthf?Eth percentiles j
~Type of plot Pagination
@ Scatter plot & All groups on same graph
" Line/marker plot 1 graph/group, multiple/page
 Line plot 1 graphfgroup, 1/page
&+ Straight line
" Cubic interpolation line -~

Figure 18.8 Choose X and Y variables dialog box

7. Select type of plot. Users can select one of the two major types of plots: (a) scatter plot; and
(b) line plot with and without markers or asterisks showing where the data points are. Click
the selection button for Scatter plot (default) for this example.

8. Select type of pagination. There are three options: (a) all groups on the same graph (default);
(b) one graph per groups and to display a maximum of eight graphs on one page, and (c) 1
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graph per group and to be displayed on multiple pages. In this example, we will display the
bivariate relationship between SES and MATHACH for all the selected schools on a single
graph. We choose the option All groups on same graph accordingly.

9. Click OK to make the scatter plot. This gives us the following graph (see Figure 18.9),
indicating a moderate positive association between SES and MATHACH, and suggesting that
both variables have “ceilings” (upper limits).

10. For more information on the editing, printing, saving and modification options, see Steps 11
to 13 in Section 18.1.1.

26.381

18.73 4

11.084

MATHACH

3.431

-4.22 +—7r—7——r4—"7m——F—"r——"—""T]TT—T—T—7TT—TT
-3.07 -1.81 -0.55 0.70 1.96

Figure 18.9 Scatter plot for the 20% random sample of cases

To include a level-2 classification variable

11. After specifying the variables for the x- and y-axis, select the controlling variable from the z-
focus drop-down list box. As in the case for the box-and-whisker plots, users can choose
either a categorical and continuous controlling variable (see Step 14 in Section 18.1.1). In
our example, we will choose school sector, Catholic vs. public school, as the controlling
variable. To continue working on the scatter plot we have just made, click Graph Settings to
open the Equation Graphing dialog box. Select SECTOR in the Z-focus dialog box. The
following graph will be displayed (see Figure 18.10).
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Figure 18.10 Scatter plot for random sample by SECTOR

The color-coded scatter plot shows that there is not in general a radical difference in the SES-
MATHACH relationship for the two types of schools.

It may be helpful to use a different pagination option to help us to discern the relationships for
these two groups of school. Instead of having all the groups on the same graph, we select the 1
graph/group, multiple/page pagination option. This gives us Figure 18.11, where we see how
the two groups of schools vary in their SES and MATHACH distributions. Note, for example, that
school 8946 has high levels of SES and that in school 4325, the association between SES and
MATHACH appears a bit stronger than in several of the other schools. WHLM puts a maximum of 8
groups in a window. We can page back and forth using the -> and <- buttons in the lower right
corner of the window to display the scatter plots for other schools.
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Figure 18.11 Scatter plots for individual schools on one page

As an elaboration of this, we can also choose on the Graph Settings dialog box to have each
group's plot in a separate graph by choosing 1 graph/group, 1/page, as shown below:
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Figure 18.12 Individual scatter plot for school 7697

18.1.3 Line plots —two-level analyses

In scatter plots, observations on a pair of level-1 variables are plotted to examine their
association, with and without a level-2 controlling variable. In line plots, level-1 repeated
measures observations are joined by lines to describe changes or developments over time during
the course of the research study. We illustrate this type of plot with data from two studies of
children's vocabulary development (Huttenlocher, Haight, Bryk, and Seltzer, 1991, see also
Hierarchical Linear Models, pp. 170-179). Twenty-two children were observed in the home on
three to seven occasions at 2 to 4-month intervals during their second year of birth. A measure of
the child's vocabulary size at each measurement occasion was derived from these observations.
In this example, the level-1 file, VOCABI1.SAV has

AGE Age in months

VOCAB  Vocabulary size

AGE12  Age in months minus 12
AGE12Q AGE12*AGE12

The level-2 data file, VOCABL2.SAV, consists of 22 children and an indicator variable for gender
e MALE An indicator for gender (1 = male, 0 = female)
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To prepare a scatter plot

=

o ok

From the HLM window, open the File menu.

Choose Create a new model using an existing MDM file to open an Open MDM File
dialog box. Open VOCAB.MDM.

Open the File menu, choose Graph Data...line plots, scatter plots to open an Choose X
and Y variables dialog box (see Figure 18.8).

Select AGE from the X-axis drop-down list box.

Select vOCAB from the Y-axis drop-down list box.

Select number of groups. In this example, we include all the children in the display by
selecting All groups (n = 22) in Number of groups drop-down list box.

Select type of line plot and method of interpolation. Users can select line plots with and
without markers or asterisks showing where the data points are. The two types of
interpolation are linear and cubic. In linear interpolations, the data points are simply joined
by straight line segments. Cubic interpolations may be chosen to provide a smoother function
and more continuity between the segments. For our example, suppose we want a line plot
with no markers that is graphed with the linear interpolation method. Click the selection
button for Straight line.

Select type of pagination. In this example, we want to have the trajectories for all children on
the same graph and select All groups on same graph pagination option accordingly. When
all the choices are made, the Choose X and Y variables dialog box should look like the one
shown in Figure 18.13.

Choose X and Y variables
H-ais f-axis Mumber of groups
|aGE x| |vocas | [Algroups (n=22) -
Frobahility (0 to 1) I
—Z-focus
|inot chosen) =] | 25th/ANthiT5th percentiles =
~ Type of plot Pagination
* Scatter plot & All groups on same graph
" Linedmarker plot 1 graphfgroup, multiple/page
ol : = 1 graphfgroup, 1/page
' Straight line
" Cubic interpolation ling

Figure 18.13 Choose X and Y variables dialog box for line plot of VOCAB and AGE

9.

Click OK to make the line plot. The following graph will appear.
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Figure 18.14 Line plot of the vocabulary score vs. the age of the child

We see that, for all children, vocabulary size is near zero at around a year of age (12 — 15
months) and that for each child, vocabulary size increases, typically quite rapidly during the
second year of life.

To include a classifying level-2 variable

Now we want to look at the difference between boys and girls. On the menu of the graph dialog
box, click Graph Settings. Here we choose the level-2 variable FEMALE as a Z-focus variable.
For illustrative purposes, we will use the cubic interpolation method this time by clicking the
selection button for Cubic interpolation line. The colored version of the following graph shows
that girls' vocabulary tends to grow more rapidly than that of boys, on average.
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Figure 18.15 Cubic interpolation line plot of the difference between boys and girls
18.2 Model-based graphs —two level
18.2.1 Model graphs

WHLM provides graphing options to display the relationships between the outcome and the
predictor(s) based on the final analytic results. The options allow us to visually represent the
results of the models for the whole or a subset of population, and to graphically examine
underlying model assumptions as well. Below we provide a 2-level example of a growth curve
analysis of pro-deviant attitude for fourteen-year-old youth over a period of five years with data
from the National Youth Survey (Elliot, Huizinga, & Menard, 1989; Raudenbush & Chan,
1993). In our example, the level-1 file, NYSwW2.SAv, has 1,066 observations collected from
interviewing annually fourteen-years-old youths beginning at 1976:

e ATTIT A nine-item scale assessing attitudes favorable to deviant behavior
Subjects were asked how wrong (very wrong, wrong, a little bit wrong, not wrong at
all) they believe it is for someone their age, for example, to damage and destroy
property, use marijuana, use alcohol, sell hard drugs, or steal.

The measure was positively skewed; so a logarithmic transformation was performed
to reduce the skewness.

e AGE16 Age of participant at a specific time minus 16

e AGE16S = AGE16 * AGE16

The level-2 data file, NYSB2.SAV, consists of 241 youths and three variables per participant.
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e FEMALE An indicator for gender (1 = female, 0 = male)
e MINORITY An indicator for ethnicity (1 = minority, O = other)

e INCOME Income

At level-1, we formulate a polynomial model of order 2 using AGE16 and AGE16S (see Figure
18.16) with FEMALE and MINORITY as covariates at level-2 modeling 7,, the expected pro-
deviant attitude score at age 16 for subject j; 7z, and =,, which are the expected average linear

and quadratic growth rate for pro-deviant attitude score respectively. The procedure for setting
up the model is given in 2.5.2. We will ask WHLM to graph the predicted values of pro-deviant

attitude scores at different ages for different gender-by-ethnicity groups.

File Basic Setkings Other Settings  Run fnalysis  Help
__Outcome | pyp) 9 MODEL

+ 7, (AGE1B,) +m, (AGETES,) + e,

= Bop + Bgy(FEMALE ) + b, (MINORITY ) + 1,

Level-1 ATTIT.. =
>> Level-2 << ti i
INTRCPTZ2 LEVEL 2 MODEL
FEMALE n
MINORITY 0
IMCOME Ty
bt I E

= By By (FEMALE J + B (MINORITY J + 1

1

Mo

ﬁgg + ﬁzq(FEMALEJ) + |322(M|NOR|TYJ:I + ¥

21

Mixedl '|

Figure 18.16 A polynomial model of order 2 with FEMALE and MINORITY as level-2

covariates

To prepare the graph

1. After running the model, select Basic Settings to open the Basic Model Specifications —

HLM2 dialog box.

2. Enter a name for the graphics file. The default name is grapheq.geq.

3. Enter a title and name the output filename, save the command file, and run the analysis as

described in section 2.5.2.

4. Open the File menu and choose Graph Equations. An Equation Graphing dialog box will
open (see Figure 18.17). Table 18.2 lists the definitions and options in the Equation

Graphing dialog box.

269




Equation Graphing - Specification 5[

— focus —< focusg1]
el (ot chiosen) Level-1 I[r‘u:ut choszen) j ~Choose upto B
Level-2 I[r'u:nt chozen| j Level-2 I[r'u:-t chozen] j I—
Level-3 I j Level-3 I j I

Range of x-axiz Fange of z-awiz I
I'I (th to 90th percentiles j I - I—

W

— Categarieztranzformsdinteractions —— — & focus[2]

1 | 2 | 3 | 4 | 5 | Lewvel1 I[r‘u:ut chiozen)

Level-2 I[r‘u:-t chozen)

—Chooze up to B——

R ange/Titles/Calar |

Ll Led Led

Lewvel-3 I

Other zettings | R atige of z-axis I

| EE—
| k. I Cancel |

a

Figure 18.17 Equation Graphing — Specification dialog box

We now proceed to select the predictor variables and specify their ranges or values, and choose
the graphing functions and the various attributes of the plot for the polynomial model
represented in Figure 18.16, as described in Steps 5 to 14 below.

5. Select AGE16 in the X focus Level 1 drop-down list box to graph pro-deviant attitude score
as a function of age.

6. Select Entire range in the Range of x-axis drop-down list box to include the entire range of
age on the x axis in the graph.

270



Table 18.2 Definitions and options in the Equation Graphing dialog box

Key terms Function Option Definition
X focus Specify the variable to be 2 choices | 1. Level-1 predictor
displayed on x-axis 2. Level-2 predictor
Range of x-axis | Specify the maximum and 5 choices | 1. 10™ to 90™ percentiles
minimum values of X to be 2. 5™ to 95" percentiles
displayed 3. 25" to 75" percentiles
4.+4/-2s.e's
5. Entire range
Categories/ Define the reference category |5 choices | 1. define categorical variable (for
transforms/ for categorical variables with variable with more than two
interactions more than two levels, and levels) 2. interaction
specify the relationship 3. power of x/z
between the 4. square root
transformed\interaction and 5. natural log
the original variables
Range/ Specify the maximum and
Titles/ minimum values of X and Y
Color to be displayed (defaults are
values computed).
Enter legend titles for X and
Y.
Enter graph title. 2 choices | 1. Black and white
Select screen color 2. Color
Other Settings Specify graphing function 2 choices | 1. rough — original points
2. smooth — smoothed data
Predictors not in graph 2 choices | 1. constant at grand mean
(default)
2. constant at zero.
Use fixed effects from 3 choices | 1. unit-specific PQL estimates
These are only available for 2. population-average estimates
HGLM models, and Laplace is 3. unit-specific Laplace estimates
only available if Laplace was
asked for in HGLM2/HGLM3
Bernoulli runs
Z focus(l or 2) | Specify the first or second 3 choices | 1. Level-1 predictor
classification variable for X 2. Level-2 predictor
Range of z-axis | Specify the specific values of |4 choices | 1. 25" and 75" percentiles
Z focus to be included. for 2. 25th/50th/75th percentiles
continuous | 3. Averaged lower/upper
variables | quartiles
4. Choose up to 6 values (enter
the six values into the textboxes)
2 choices
for 1. Use the two actual values
categorical | 2. Choose one or two values
variables

271




7. Click 1 in the Categories/transforms/interactions section and select power of x/z for
Polynomial relationships. An Equation Graphing - power dialog box will open (see Figure

18.18).

Transformation/interaction - power

Cancel |

Figure 18.18 Equation Graphing — power dialog box

8. The textbox to the left of the equal sign is for the entry of the transformed variable. Select
AGE16S in the drop-down list box (see Figure 18.19). The textbox to the right is for the entry
of the original variable. AGE16 will appear in the drop-down list box as it is the only level-1
variable left. Enter 2 in the textbox for the power to be raised. Click OK.

Transformation/interaction - power

I.ﬁ.GE1ES vI = I.ﬁ.GE1E v| to the power of |2
Cancel |

Figure 18.19 Equation for the transformed variable AGE16S

9. Click Range/Legend/Color to specify the ranges for x- and y-axis (the default values are
those computed from the data), to enter legend and graph titles, and to select screen color
(see Figure 18.20). Enter Pro-deviant attitude score as a function of age, gender and

ethnicity in the textbox for Graph title. Click OK.

Select Range/Titles,/Color :
Screen color
& Color

BV

—Ranges

Minimum x [computed]

Maximum X |[computed]

i

Minimum ¥  [[computed]

Maximum ¥ [[computed]

Cancel

¥-axis legend I

Y-axis legend I

Graph title I

Figure 18.20 Select Range/Legend/Color dialog box

10. Click the Other settings button and click the selection button for Smooth in For

continuous x section to display a set of smooth curves.

11. Select FEMALE in the Z focus(1) drop-down list box to graph pro-deviant attitude score as a
function of age for male and female youths. Use the two actual values will appear in the
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12.

13.

14.

textbox for the Range of z-axis as FEMALE is an indicator variable. We will use this default
option.

Select MINORITY in the Z focus(2) drop-down list box to graph pro-deviant attitude score as
a function of age for minority and non-minority male and female youths. Use the two actual
values will appear in the textbox for the Range of z-axis as MINORITY again is an indicator
variable. We will use this default option. See Figure 18.21 for the specifications for this
growth curve analysis example.

Click OK. A colored version of the plot (not displayed here) showing the relationship
between pro-deviant attitude score and age for different gender-by-ethnicity groups will
appear (see Figure 18.22). The curves indicate that there is a nonmonotonic and nonlinear
relationship between pro-deviant attitude scores and age for minority and non-minority male
youths over the five year period. Such a relationship, however, does not exist for minority
and non-minority female youths.

For information on the editing, printing, saving, and modification options, see Steps 11 to 13
in section 18.1.1.

Equation Graphing - Specification

]

— focus

— £ focusz(1]

Level1 [AGETE =l Level1 [inotchosen] | [ Choossupiof
Level2 [inotchosen] | Level-2 [FEMALE =] ———
Level3 | =] Leveld | = |
Riange of w-ais Riange of z-axis |

_ -
[10th to 90th percenties =} |Use the two actual values | —

— Categoriestransformzdinteractions ——

1]2]3]4]s]

—Z focus(2]

Level-1 I[n-:ut chosen)

—Choose upto B——

-

MINORITY

Level-2

Fange/Titles/Caolor | Level-3 I

[4

Other zettings | Range of z-axis

ILlse the bwo actual values j

o]

Figure 18.21 Specifications for the Growth Curve Analysis Example

Cancel |
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Pro-deviant attitude score as a function of age, gender and ethnicity
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Figure 18.22 Plot showing the relationship between pro-deviant attitude score and age for
different gender-by-ethnicity groups
18.2.2 Level-1 equation modeling

WHLM will also let us examine plots for individual level-2 units by just using the level-1 equation
instead of the entire model. For this example, we will be using the vocabulary data, VOCAB.MDM
described in section 18.1.2, and have run the following model:

[ WHLM: him2 MDM File: vocab.mdm -0 x|
File Basic Settings Other Settings  Run Analvsis  Help
__Outcome | pyr) 1 moDEL ﬂ
Level-1 a
—>> Level-? << VOCAEI{J. = m t n?J.(.ﬂ\GEQHj + an.(.ﬂ\GEQSGﬁj tey
mincsp;ém LEVEL 2 MODEL
SEY T = Bﬂ'ﬂ' + 'rﬂ'.l'
GROUP M, = Py, t
LOGMOM 1 - He i
B = Bap Ty
Mixedl v|

Figure 18.23 Model specification window for the vocabulary data

To perform the level-1 equation graphing

1. After the model is run, select Graph Equations...Level-1 equation graphing from the File
menu, which will give us the following dialog box.
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Figure 18.24 Level-1 equation Graphing dialog box

For the definition of Number of groups, see step 5 in section 18.1. Table 18.2 describes and
explains the other options in the dialog box.

2. Select an X focus variable. In our example, we want the age of the child in months minus 12
to be the X focus. Choose AGE12 from the X focus drop-down list box.

3. Select number of groups. We will include all the children. Choose All groups (n=22) in the
Number of groups drop-down list box.

4. Specify the relationship between the transformed and the original variable. The transformed
variable is AGE12s and the original variable is AGE12. Click 1 in the Categories/
transforms/interactions section and select power of x/z for Polynomial relationships. A
Equation Graphing - power dialog box will open. Select AGE12S from the drop-down list
box to the left of the equal sign. AGE12 will appear in the drop-down list box as it is the only
level-1 variable left. Enter 2 in the textbox for the power to be raised. Click OK.

5. (Optional) click Range/Legend/Color to specify the ranges for x- and y-axis (the default
values are those computed from the data), to enter legend and graph titles, and to select
screen color.

6. Click the Other settings button and click the selection button for Smooth in For
continuous x section to display a set of smooth curves. Click OK.

7. Click OK and we get the following figure that shows vocabulary size accelerates during the
second year of life. Note that the individual trajectories, as expected, are “smoother” than in
the comparable data-based graphs in Figure 18.14 in Section 18.1.3.
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Figure 18.25 Predicted trajectories of vocabulary growth for individual children
To include a level-2 classification variable

8. Click Graph Settings on the menu bar to open the Level-1 equation Graphing dialog box.
9. Choose MALE from the Z-focus drop-down list box as the level-2 classification variable.

10. Click OK. The following figure will appear. A colored version of the graph (not shown here)
indicates that girls on average have a greater acceleration rate in vocabulary growth over the
course of the study.
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Figure 18.26 Predicted trajectories of vocabulary growth of individual children grouped by
gender

18.2.3 Level-1residual box-and-whisker plots

In addition to plotting predicted values for individual level-2 units using level-1 equations, users
can also examine the distributions of the level-1 errors or residuals (see Equation 3.63 on p. 50 in
Hierarchical Linear Models). The plots allow users to graphically examine the assumptions
about the level-1 residuals and to identify cases for which the model provides a particularly poor
fit. We continue to use VOCAB.MDM to illustrate this graphing procedure.

To prepare level-1 residual box-and-whisker plots

1. After the model is run, select Graph Equations...Level-1 box whisker from the File menu,
which will give us the following dialog box.
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Figure 18.27 Choose Y for box plot dialog box

For definitions of the options in the dialog box, see Section 18.1.1. Note that the variable for Y-
axis, level-1 residual has been pre-selected.

2. Select All groups (n=22) in the Number of groups to include all the 22 children in the
display.

3. Click the selection button for median in the Sort by section to arrange the plots by median
order.

4. Click OK. The following graph will appear.
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Figure 18.28 Box-and-whisker plots of the level-1 residuals

The box-and-whisker plots provide side-by-side graphical summaries of the level-1 residuals for
each level-2 units. The plots suggests that the underlying model assumptions may not be tenable.
First, quite a number of the distributions are highly asymmetric, such as the last one from the
left. Thus, the normality assumption may not hold. There seems to be heterogeneity of variance
as well, judging from the wide disparities in the box lengths. The nonconstant residual spread
may suggest an omission of important effects from the model. However, there are no extreme
values or outliers in any of the 22 plots. Note that this graphical analysis of level-1 residuals
differs from the one performed in Section 2.5.4.1.2 in that it does not pool the residuals across
level-2 units. In addition, WHLM has a statistical test for evaluating the adequacy of the
homogeneity of level-1 variance assumption (see Section 2.8.8.2). See Hierarchical Linear
Models pp. 263-267 for a discussion of the examination of assumptions about level-1 random
effects.

5. (Optional) Users can look at the EB estimates for any child by clicking on the corresponding
box-and-whisker plot. See Step 9 in Section 18.1.1.

6. (Optional) Users can choose to include a level-2 classification variable when examining the
level-1 residuals. See Step 14 in Section 18.1.1.

18.2.4 Level-1residual vs predicted value

Users can graphically assess the assumptions of constant error variance and linearity and probe
for outlying cases by examining a scatter plot of level-1 residuals and predicted values. Using the
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same data and model of the previous two sections, we now plot the level-1 residual against its
predicted value.

To prepare a level-1 residuals by predicted values scatter plot

e After the model is run, select Graph Equations...Level-1 residual vs predicted value from
the File menu, which will give us the following dialog box.

Choose X and ¥ variables
A-axis f-axis Mumber of groups
IF'red. wal. j IUGCAB j IFirSt ten groups j
Probability (0 ta 1) I
—Zfocus
I[nnt chosen) j IEEtthEIthf?Eth percentiles j
~Type of plot Pagination
" Scatter plot & All groups on same graph
" Line/marker plot 1 graphfgroup, multiple/page
& Line plot 1 graph/group, 1/page
&+ Straight line
¢ Cubic interpolation line
Cancel

Figure 18.29 Choose X and Y variables

For definitions of the various options in the dialog box, see Section 18.1.2. Note that the X-axis
variable, Pred. val. and Y-axis variable, Level-1 residuals have been pre-selected.

e Select All groups (n=22) in the Number of groups to include all the 22 children in the
display.

e Click the selection button for Scatter plot in the Type of plot section to request a scatter
plot of the predicted values by level-1 residuals.

e Select All groups on same graph in the Pagination section to display all the residuals
pooled across the level-2 units. To examine the residuals for individual children, choose
either of the other pagination options.

e Click OK.
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Figure 18.30 Plot of level-1 residuals by predicted values

The plot suggests that there is a tendency for the residual scatter to get narrower at the smallest

predicted values and to get wider around the interval between 150 and 170. The residuals seem

to follow a slightly curvilinear trend as well. They may suggest that there is a specification error

in the model.

e (Optional) Users can choose to include a level-2 classification variable when examining the
level-1 residuals. See Step 14 in Section 18.1.1.

18.2.5 Level-1 EB/OLS coefficient confidence intervals
We can also look at graphs of the estimated empirical Bayes (EB) or OLS estimates of randomly
varying level-1 coefficient (see Section 1.3 and Hierarchical Linear Models, p. 47 and p. 49 for

their computational formulae). This enables us to compare level-2 units with respect to these two
types of estimates.

To prepare level-2 EB estimates of randomly varying level-1 coefficient confidence intervals

1. After the model is run, select Graph Equations...Level-2 EB/OLS coefficient confidence
intervals from the File menu, which will give us the following dialog box:
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Figure 18.31 95% Confidence Intervals dialog box

For definitions about the various options regarding Y- and Z-focus and sorting, see Section
18.1.1.

2. Choose the randomly varying level-1 coefficient of interest. We will look at the coefficient
for the quadratic term or acceleration rate of vocabulary growth in this example. Choose
AGE12s from the Y-focus drop-down list box.

3. Select All groups (n=22) in the Number of groups to include all the 22 children in the
display.

4. Click the EB residual button in the Type of residual section to select the empirical Bayes
estimates.

5. Click OK. The following graph will appear.

The graph suggests that there is significant variation in the rate of acceleration in vocabulary
growth in children during the second year of life. For instance, the confidence intervals of the EB
estimates of the AGE12S coefficients for the last four children from the left did not overlap with
those of the first eleven children.

6. Users can look at the actual empirical Bayes estimates and their 95% confidence intervals of
individual level-2 units by clicking on the confidence interval plots.

7. (Optional) Users can choose to include a level-2 classification variable when examining the
confidence interval plots. See Step 14 in Section 18.1.1.
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Figure 18.32 Confidence intervals of empirical Bayes estimates of the AGE12S coefficients

18.2.6 Graphing categorical predictors

Model graphs can be displayed in which predictor variables are categorical. Suppose, for
example, that the variable ETHNICITY has three possible values: BLACK, HISPANIC, and WHITE
and that this variable is represented by indicator variables for BLACK and HISPANIC, with WHITE
serving as the reference category. To represent ethnicity as a predictor, click the first box under
Categories/ transformations/interactions. Next, click on define categorical variable. Then
four boxes will appear:

1.

Under the box Choose first category from foci click on the variable that is the first of the
indicator variables in the model. In our example, this will be BLACK.

Under the box Possible choices click on any other indicators in the model that represent the
categorical variable of interest; in our case, there is only one : HISPANIC.

Under Name of reference category, type in the name of the reference group; in our case,
this will be WHITE.

Under Category Name, type the name of the categorical variable; in our case, this will be
ETHNICITY.

Now click OK to continue.
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18.3 Three-level applications

Graphing with 3-level data is very similar to the 2-level graphing. The only two differences are
that users can (a) group the plots at either level 2 or 3, and (b) choose exclusively a level-2 or
level-3 classifying or conditioning variable. To illustrate these two differences, we will use the
EG.MDM as describe in Section 4.1. We will prepare line plots of the mathematics test score,
MATH, to detect trends over the course of the six-year study, grouped by the level-3 units,
schools, and classified by a level-3 variable, the socioeconomic composition of schools. The
same logic applies to the sets of three-level model-based graphing procedure.

To prepare line plots with level-3 grouping

=

o ok

From the HLM window, open the File menu.

Choose Create a new model using an existing MDM file to open an Open MDM File
dialog box. Open EG.MDM.

Open the File menu, choose Graph Data...line plots, scatter plots to open an Choose X
and Y variables dialog box (see Figure 18.33).

Select YEAR from the X-axis drop-down list box.

Select MATH from the Y-axis drop-down list box.

Select number of groups. In this example, we want to include a random sample of 20 percent
of the schools in the display. Select Random sample of spec'd prob from the Number of
groups drop-down list box. Enter 0.2 into the textbox for Probability (0 to 1) to indicate that
10 percent or a proportion of .1 of the schools will be used.

Select type of plot and method of interpolation (see Step 7 in Section 18.1.3 for
explanations). For our example, we want a line plot with no markers that is graphed with the
linear interpolation method. Click the selection button for Straight line.

Select type of grouping at level 2 or level 3. In this example, we want to have the trajectories
for individual schools (Group at level 3). Click Group at level-3 selection button (default)
in the Grouping section.

Select type of pagination. We want separate plots for individual schools and choose 1
graph/group, multiple page option accordingly.

284



Choose X and ¥ variables

H-axis -axis Mumber of groups
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[
Frabability {0 ta 1) I

~Zfocus Grouping
" Group at level-2

Level-2 I(nnt chosen
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&+ Group at level-3
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25th/E0th/75th percentiles -]

~ Type of plot Pagination
* Scatter plot " All groups on same graph
" Linefmarker plot 1 graph/group, multiple/page
" Line plot

¥ Straight line

i~ Cubic interpolation line Cancel |

Figure 18.33 Choose X and Y variables dialog box

1 graphfgroup, 1/page

10. Click OK. The following graph will appear.

The eight line plots indicate the collection of students' growth trajectories of mathematics
achievement within individual schools. The schools varied in their number of students. There
was a generally positive average rate of growth across all schools.
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Figure 18.34 Line plots of MATH against YEAR for eight schools

To include a level-3 classification variable

11. Now we want to look at the trajectories as classified by the socioeconomic composition of
the study body of a school. On the menu of the graph dialog box, click Graph Settings.
Choose the level-3 variable LOWINC, the percent of students from low income families, as a
Z-focus variable. As LOWINC is a non-dichotomous variable we have an additional choice
that was not needed for our earlier dichotomous z-foci. In this case, we choose Above/Below
50th percentile from the combo box immediately below where we chose the LOWINC as the
grouping variable.

12. Click OK. The following graph will appear.
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Figure 18.35 Line plots of MATHACH against YEAR for eight schools by LOWINC

This shows us that schools with a greater percent of students from low income families (upper high)
tend to have lower mathematics achievement than do schools with less percent of poor students.
Compared to their peers in School 2020, for instance, students in School 2330 generally have lower
achievement across the six years.
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19 The Fixed Intercepts Random Coefficient (FIRC) Model

19.1 Conceptual background for FIRC

Fixed effects models can serve as a useful tool for causal inference. In multilevel settings, for
instance, they can help to remove unobservable confounding attributable to clusters in the
analysis such as persons, schools, neighborhoods, states, or countries when the treatment
assignment occurs within clusters. Many articles have considered the choice between a fixed
effects model versus a random effects model using criteria such as the assumptions required for
the estimators to be consistent (Raudenbush, 2009). HLM offers the option to estimate either or
both classes of models. In addition, it allows researchers to combine features of both types of
models with a fixed intercepts and a random treatment coefficient (FIRC) to improve causal
inferences in multisite intervention (e.g., Bloom, Raudenbush, Weiss, & Porter, 2017), meta-
analysis (e.g., Weiss et al., 2017), as well as panel studies (e.g., Raudenbush, 2009) by
investigating heterogeneity of treatment effects across sites.

19.1.1 The fixed intercepts and a random treatment coefficient (FIRC)
model

To illustrate the FIRC models, we first consider a) a random intercept and a fixed treatment
coefficient HLM2, and b) a fixed intercepts and a fixed treatment coefficient HLM2 model and
some of their key assumptions using a multisite trial example in which the level-1 individuals
within each level-2 study site are randomly assigned to a treatment or control group.

19.1.1.1 Arandom intercept and a fixed treatment coefficient HLM2 model

The random intercept and fixed treatment coefficient HLM2 model, as described in Section 1.1,
consists of two sub-models at level 1 and level 2. The level-1 model is represented as

Y;; = Bo; + By Treatment; +r; (19.1)

where Treatment;; is an indicator variable for the treatment group membership of individual i in
study site j with 1 = treatment, O = control; and r;; is a random term and we assume rij~ N(0, o?).

The Level-2 model is represented as

IBOj = Y00 T Uy (19.2)
ﬂlj =710

where

o0 IS the overall mean of the control group;
Uoj is the level-2 random intercept effect and we assume ug; ~ N(0, too). ; and
710 1S the overall treatment effect.

288



The mixed or combined model is
Yij =Yoo *+ 7ioTreatment; +uy; +1; (19.3)

For the estimate of the treatment effect to be consistent, the fraction of persons assigned to the
treatment, Treatment; is assumed to be uncorrelated with site-specific random effects uo;.

Varying Treatment; correlated with unobserved site characteristics can produce inconsistent
parameter estimates (Bloom et al., 2017).

19.1.1.2 Afixed intercepts and a fixed treatment coefficient HLM2 model

The level-1 model remains the same, and the level-2 model is represented as

ﬂOj:uoj

19.4
ﬁlj =710 ( )

where

Uoj is a fixed constant. The key innovation in computation is recognizing that we can
equivalently regard ug; as a random effect for which we have no prior information, that is we
assume Uy, ~ N(0,7,, —> ), .. 70 =0; and

10 1S the treatment effects, assumed in this case to be constant across all level-2 units.

This model is also known as the fixed-effects model in the econometric literature. It estimates
fixed site-specific intercepts (ugj). This parameterization removes the between-site variability in
any level-1 predictors. Thus the previously discussed assumptions for the fixed intercept and
fixed coefficient model required for consistent estimation of the treatment effect can be
relaxed.(7) The mixed or combined model is

Y;; = ryjTreatment; +uy; +1; (19.5)

By re-formulating the fixed effects model as a random effects model with infinite variance,
Up; ~ N(0, 74y >0), 1.8, 75 =0, HLM2 enables users to estimate the fixed effects model very

simply without having to include dummy variables and without centering of variables (see
Section 19.2.14 for details).

19.1.1.3 Afixed intercepts and a random treatment coefficient (FIRC) HLM2 model
Again the level-1 model remains the same. The level-2 model becomes

IBOj:UoJ'

(19.6)
Bij = Vot

7 An alternative parameterization of the same model is to group-mean center Treatment; (see
Section 2.5.2).
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There is an additional site-specific random effect, u,;, associated with the treatment in FIRC in
this model. We assume that uy; ~ N(0,7y —>0),i.e., 7y =0and u;;~ N(0, t11). The combined

model is

Y;; = yjTreatment; +uy; +u,Treatment; +r; (19.7)

where u,; is a site-specific fixed effect and u,; is a random effect for treatment. The random site-

specific program assignment effects allow researchers to investigate cross-site variation and to
produce site-specific empirical Bayes estimates of impact. In addition, when the aim is to
generalize to a population of clusters, the FIRC model also reduces the bias associated with the
conventional site fixed effects model with fixed treatment effect (see Bloom, Raudenbush,
Weiss, and Porter, 2017, winner of the Best Article Award in the Journal of Research on
Educational Effectiveness).

19.1.2 Parameter estimation

Three kinds of parameters are available in HLM2 and HLM3 FIRC. Empirical Bayes estimates of
random effects, maximum-likelihood estimates of the level-2 or level-3 coefficients in HLM2 and
HLM3 respectively, and maximum likelihood estimates of variance-covariance parameters are
available. When estimating the variance of the treatment effects, HLM2 and HLM3 allows the
treatment/control heteroscedasticity. For example, the outcome variance for its treatment group
members differ from that for its control group within sites (Raudenbush & Bloom, 2015) (see
Section 2.8.5 for details).

19.1.3 Hypothesis testing

HLM2 and HLM3 output a chi-square test of homogeneity for each random effect. Also, users can
use the likelihood ratio test to compare the fit of the various models.

19.2 Working with FIRC

HLM2 and HLM3 FIRC analyses can be executed in Windows, interactive, and batch modes. To
illustrate the operation of the program, we use the data from the Tennessee's Student/Teacher
Achievement Ratio study project (STAR) (Shin & Raudenbush, 2011), which was a statewide
effort to study the effect of reduced class size on student academic performance in Tennessee.
Windows model execution is illustrated.

We will first look at the effects of reduced of class size using a two-level model with students
nested within school.

19.2.1 HLM2 Statistical package input

We will use SPSS file input in our example. There are two data files for the HLM2 FIRC analysis,
one at the student level, and one at the school site level.

Level-1 file. The level-1 file, STAR1.SAV has math and reading proficiency data as well as the
type of class of 5,786 students participated in STAR. The variables are:
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e MATH a math test in IRT scale score metric
e CLASSTYPan indicator of class type (1 = small with 13-17 students, O = other)

Level-2 file. The level-2 file, STAR3.sav has data collected from 79 schools that the students
attended. The variable is:

e SIZE schoolsize

Using HLM2, the MDM file STARHM2.MDM is created.
19.2.1.1 Executing analyses based on the MDM File

We first illustrate a) a random intercept and a fixed treatment coefficient model, then b) a fixed
intercepts and a fixed treatment coefficient model, finally followed by c) a fixed intercepts and a
random treatment coefficient model. We summarize the results at the end of this section.

19.2.1.2 Arandom intercept and a fixed treatment coefficient model

The command file, STARHM2A.HLM, contains the model specification input responses for the
fixed intercepts and a fixed treatment coefficient model. Figure 19.1 displays the model
specified.

File Basic Settings Other Settings Run Analysis Help

Qutcome | | £vE| 1 MODEL
>> Level-1 <<

MATH, = g, + £, (CLASSTYP,) + 1,

INTRCPTA1
READING LEVEL 2 MODEL

MATH Foj = Yoo * Yy,
CLASSTYP

By = Tio

Figure 19.1 The random intercept and a fixed treatment coefficient model
specification for the STARHM2 example
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The results of the analysis are given below.

Problem Title: Random Intercept and A Fixed Treatment Coefficient Model

The data source for this run = STARHM2.MDM
The command file for this run =STARHM2A.HLM
Output file name = STARHM2A.HTML

The maximum number of level-1 units = 5786
The maximum number of level-2 units = 79

The maximum number of iterations = 100
Method of estimation: full maximum likelihood

The outcome variable is MATH

Summary of the model specified
Step 2 model

Level-1 Model
MATH; = By + B1*(CLASSTYPy) + 1

Level-2 Model
Boj = Yoo *+ Ug;
Blj = Y10

Mixed Model
MATHij = Yoo
+ VlO*CLASSTYPij + U0j+ Fij

Final Results - Iteration 3
Iterations stopped due to small change in likelihood function

o” = 1804.30900
Standard error of o2 = 33.77701

T
INTRCPT1,8 458.63366

Standard error of T
INTRCPT1,8q 77.25120

Approximate confidence intervals of tau variances
INTRCPT1 : (327.960,641.373)

Random level-1 coefficient Reliability estimate
INTRCPT1,8, 0.945

The value of the log-likelihood function at iteration 3 = -3.001734E+004

Final estimation of fixed effects:

Fixed Effect Coefficient Standard t-ratio Approx. p-value
error d.f.
For INTRCPTL, S,
INTRCPT2, Yoo 483.000600 2.506586 192.693 78 <0.001
For CLASSTYP slope, B;
INTRCPT2, yio 9.087321 1.232934 7.370 5706 <0.001
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Final estimation of fixed effects
(with robust standard errors)

. - Standard ot Approx. ;
Fixed Effect Coefficient error t-ratio df p-value
For INTRCPTL, Bo

INTRCPT2, voo 483.000600 2.615873 184.642 78 <0.001
For CLASSTYP slope, S

INTRCPT2, y1o 9.087321 2.340424 3.883 5706 <0.001
Final estimation of variance components

Standard Variance 2

Random Effect Deviation Component d.f. X p-value
INTRCPT1, ug 21.41573 458.63366 78 1540.50368 <0.001
level-1, r 42 47716 1804.30900

Statistics for the current model
Deviance = 60034.676525
Number of estimated parameters =4

19.2.1.3 Afixed intercepts and a fixed treatment coefficient model

The command file, STARHM2B.HLM, contains the model specification input responses for the
fixed intercepts and a fixed treatment coefficient model. A conventional way to specify such
model is to include J — 1 school site dummy variables into the model. HLM2 offers a simple step

to set up the model.

Estimation Settings - HLM2
- e s ——— i

Type of Likelihood

Adaptive Gaussian Quadrature lteration Control

I Maximum number of iterations

MNumber of quadrature points

LaPlace lteration Control

r Maximum number of iterations

v Fixed Intercept, Random Coeffcient [ Diagonalize Tau I

Constraint of fixed eﬁects‘ Heterogeneous sigma"2

" Restricted maximum likelihood & Full maximum likelihood

" First derivative " Second denvative

—
—

—

| Multiple imputati0n|

Weighting | Latent Variable Regression | Plausible values‘

Variable Selection Model ‘ ITT effects | IV Effects ‘

Fix sigma"2 to specific value | computed

(Set to "computed” if you want sigma"2
random or if over-dispersion is desired)

Figure 19.2 Estimation settings — HLM2 dialog box
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After clicking OK, the fixed intercepts and fixed treatment coefficient will be displayed, as
shown in Figure 19.3. Note that the level 2 model for fy; is a no-intercept model.

File Basic Settings Other Settings Run Analysis Help

Outcome | | evEL 1 MODEL
Level-1
> Level-2 << | MATH; = By + £, (CLASSTYP,) + 1,

INTRCPT2
N_STUDEN

LEVEL 2 MODEL
Foj = Uy

By = Tio

Figure 19.3 The fixed intercepts and a fixed coefficient model specification for the
STARHM2B example

Here is the output:

Specifications for this HLM2 run
Problem Title: Random Intercept and Fixed Coefficient Model

The data source for this run = STARHM2.MDM
The command file for this run = STARHM2B.HLM
Output file name = him2.htm|

The maximum number of level-1 units = 5786
The maximum number of level-2 units = 79

The maximum number of iterations = 100
Method of estimation: full maximum likelihood

The outcome variable is MATH
Summary of the model specified

Step 2 model

Level-1 Model
MATHij = BOj + Blj*(CLASS_TYij) + Fjj
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Level-2 Model
Boj = Ugj
B1j = Y10
Mixed Model
MATHij =
+ VlO*CLASSTYPij + Uoj+ rij
Final Results - Iteration 6
Iterations stopped due to small change in likelihood function
o” = 1804.31836
The value of the log-likelihood function at iteration 6 = -2.973353E+004

Final estimation of fixed effects:

Standard t-ratio Approx.

Fixed Effect Coefficient
error d.f.

For CLASSTYP slope, ;
INTRCPT2, y1p 9.127153 1.233739 7.398 5706 <0.001

p-value

Final estimation of fixed effects
(with robust standard errors)

Fixed Effect Coefficient Standard t-ratio Approx.

error d.f.
For CLASSTYP slope,
INTRCPT2, y1o 9.127153 2.343758 3.894 5706 <0.001

p-value

Final estimation of variance components

Standard  Variance 2
Random Effect Deviation Component df. x° p-value

level-1, r 42 47727 1804.31836

Statistics for the current model
Deviance = 59467.054530
Number of estimated parameters = 2

19.2.1.4 Afixed intercepts and a random treatment coefficient model

The command file, STARHM2C.HLM, contains the model specification input responses for the
fixed intercepts and a random treatment coefficient model. Figure 19.4 displays the model
specified.
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File Basic Settings Other Settings Run Analysis Help

Outcome | | eyvEL 1 MODEL
Level-1
3 Level-2 << MATHU = ﬁOj + ﬂfj(CLASSTYPU} + ru.

INTRCPT2

N_STUDEN LEVEL 2 MODEL

Poj = Yy,

Py = Tao * Uy

Figure 19.4 The fixed intercepts and a random treatment coefficient model
specification for the STARHM2C example

Here is the output:

Problem Title: Fixed Intercepts and A Random Treatment Coefficient Model

The data source for this run = STARHM2.MDM
The command file for this run = STARHM2C.HLM
Output file name =STARHM2C.HTML

The maximum number of level-1 units = 5786
The maximum number of level-2 units = 79

The maximum number of iterations = 100

Method of estimation: full maximum likelihood

The outcome variable is MATH
Summary of the model specified

Step 2 model

Level-1 Model
MATHiJ' = BOJ' + Bll*(CLASSTYP“) + Tj
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Level-2 Model
BO] = Uy;
B1j = Y10 + Uy

Mixed Model
MATHij =
+ VlO*CLASSTYPij + Ug + Ulj*CLASSTYPij + T
Final Results - Iteration 11
Iterations stopped due to small change in likelihood function

0° =1742.81131

T
CLASSTYP,B:1 301.75903

T (as correlations)
CLASSTYP,8; 1.000

Random level-1 coefficient  Reliability estimate
CLASSTYP,B; 0.705

The value of the log-likelihood function at iteration 11 = -2.968392E+004

Final estimation of fixed effects:

Fixed Effect Coefficient Standard t-ratio Approx. p-value
error d.f.
For CLASSTYP slope,
INTRCPT2, y1o 8.538461 2.328306 3.667 78 <0.001
Final estimation of fixed effects
(with robust standard errors)
Fixed Effect Coefficient Standard t-ratio Approx. p-value
error d.f.
For CLASSTYP slope, ;
INTRCPT2, y1o 8.538461 2.327321 3.669 78 <0.001
Final estimation of variance components
Random Effect Standard  Variance ¥ p-value

Deviation Component

CLASSTYP slope, u; 17.37121  301.75903 78 280.89921 <0.001
level-1, r 41.74699 1742.81131

Statistics for the current model
Deviance = 59367.836357
Number of estimated parameters = 3

19.2.1.5 Summary of the results

Table 19.1 summarizes the results for the three models.
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Model A Random Intercept Fixed Intercepts and a Fixed Intercepts and a
and A Fixed Treatment | Fixed Treatment Random Treatment
Estimate Coefficient Coefficient Coefficient

Average Treatment
Effect 9.087321 9.127153 8.538461
Model-Based Standard
Error of Average 2.340424 1.233739 2.328306
Treatment Effect
Robust Standard Error of
Average Treatment 2.340424 2.343758 2.327321
Effect8

. 301.75903
\éﬁgitnce of Treatment NA NA (X2 = 280.89921,

df =78, p <0.001)

Table 19.1 Summary of the treatment estimates from the three models

The results of the FIRC models with a minimum of assumptions suggest that there is evidence of
cross-site variation in the program impact.

19.2.2 An example of HLM3 FIRC

The above illustrative example ignores a level of nesting--the classroom level, thus a three-level
model with students nested within classrooms within schools will better accommodate the data

structure.

19.2.2.1 HLM3 Statistical package input

There are three data files for the HLM3 FIRC analysis: the student-, classroom-, and school-level

files.

Level-1 file. The level-1 file, STAR1.SAV has math and reading proficiency data of 5,786
students participated in STAR. The variables are:

e MATH a math test in IRT scale score metric
e READING areading test in an IRT scale score metric

Level-2 file. The level-2 file, STAR2.SAV has class treatment type data collected from 325
classrooms that the students attended. The variable is:

e CLASSTYPan indicator of class type (1 = small with 13-17 students, 0 = other)

Level-3 file. The level-3 file, STAR3.SAV has data collected from 79 schools that the students
attended. The variable is:

e SIZE

school size

8 See Section 1.9 for a discussion of the robust standard errors.
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Note that CLASSTYP is now a classroom-level variable. Using HLM3, the MDM file
STARHM3.MDM is created.

19.2.2.2 An annotated example of HLM3 FIRC

The command file, STARHM3A.HLM, contains the model specification input responses for the
fixed intercepts and a fixed treatment coefficient model. Figure 19.5 displays the model
specified.

File Basic Settings Other Settings Run Analysis Help

Outcome | pyEl 1 MODEL
>> Level-1 <<

Level-2 MATH,, = T
INT;E:‘;'? LEVEL 2 MODEL
ok = Pook ¥ Bogx(CLASSTYP ;) + 1

MATH
LEVEL 3 MODEL
Pook = Yook

Fok = To10 * Yok

Figure 19.5 The fixed intercepts and a random treatment coefficient model
specification for the STARHM3 example

Here is the output:

Specifications for this HLM3 run
Problem Title: Fixed Intercepts and a Random Treatment Coefficient Model
The data source for this run = STARHM3.MDM

The command file for this run = STARHM3A.HLM
Output file name = STARHM3A.HTML
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B

The maximum number of level-1 units = 5786
The maximum number of level-2 units = 325
The maximum number of level-3 units = 79
The maximum number of iterations = 100
Method of estimation: full maximum likelihood
The outcome variable is MATH

Summary of the model specified

Level-1 Model
MATHijk = Tojk + €ijk

Level-2 Model
Mok = Book + Bou*(CLASSTYPy) + roj

Level-3 Model
Book = Uook

Bok = Yo1o0 + Uoik

Mixed Model
MATHijk = V*CLASSTYPJk+ rojk + Ugik + Uik *CLASSTYP]k + eijk

For starting values, data from 5786 level-1 and 325 level-2 records were used
Final Results - Iteration 46

Iterations stopped due to small change in likelihood function

Standard errors for o%,1,;, and Tg are not computable.

o® = 1597.25481

Tn

INTRCPT1,mq 262.45362

INTRCPT1
CLASSTYP, o1
68.18371
Tg (as correlations)
INTRCPT1/CLASSTYP,Bo; 1.000

Random level-2 coefficient Reliability estimate
INTRCPT1/CLASSTYP,Bo; 0.149

The value of the log-likelihood function at iteration 46 = -2.955771E+004
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Final estimation of fixed effects:

. - Standard | .. Approx. ;
Fixed Effect Coefficient error t-ratio df p-value
For INTRCPTL, mq

For CLASSTYP, Bo1

INTRCPTS3, Vo10 8.744220 2.406371 3.634 78 <0.001
Final estimation of fixed effects (with robust standard errors)
Fixed Effect Coefficient Standard t-ratio Approx. p-value
error d.f.
For INTRCPTL, mq
For CLASSTYP, Bo1
INTRCPTS3, yo10 8.744220 2.386153 3.665 78 <0.001
Final estimation of level-1 and level-2 variance components
Random Effect Standard - Variance df. ¥ p-value

Deviation Component
INTRCPT1,rg 16.20042 262.45362 167 684.59376 <0.001
level-1, e 39.96567 1597.25481

Final estimation of level-3 variance components

Standard  Variance 2
Random Effect Deviation Component df. x p-value

INTRCPT1/CLASSTYP,uy; 8.25734 68.18371 78 87.77158 0.210

Note that the between-school variance of the treatment effect is now 68.18, as compared
to 301.76 when the classroom level was ignored.

Statistics for the current model
Deviance = 59115.428958
Number of estimated parameters =5

301



20 Multivariate HLM2 from Incomplete Data based on
Automated Multiple Imputation

20.1 Conceptual Background Regarding Automated Multiple Imputation

Missing data are a ubiquitous problem in most social sciences research. In multilevel studies,
explanatory as well as outcome variables may be subject to missingness at any of the levels. It is
extremely important to use an multilevel imputation model when the analysis model is a
multilevel model. If one uses a single-level imputation procedure and then subjects the multiply
imputed data to multilevel analysis, one can anticipate significant bias.

HLM offers a completely automated procedure to handle ignorable missing data in two-level
models (Y. Shin & S. W. Raudenbush, 2013). The user first specifies a two-level HLM model.
This model is flexible in that it can involve multiple outcome variables, including a mixture of
level-1 and level-2 outcomes. The program then i) searches the variables that have missing
values; ii) estimates a multivariate imputation model; iii) generates multiple imputed data sets,
1v) analyzes each of these according the user’s specified model; and averages the results using
“Rubin’s rules”(Rubin, 1987). Users can also specify a list of “auxiliary variables” at each of the
two levels, ones that are not needed for the substantive analysis but that contain information
about the missing data. These variables are used in the estimating the imputation model to
improve the precision of the analysis and to improve robustness. The imputation model is
estimated using full-information maximum likelihood.

20.1.1 Logic and assumptions of the approach

HLM implements the multiple imputation of missing data in multilevel studies developed by Shin
and Raudenbush (2013). The key idea is to re-express a desired hierarchical model as the joint
distribution of the outcomes and all variables that are subject to missingness, conditional on all
of the covariates that are completely observed, and to estimate the joint model. We present an
example of a general two-level random intercept model, as described in Shin (2013), to illustrate
the logic and assumptions of the approach. Shin and Raudenbush (2013) provide the details of
the estimation and of a more general framework that could handle “ignorable” missing data. The
key assumption is that the data are missing at random (“MAR”- Little & Rubin, 2002).. MAR
means that the missing pattern is conditionally independent of missing data given the observed
data, and provides robust inferences when the observed data contain substantial information
about the missing values.

20.1.1.1 A Random Intercept HLM2 model

A random intercept model with a level-1 and a level-2 predictor, as discussed in Section 1.1, can
be expressed as consisting of two models.

Level-1 model. The level-1 model is
Yo = o + 78 + & (20.1)

where
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T oj IS the intercept,
7,, is the level-1 coefficient of predictor X;;, and
e, is the level-1 random effect, and it is assumed that e, ~ N(0,5?).

Level-2 model. The level-2 model is

Toi = ﬁoo + ﬁmxi + (20 2)
i = ﬁlo

where

Yoo, Yo1, and y1p are level-2 coefficients;
Wi; is a level-2 predictor; and
Uoj is a level-2 random effect and it is assumed that uoj ~ N(0,7).

Mixed model. The mixed or combined model is
Yti = :800 +:801xi +:810a:i + 1 & (20-3)

When the outcome, Y,, and the level-1 and level-2 predictors, a; and X,, are subject to

missingness, there will be a total of seven possible missing data patterns for individual i in unit j,
I.e., one, two, or all three values of (Y,,a,, X,) could be missing. . The imputation model is

8 |=| | +| By |+ & (20.4)
X, a, b, 0
where

a1, az, and oz are the means of (Y,;,a,, X,) ;

bij, byj, and bs; are level-2 specific effects, and they are assumed to be multivariate normally
distributed with a mean vector of zero and variance-covariance matrix T; and

&y and &, are level-1specific effects, and they are assumed to be bivariate normally

distribution with a mean vector of zero and variance and covariance matrix ).

HLM estimates 20.4 in which all variables having missing values are regressed on all variables
having complete data; it then uses the parameter estimates to generate M imputed data sets; it
then analyzes each of these in turn and combines the results using the “Rubin’s rules,” as
described in Section 11.2.1.

To improve the precision and robustness of the analysis, the user can specify a list of “auxiliary
variables.” These are variables that are not needed for the substantive analysis, but that contain
information about the missing data. They are used in the estimation of the imputation model and
therefore influence the imputed data sets. However, they are not included in the user’s desired
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models. The auxiliary variables can include a mixture of level-1 and level-2 variables and may or
may not themselves be subject to missingness.

The user can also output all of the multiply-imputed data sets for further analysis for analysis
using HLM or another program. With the analysis of incomplete data routine, the program allows
users to specify and analyze a general class of univariate and multivariate models in which there
is an arbitrary number of outcome variables defined at either level 1 or level 2.

20.2 Working with Automated Multiple Imputation in HLM2

HLM2 analyses of incomplete data can be executed in Windows, interactive, and batch modes.
To illustrate the operation of the program, we use the data from the Early Childhood
Longitudinal Student Kindergarten Cohort (ECLS_K) of 1998 (Tourangeau, Nord, L&, Sorongon,
& Najarian, 2009). The study followed the children in fall kindergarten (K) of 1998, spring-K of
1999, fall-first grade (G1) of 1999, spring-G1 of 2000, spring-third grade (G3) of 2002, spring-
fifth grade (G5) of 2004 and spring-eighth grade (G8) of 2007. Windows mode execution is
illustrated.

20.2.1 An example using Analysis of Incomplete Multilevel Data in
Windows mode

We first run a complete case analysis studying how income is related to the trajectories of
mathematics and reading proficiency; then we illustrate a three-step procedure to perform an
analysis of incomplete multilevel data (Shin, 2013; Shin & Raudenbush, 2007).

20.2.1.1 HLMZ2 Statistical package input

We will use SPSs file input in our example. There are two data files for the HLM2 analysis of
incomplete multilevel data.

Level-1 file. The level-1 file, ECLK981.SAV, has 148,470 observations collected on 21,210
children between fall kindergarten and spring-eight grade.

There are three variables:

e MATH a math test in IRT scale score metric
e READING areading test in an IRT scale score metric

e GRADE the grade level minus 3 of the child at each testing occasion. Therefore, it is O at
Grade 3.
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£ CHILDID < MATH

1 1.00 39.54
2 1.00 50.10
3 1.00 .
4 1.00 96.04
5 1.00

3 1.00

7 1.00 .
8 2.00 44.44
9 2.00 58.93
10 2.00 .
11 2.00 76.33
12 2.00 124 61
13 2.00 152.24
14 2.00 168.77

& READING

36.58
4937

a87.32

50.82
83.50

165.63
185.22
192.70
206.63

£ GRADE

-3.80
-3.00
-2.80
-2.00
.00
2.00
500
-3.80
-3.00
-2.80
-2.00
.00
2.00
500

Figure 20.1 First fourteen records from two children in the ECLK981.SAV dataset

Note that Child 1 in School 1 has missing data at the third and five to seventh occasions.

Level-2 file. The level-2 units are 21,210 children. The data are stored in the file ECLK982.SAV.

There are three variables of interest:

e INCOME income of the family

e PARSCR a parental occupational prestige score
e BLACK an indicator for ethnicity (1 = African American, O = other)

In creating the MDM file, we inform WHLM that there are missing data at level 1 and instruct the
program to delete cases while performing analyses. The response file, ECLK98.MDMT, contains
a log of the input responses for creating the MDM file, ECLK98.MDM. Below are the descriptive
statistics:

LEVEL-1 DESCRIPTIVE STATISTICS

VARIABLE NAME N MEAN SD MINIMUM MAXTIMUM
MATH 94543 69.07 44 .41 10.51 172.20
READING 92208 87.39 53.05 21.01 208.90
GRADE 148470 -0.57 2.88 -3.50 5.00

LEVEL-2 DESCRIPTIVE STATISTICS

VARIABLE NAME N MEAN SD MINIMUM MAXIMUM
INCOME 14439 5.31 6.44 0.00 14.18
PARSCR 20122 39.47 21.34 0.00 77.50
BLACK 21210 0.15 0.36 0.00 1.00

At Level 1, there are 36% missing data on math proficiency, at level 2, there are 32% of income
missing.
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20.2.1.2 An annotated example of HLM2 analyses with complete cases

We first perform a complete case analysis studying income inequality in the average level and
growth of mathematics and reading proficiency. To set up a model with both the mathematics
and reading outcomes, after selecting MATH as the outcome, we add READING as an additional
outcome, as shown in Fig. 20.2.

WHLM: hlm2 MDM File: ECLKS8.MDM — O e
File Basic Settings Other Settings  Run Analysis  Help
Outcome || pyEl 1 MODEL -
>> Level-1 <<
Level-2 MATH, = 7 + &y
INTRCPT1
READIM~ LEVEL 2 MODEL
MATH Outcome variable
GRADE add wariable uncentered

add wvariable group centered
add wariable grand centered
Delete variable from model

Add additional outcome variable

S

Mixed| +

Figure 20.2 Model window for the bivariate outcome model

Then we add the level-2 variable INCOME to predict the trajectories of the mathematics and
reading proficiency. The model is displayed in Figure 20.3.

LEVEL 1 MODEL

READING; = #, + r3,(GRADE,) + &,

MATH; = 7y + 75 (GRADE) + &y

LEVEL 2 MODEL
Toi = Boo * Boy(SQRTINC, - SQRTINC ) + 1y,

m; = B
A = By * By (SQRTING, - SQRTING ) +
T = Py

Figure 20.3 Model window for the income inequality model
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Specifications for this HLM2 run
Problem Title: complete case analysis

The data source for this run = ecls_growth2.mdm
The command file for this run comp_case.him
Output file name = complete_case.html

The maximum number of level-1 units = 148470
The maximum number of level-2 units = 21210
The maximum number of iterations = 100
Method of estimation: full maximum likelihood

Note that the data include 148,470 level-1 records and 21,210 level-2 records

Summary of the model specified
Step 2 model
Level-1 Model

READ'NG“ =TI + Tl'li*(GRADEti) + €

MATH; = 115 + 3*(GRADE) + €y
Level-2 Model

moi = Boo + Por*(SQRTINC)) + ro;

i = Bio

M2 = Bao + B21*(SQRTING)) + 1y

13 = Bao

SQRTINC has been centered around the grand mean.
Run-time deletion has reduced the number of level-1 records to 66244

Run-time deletion has reduced the number of level-2 records to 14227

Note that in using only the cases with complete data, the sample size has been reduced from
148,470 to 66,244 level-1 records and from 21,210 to 14,227 level-2 records.

Multivariate Results - Iteration 11
NOTE: level-1 and level-2 slopes have been duplicated across all level-2 equations.
Iterations stopped due to small change in likelihood function

2
READING /INTRCPT2  400.82401 223.10221
MATH /INTRCPT2 223.10221 226.33769

Standard errors of X

READING /INTRCPT2 2.47540 1.63818
MATH /INTRCPT2 1.63818 1.39974
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% (as correlations)
READING /INTRCPT2 1.000 0.741

MATH /INTRCPT2 0.741 1.000
Tau

READING 179.35413 128.60219

MATH 128.60219 148.38418

Standard errors of Tau
READING 3.27465 2.51379
MATH 2.51379 2.42009

Tau (as correlations)
READING 1.000 0.788
MATH 0.788 1.000

Final estimation of fixed effects

Fixed Effect Coefficient Standard t-ratio Approx.
error d.f.

For READING /INTRCPT2
INTRCPT2 88.020042 0.399905 220.103 21208 <0.001
SQRTINC 2.274971 0.047271 48.127 21208 <0.001
GRADE 17.440996 0.030265 576.270 21209 <0.001

For MATH /INTRCPT2
INTRCPT2 70.532434 0.343039 205.610 21208 <0.001
SQRTINC 1.914606 0.040636 47.116 21208 <0.001
GRADE 14.632042 0.022925 638.269 21209 <0.001

p-value

The value of the log-likelihood function at iteration 11 = -5.563652E+005

20.2.1.3 An annotated example of HLM2 with analysis of incomplete data using
multiple, model-based imputation

The results show that income is positively associated with both the mean of math and reading
proficiency at Grade 3 as well as the linear growth of both proficiencies. This complete case
analysis assumed that the data were missing completely at random (“MCAR” - Rubin, 1976).
MCAR is a very strong assumption indicating that the missing data are a simple random sample
from the complete data. When this strong assumption was untenable, such analysis, in general, is
inefficient and will generally result in biased inferences.

20.3 An annotated example of HLM2 analysis of incomplete data

HLM analysis of incomplete data has three major steps (Shin, 2013; Shin & Raudenbush, 2007):

1. Specify the desired models given incompletely observed multilevel data as described in
Section 20.2.1.2.

The model specified by the user is the same as that just estimated. However, both the
mathematics and reading proficiency variables at level 1 and the INCOME variable at level 2 have
missing data. The GRADE variable has no missing data. With the analysis of incomplete
multilevel data, HLM automatically reparameterizes the models as the joint distribution of the
math and reading outcomes and the variables subject to missingness conditional on the
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completely observed variables. HLM then efficiently estimates the joint distribution using
maximum likelihood under the assumption of multivariate normality.

2. Generate multiply-imputed complete data based on the ML estimates of the joint model. The
procedure consists of

a. Opening the Other Settings menu and selecting the Estimation Settings to open the
Estimation Settings — HLM2 dialog box (See Figure 20.4).

Estimation Settings - HLM2
stimation s

Type of Likelihood
f« Restricted maximum likelihood " Full maximum likelihood

Adaptive Gaussian Quadrature lteration Control

[ Maximum number of iterations
Mumber of quadrature points

" First derivative " Second derivative
LaPlace Iteration Control
B Maximum number of iterations
||
[ Fixed Intercept, Random Coeffcient [ Diagonalize Tau [ |
Constraint of fixed eﬁect5| Heterogeneous sigma*2 | Automatic Imputatinn‘ Multiple imputati0n| |
| Level-1 Deletion Variables ‘ Weighting | Latent Variable Regression | Plausible walues|
Variable Selection Model ‘ ITT effects | [V Effects ‘
il Fix sigma®2 to specific value | computed
| (Set to "computed” if you want sigma*2 oK
| random or if over-dispersion is desired)

Figure 20.4 Estimation Settings — HLM2 dialog box
Click Automatic Imputation to open the Automatic Multiple Imputation dialog box (see
Figure 20.5). We have selected 10 data sets.

We also choose 2 “augmentation” variables, sometimes called auxiliary variables to improve the
imputations. “PARSCAR” is a measure of occupational status and should be a good predictor of
income. “BLACK” is an indicator for African-American background.
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MNumber of datasets to generate (set to 0 to turn off feature) |10 Action when maximum number of iterations achieved without convergence
[ keep .mdm files + Continue iterating
[~ keep imputed raw data files " Stop iterating
[~ keep imputed raw data statistics files Random seed (not necessary to set) Mot set
MNumber of (micro) iterations in sub-analyses 100 Additional level-1 variables in imputed ﬁles| Additional level-2 variables in imputed files
Level-1 Augmentation Variables (double-click to move between columns) Level-2 Augmentation Variables (double click to move between columns)
PARED PARSCR
R2_KAGE BLACK
FEMALE
HISPANIC
ASIAN
PACIFIC
AMIMNDIAN
OTHER
e — =

Figure 20.5 Automatic Multiple Imputation dialog box

c. Enter the number of datasets to generate. We enter 10 as a pilot for this example. There is an
option to set a random seed number. Users have the option to save the multivariate data matrix
files for each data set and keep imputed raw data files that they may like to analyze further using
HLM or another program. They can also ask for a record of imputed raw data statistics (see
Figure 20.5).

3. Analyze the desired model by complete-data analysis given the multiple imputation. Click OK
on the Automatic Multiple Imputation dialog box, then click OK on the Estimation Settings —
HLM2 dialog box. Save and run the model.

The results of the analysis are given below.

Specifications for this HLM2 run
Problem Title: multiple imputation analysis with augmentation

The data source for this run = ecls_growth2.mdm

The command file for this run = mult_imput_aug.hlm
Output file name = mult_imp_aug_avg.html

The maximum number of level-1 units = 148470

The maximum number of level-2 units = 21210

The maximum number of iterations = 100

Method of estimation: full maximum likelihood

Automatic imputation random number seed: -1563333359
Summary of the model specified
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Level-1 Model

READING; = 11g; + T*(GRADEy) + &y
MATH;; = 1Ty + TT3*(G RADEU) + €

Level-2 Model

Toi = Boo + Bor*(SQRTINGC)) + ro;
i = Bao
o = Bao + B2r*(SQRTING)) + 1y
T3 = Bao

Run-time deletion has reduced the number of level-2 records to 21177

Imputation Model Results - Iteration 12

NOTE: level-1 and level-2 slopes have been duplicated across all level-2 equations.
Iterations stopped due to small change in likelihood function

z*
READING /INTRCPT2 384.59710 212.27386
MATH /INTRCPT2 212.27386 218.08554

Standard errors of 2*
READING /INTRCPT2 2.01342 1.32284
MATH /INTRCPT2 1.32284 1.13236

2 (as correlations)
READING /INTRCPT2 1.000 0.733

MATH /INTRCPT2 0.733 1.000

Tau*
READING 219.61749 162.47932 18.88858 89.97725
MATH 162.47932 172.81037 15.57391 72.71537

INTRCPT1/ SQRTINC  18.88858 15.57391 8.49343  24.58023
INTRCPT1/ PARSCR 89.97725 72.71537  24.58023 271.33135

Standard errors of Tau*
READING 3.11204 2.39569 0.43120 2.16650
MATH 2.39569 2.24130 0.36548 1.83209
INTRCPT1/ SQRTINC  0.43120 0.36548 0.09854 0.41885
INTRCPT1/ PARSCR 2.16650 1.83209 0.41885 2.70453

Tau (as correlations)
READING 1.000 0.834 0.437 0.369
MATH 0.834 1.000 0.407 0.336
INTRCPT1 / SQRTINC 0.437 0.407 1.000 0.512
INTRCPT1 / PARSCR 0.369 0.336 0.512 1.000
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Final estimation of fixed effects (Imputation model)

. - Standard . Approx.
Fixed Effect Coefficient error t-ratio df
For READING /INTRCPT2

INTRCPT2 105.186989 0.137141 767.001 106050 <0.001

BLACK -8.957698 0.348835 -25.679 106050 <0.001

GRADE 17.364407 0.025382 684.125 21209 <0.001
For MATH /INTRCPT2

INTRCPT2 85.276019 0.116036 734.912 106050 <0.001

BLACK -9.810738 0.295823 -33.164 106050 <0.001

GRADE 14585079 0.019155 761.426 21209 <0.001
For SQRTINC

INTRCPT2 7.892670 0.024780 318.504 21208 <0.001

BLACK -2.151829 0.068689 -31.327 21208 <0.001
For PARSCR

INTRCPT2 42.878649 0.125462 341.766 21208 <0.001

BLACK -0.272788 0.327137 -28.345 21208 <0.001

p-value

The value of the log-likelihood function at iteration 12 = -9.006426E+005

Note that the two outcomes, reading and math (at level 1) are in the multivariate model as outcomes.
Also note that the predictor SQRTINC, which is subject to missingness, is also an outcome. In
addition, the augmentation variable PARSCR is an additional outcome because HLM has found that it
is subject to missingness. All outcomes are regressed on GRADE and BLACK, which are completely
observed.

The results for the user specified model are below.

Final Imputation Model Results - 10 Imputations

2
READING /INTRCPT2 385.72825 211.59869
MATH /INTRCPT2 211.59869 217.84582

Standard errors of X
READING /INTRCPT2 1.29524 1.28592
MATH /INTRCPT2 0.54992 1.23742

2 (as correlations)
READING /INTRCPT2 1.000 0.730

MATH /INTRCPT2 0.730 1.000
Tau

READING 187.73964 137.45631

MATH 137.45631 154.13887
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Standard errors of Tau
READING 2.37041 1.86367
MATH 1.86367 1.80465

Tau (as correlations)
READING 1.000 0.808
MATH 0.808 1.000

Final estimation of fixed effects

Fixed Effect  Coefficient  >tandard i rarig  APProx.

error d.f.
For READING /INTRCPT2
INTRCPT2 86.624227 0.293843 294.797 4814 <0.001#

p-value

SQRTINC 2.229091 0.036345 61.331 12 <0.001#

GRADE 17.371634 0.081062 214.301 9 <0.001#
For MATH /INTRCPT2

INTRCPT2 69.271059 0.581186 119.189 14 <0.001#

SQRTINC 1.882094 0.081095 23.209 12 <0.001#

GRADE 14.593083 0.056957 256.214 10 <0.001#

The p-vals above marked with a “#” should regarded as a rough approximation.

Note the small degrees of freedom. This reflects the large amount of missing data, particularly on
income. The degrees of freedom can be increased by increasing M, the number of data sets.

20.3.1 Cross-Level Interactions

When working with the missing data program, cross-level interactions are presented differently than
has been standard in HLM.

Consider for example the univariate model

Yo = 7o + 718 + €
Zoi = Boo + Lo X + 1y
i = ﬂm + ﬂllxi

Suppose that the predictor X is subject to missingness. It must therefore be put on the left side of the
imputation model. However, modeling X as a predictor of 7z, induces an interaction between a and X

as we can see by inspecting the mixed model

Yo = Boo + B Xi + Biotoi + B Xidy + 1 +€;.

Because X is missing, so is Xa;, so it must also be put on the left. Technically, many such

interaction terms will not follow a normal distribution. However, the robustness of the procedure to
failure of normality can typically be improved by centering both predictors a and X.

Here is how HLM will represent the model results:
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Final estimation of fixed effects
(with robust standard errors)

Fixed Effect Coefficient eSr;tgpdard t-ratio déf?prox. p-value Flr\flticsg(i)nngolfnfo.
For INTRCPTL, mq
INTRCPT2, Boo 84.780324 0.381040 222.497 71 <0.001 0.282
SQRTINC, Box  2.475539 0.047462 52.158 60 <0.001 0.301
For GRADE slope, m;
INTRCPT2, B1p 15.345154 0.098909 155.145 18 <0.001 0.470
For CPROD1 slope, 1,
INTRCPT2, B 0.249093 0.012099 20.588 16 <0.001 0.483

CPRODL1 is the generated cross-product of GRADE*SQRTINC.
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A Using HLM2 in interactive and batch mode

This appendix describes and illustrates how to use HLM2 in batch mode to construct MDM files, to
execute analyses based on the MDM file, and to specify a residual file to evaluate model fit. It also
lists and describes command keywords and options. References are made to appropriate sections in
the manual where the procedures are described in greater details.

A.1 Using HLM in batch and/or interactive mode

HLM users can control which questions come to the screen by means of a command file. At one
extreme, the command file is virtually empty and questions regarding every possible optional
procedure or output will come to the screen. At the other extreme, the command file specifies the
answer to every question that might arise, in which case the analysis is performed completely in
batch mode. In between the two extremes are a large number of possibilities in which various
questions are answered in the command file while other questions come to the screen. Hence, the
execution can be partly batch and partly interactive.

An example of a command file for the Intercept and Slopes-as-Outcomes Model for the HS&B data is
shown below. The italicized comments provide a brief description of each command function. A
complete overview of each of the keywords and related options in this command file appears in the
Section A.2.

#This command file was run with HSB.MDM Indicates which MDM was used.
NUMIT:100 Sets the maximum number of iterations.
STOPVAL : ©.0000010000 Sets the criteria for automatically stopping the iterations.
NONLIN:N Switch to do a non-linear analysis.
LEVEL1 :MATHACH=INTRCPT1+SES, 1+RANDOM Specifies the Llevel-1 model.

LEVEL2: INTRCPT1=INTRCPT2+SECTOR+MEANSES+RANDOM/SIZE, PRACAD, DISCLIM, HIMNTY
LEVEL2 :SES=INTRCPT2+SECTOR+MEANSES+RANDOM/SIZE, PRACAD, DISCLIM, HIMNTY
Specifies the Llevel-2 model and other Level-2
predictors for possible inclusion in subsequent models
for both intrcptl and the ses slope.

LEVELIWEIGHT: NONE Specifies level-1 weight variable.
LEVEL2WEIGHT: NONE Specifies level-2 weight variable.
RESFIL:N Controls whether a residual file is created.
HETEROL1VAR:N Specifies an analysis with a heterogeneous sigma2.
ACCEL:5 Controls frequency of use of accelerator.
LVR:N Specifies a latent variable regression model.
LEV1OLS:10 Controls the number of Llevel-1 OLS regressions
printed out.
MLF: N Specifies restricted maximum Likelihood.
HYPOTH:N Disables some optional hypothesis testing procedures.
FIXTAU:3 Alternative options for generating starting values.
CONSTRAIN:N Estimates a model with constrained level-2 coefficients.
OUTPUT:HSB1.0UT File where HLM2 output will be saved.
FULLOUTPUT: Y Controls amount of output in output file.
TITLE: Intercept and Slopes-as-Outcome Model Title on page 1 of output.

An user can rename the file with or without modification with a plain text (AsScIl) editor for
subsequent batch-mode application. For instance, he or she may request the program to print out all
the level-1 OLS regressions by changing the LEV10LS:10 to LEV10LS:160 and rename the file to
HSB2.MLM. The user can execute the analysis by typing:
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HLM2 HSB.MDM HSB2.MLM

at the system prompt. As the run is fully specified in the command file HSB2.MLM, no questions will
come to the screen during its execution. This is full batch mode. The user may choose a fully
interactive execution mode or an execution mode that is partly interactive and partly batch. With
partly interactive, partly batch mode, some specification occurs in the command file; the program
prompts the user with questions for the remaining program features. Some users may find this a
useful way to suppress some the questions relating to less often used features of the programs. Fully
interactive mode is invoked when one of the programs is invoked without a second argument, i.e.,

HLM2 HSB.MDM

In this case, all of the possible questions will be asked with the exception relating to type of
estimation used. (mif:y must be specified in the command file).

A.2 Using HLM2 in batch mode

A command file consists of a series of lines. Each line begins with a keyword followed by a colon,
after the colon is the option chosen by the user, i.e.,

KEYWORD : OPTION

For example, HLM2 provides several optional hypothesis-testing procedures, described in detail in
the Sections 2.9.2 to 2.9.4. Suppose the user does not wish to use these optional procedures in a
given analysis. Then the following line would be included in the command file:

HYPOTH:N

The keyword HYPOTH concerns the optional hypothesis testing procedures; the option chosen, 'N',
indicates that the user does not wish to employ these procedures. Alternatively, the user might
include the line:

HYPOTH:Y

This prompts HLM2 to activate the optional hypothesis testing menu during model specification in
the interactive mode. Lines beginning with a pound (#; also called hash mark) are ignored and may
be used to put comments in the command file.

HLM2, by default, has set up the following options unless the user specifies an alternative command
file.

STOPVAL:0.0000010000 Sets convergence criterion to be ©.000001.
ACCEL:5 Use accelerator once after five iterations.
FIXTAU:3 Use the “standard” computer-generated values for the variances

and covariances.
MLF:N Use the restricted maximum Likelihood approach.

Table A.1 presents the list of keywords and options recognized by HLM2. Examples with detailed
explanation follow.
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Table A.1 Keywords and options for the HLM2 command file

Keyword Function Option Definition
INTRCPT1
Level-1 intercept
+VARNAME . .
LEVEL1 Level-1 model Level-1 predictor (no centering)

specification

Level-1 predictor centered around group (or level-2 unit) mean

+VARNAME, 1 Level-1 predictor centered around grand mean
+VARNAME,2
INTRCPT2 Level-2 intercept
Level-2 model +VARNAME Level-2 predictor (no centering)
LEVEL2 specification +VARNAME,2 Level-2 predictor centered around grand mean
P List after the slash level-2 variables for exploratory analysis and
+/VARLIST “t-t-enter” statistics on subsequent runs
Maximum
POSITIVE
NUMIT pumb_er of INTEGER
iterations
Controls iteration . .
>
ACCEL acceleration INTEGER=3 Selects how often the accelerator is used. Default is 5.
Number of units
for which OL POSITIVE .
LEVIOLS equations should  INTEGER Default is 10.
be printed
Constraining of N No constraining
CONSTRAIN gammas Y Yes: two or more gammas will be constrained

The program will prompt the user interactively to set the constraints. Alternatively, constraints can be
set in the command file. For example, suppose the following coefficients were estimated:
Your Ya1r Vaor Vor @Nd we wish to specify y,, = y,,, we add the following command line:

CONSTRAIN: 0,0,1,1.

For the following coefficients: yu,, 761, 702+ 7101 711, 722, the command line:

CONSTRAIN: ©,1,2,0,1,2

will have the following result: y,, =7, and y,, =

Y2+

Note that all coefficients sharing the value “0” are free to be estimated independently.

Y
Select optional
HYPOTH hypothesis
testing menu N

Yes: send optional hypothesis testing menu to the screen during
interactive mode use.

No. (Note, during batch execution, HYPOTH:N should be
selected to suppress screen prompt. Select desired options
through keywords below.

Specifies a
particular

GAMMA# multivariate
contrast to be
tested.

In any single run, HLM2 will test up to 5 multivariate
hypotheses. Each hypothesis may consist of up to 5 contrasts.
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Table A.1 Keywords and options for the HLM2 command file (continued)

Each contrast is specified by its own line in the command file. The contrast associated with the first
hypothesis is specified with the keyword GAMMAL. For example, the contrast shown in Fig 2.37 can be
specified by adding the following lines:

GAMMA1:0.0,1.0,0.0,0.0,0.0,0.0

GAMMA1:0.0,0.0,0.0,0.0,1.0,0.0
For the second hypothesis, the keyword is GAMMA2 and for the third it is GAMMA3 (See Section 2.9.2
for further discussion and illustration.)

HOMVAR Test homogeneity of N No
level-1 variance v Yes
DEVIANCE De_zviance stgtistic from POSITIVE REAL 2 _* Iog-l_ikelihood at  maximum-
prior analysis NUMBER likelihood estimate
Degrees of freedom
associated with deviance
DE statistics from prior POSITIVE
analysis (use only if INTEGER
“DEVIANCE” has been
specified)
1 Set all off-diagonal elements to 0
5 Manually reset starting values
Method of correcting Automatic fix-up (default)
FIXTAU unacceptable starting 3 Terminate run
values 4 Stop program even if starting values are
acceptable; display starting values and
5 then allow user to manually reset them.
HETERO1VAR " No_ el
VARLIST Variable list
N 2
Default: does not restrict © .
FIXSIGMA2 Controls & REAL o -
NUMBER>0 Fixes to the specified value.

LEVELIWEIGHT
LEVEL2WEIGHT

Specifies design weights

Variable name

Allows specification of design weights at
the respective levels. Example
levellweight:weightl

This keyword only comes into play when
the user has opted for deleting data at
analysis time while making the MDM

LEVEL1DELETION Level-1 deletion list VARLIST file. By default in such cases, deletion is
done on the variables in the model. See
section 2.9.2.2 for more details.

Convergence criterion . e

STOPVAL for maximum likelihood POSITIVE REAL  Example: 0.000001. Can be specified to

estimation

NUMBER

be more (or less) restrictive.
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Table A.1 Keywords and options for the HLM2 command file (continued)

Controls maximum N No _ .
MLFE likelihood estimation Yes, full maximum likelihood.
method Y Produces standard errors of T and O
Controls fixed N No
FIRC Intercept, random Y Use feature as documented in [insert reference]
coefficient feature
N No
Yes — this may be followed by two /'s denoting
Create level-1 residual Y/[vI1])/[vI2] the two levels that can be in_ the residual fil_e.
RESFIL1 file By default, all the variables in the model will
be present in the residual file, this can be added
to put additional variables. VI1 and vI2 are lists
of comma-separated variables
Y Yes
RESFIL2 Create a residual file N No
List after the slash additional level-2 variables
/VARLIST to be included in the residual file.
EEEE:SHQME Name of residual file  FILENAME ;’i;gs?glrjr;elzsf“ree;pectlvely of the level-1 and level-
SYSTAT Selects program type to be used in subsequent
SAS analysis of residual file. SPSS and Stata residual
RESFILTYPE Type of residual file SPSS files are written out as .sav and .dta files. Free
STATA format files are written out in ASCII format with
FREEFORMAT the first line of the file being the variable names
Output files N No
containing the
E(R)I\'/\EXQRNISE CE- varia_nce—covariance Y Yes
matrices of Tau and
Gammas A Append the files in consecutive runs.
TITLE Program label up to 64 characters.
Filename of file that Will be written to disk; output will overwrite a
OUTPUT contains output FILENAME file of same name.
. Y Full (traditional) output
FULLOUTPUT Amount of desired Reduced output only containing header page and
output )
N final results

The following keywords are specific to nonlinear, latent variable, and multiply imputed data analysis:

BERNOULLI
POISSON
BINOMIAL, COUNTVAR

These options are explained in detail

NONLIN Selects a nonlinear analysis POISSON, COUNTVAR .
MULTINOMIAL, in Chapter 8.
COUNTVAR
ORDINAL, COUNTVAR
Maximum number of . .
MACROIT Macro iterations POSITIVE INTEGER Used in non-linear models
MICROIT :\t"e?zt':g;’;“ number of MICro g\ 1vE INTEGER Used in non-linear models
Convergence criterion for
STOPMACRO change in parameters POSITIVE INTEGER

across macro iterations
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Table A.1 Keywords and options for the HLM2 command file (continued)

Convergence criterion for

Note same function as STOPVAL in a

STOPMICRO micro iterations POSITIVE INTEGER linear analysis.
N No
Requests Laplace-6 . Yes, with # iterations; uses a sixth order
LAPLACE iterations ;:x\:\r/:Srrr? nir%sb?reof approximation to the likelihood based on a
iterations desired Laplace transform for Bernoulli models.
See Sections 7.6.3 and 8.8.2 for details.
N No
Requests EM-Laplace o
EMLAPLACE iterations Y# \_Nhere # is the Yes, with # iterations. Uses third order
maximum number of N
. . . approximation.
iterations desired
N No
| Ignore
Performs a latent variable
LVR . .
regression P Predictor
o Outcome
(See Section 11.1 for details)
Selects a list of plausible
PLAUSVALS values for multiple VARLIST See Section 11.2.1 for details.

imputation application

The following keywords are specific to multiple imputation

Autoimpute

Requests auto-imputation of missing
data

Positive integer Number of imputed

datasets to create

Autoimputeiter

Controls behavior of the automatic
imputation.

Format like NUMIT:
autoimputeriter:#,[y/n]

# default number of
joint model iterations

N, stop at this number
of joint model

Y: continue until joint
model converges

Autoimputekeep
3 choices here. Example
autoimputkeep:y,y,y

The first choice tells the program to
keep the created mdm files

The  third
controls  keeping
stats files of

generated mdm files

choice
the
the

The second choice
tells the program to
keep the imputed
data files

Autoimputseed

Not often used. Specifies the random
number seed

Positive integer

Levell-Augvars

List of level-1 variables used to
augment the joint model. Will not be
used in user specified model

Level2-Augvars

List of level-2 variables used to
augment the joint model. Will not be

used in user specified model

320



The following keywords are specific to multivariate models

Mhim

Specifies the model will be | Y Use the feature
multivariate. Must be | N Regular univariate model
specified before the model
itself.

Level2outcome Only used in multivariate | Specifies model. The

models and tells the | format is the same as
program to use a level-2 | LEVEL2 above
variable as an outcome

A.3 Printing of variance and covariance matrices for fixed effects and
level-2 variances

The variance-covariance matrices of estimates of fixed effects and variance-covariance parameters
based on HLM2 or HLM3 can be saved by checking the “print variance-covariance matrices* in the
Output Settings dialog box accessed via the Other Settings menu. The keyword PRINTVARIANCE-
COVARIANCE facilitates the same purpose in batch mode.

The following gives a description of the files containing critical statistics and their variances that are
provided by the program upon request.

Let

r = number of random effects at level-1.

f = number of fixed effects

p = number of outcomes in a latent variable run
pm = number of alphas in a latent variable run

1. For HLM2:

TAUVC.DAT contains tau in r columns of r rows and then the inverse of the information
matrix (the standard errors of tau are the square roots of the diagonals). The dimensions of
this matrix are r*(r+21)/2xr*(r+1)/2.

GAMVC.DAT contains the gammas and the gamma variance-covariance matrix. After the
gammas, there are f more rows of f entries containing the variance-covariance matrix.
GAMVCR.DAT contains the gamma and the gamma variance-covariance matrix used to
compute the robust standard errors. After the gammas, there are f rows of f entries containing
the variance-covariance matrix.

2. For HGLM:

TAUVC.DAT contains tau for the final unit-specific results in r columns of r rows and then the
inverse of the information matrix (the standard errors of tau are the square roots of the
diagonals). The dimensions of this matrix are r*(r+1)/2xr*(r+1)/2.

GAMVCUS.DAT contains the final unit-specific gammas and the gamma variance-covariance
matrix. The gammas are in the first line and this line has f entries. Then there are f more rows
of f entries containing the variance and covariance matrix.

GAMVCPA.DAT contains the final unit-specific gammas and the gamma variance-covariance
matrix. The gammas are in the first line and this line has f entries. Then there are f more rows
of f entries containing the variance and covariance matrix.

GAMVCPAR.DAT contains the final unit-specific gammas and the gamma variance-covariance
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matrix used to compute the population-averaged robust standard errors. The gammas are in
the first line and this line has f entries. Then there are f more rows of f entries containing the
variance and covariance matrix.

3. For Bernoulli models, if Laplace iterations are requested:

GAMVCL.DAT contains the gammas and the variance-covariance matrix used to compute the Laplace
standard errors. There are f rows of f entries containing the variance and covariance matrix.

4. For latent variable regression:

LVRALPHA.DAT contains pm lines each containing an alpha and its standard error. The order is the
same as in the output table. The final p lines of p columns contain the Var(u™) matrix printed in the
output.

5. For plausible values analysis:

GAMVC.DAT (and GAMVCR.DAT and TAUVC.DAT) are from the last run and TAUVCPC.DAT,
GAMVCPV.DAT, and GAMVCPVR.DAT are the PV average files.

All of the above files are created with an n(F15.7 1X) format. That is, each entry is fifteen characters
wide with even decimal places, followed by a space (blank character).

If the value of r or r*(r+1)/2 exceeds 60, the line is split into two or more pieces.
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B Using HLM3 in Interactive and Batch Mode

This appendix describes and illustrates how to use HLM3 in batch mode to construct MDM files, and
to execute analyses based on the MDM file. It also lists and defines command keywords and options
unique to HLM3. References are made to appropriate sections in the manual where the procedures are
described in greater details.

As in the case of HLM2, formulation, estimation, and testing of models using HLM3 in two ways:
Windows mode (PC users only), or batch mode. However, batch mode can be considerably faster
once the user becomes skilled in working with the program.. The degree to which the execution is
automated (via batch mode) is controlled by the command file, as in the case of HLM2.

B.1 Using HLM3 in batch mode

The command file structure for HLM3 closely parallels that of HLM2. Each line begins with a
keyword followed by a colon. After the colon is the option chosen by the user, i.e.,

KEYWORD :OPTION

As with HLM2, a pound sign (“#”) as the first character of a line can be used to introduce a comment
into the command file.

The following keywords have the same definitions and options in HLM3 as in HLM2 (Table A.1)

ACCEL CONSTRAIN DEVIANCE DF FIXTAU FIXSIGMA2
GAMMA# HYPOTH LAPLACE MACROIT NONLIN PRINTVARIANCE-
COVARIANCE
NUMIT OUTPUT PLAUSVALS RESFIL1 RESFIL1 RESFILINAME
TITLE RESFILTYPE FIXSIGMA2 STOPMACRO STOPMICRO LEVEL1DELETION
OUTPUT FULLOUTPUT FIRC MICROIT STOPMACRO RESFIL2ZNAME

The following keywords are available only for HLM2:

LEV1IOLS HOMVAR HETERO1VAR MLF LVR

Table of keywords and options
Table B.1 presents the list of keywords and options unigue to HLM3.
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Table B.1 Keywords and options unique to the HLM3 command file

Keyword Function Option Definition

INTRCPT1 Level-1 intercept

+VARNAME Level-1 predictor (no centering)

+VARNAME, 1 Level-1 predictor centered around unit mean

Level-1 model a.jk
LEVEL1 specification +VARNAME, 2

(Note: variable names Level-1 predictor centered around grand mean

may be specified in a...

either upper or lower

case.)

INTRCPT2 Level-2 intercept

+VARNAME Level-2 predictor (no centering)

+VARNAME, 1 Level-2 predictor centered around group mean,

X.k
Level-2 model +VARNAME, 2 Level-2 predictor centered around grand mean,
LEVEL2 e X
specification .

IVARLIST Comma separated list after the slash level-2
variables for exploratory analysis and “t-to-
enter” statistics on subsequent runs. A slash
without a subsequent variable suppresses the
interactive prompt.

INTRCPT3 Level-3 intercept (must be included in the
level-2 model)

+ VARNAME Level-3 predictor (no centering)

+ VARNAME, 2 Level-3 predictor centered around grand mean,

Level-3 model W.
LEVELS specification List after the slash level-3 variables for
exploratory analysis and “t-to-enter” statistics

IVARLIST on subsequent runs.

A slash without a subsequent variable
suppresses the interactive prompt.

Y Yes

N No

RESFIL3 Create a level-3 /VARLIST List after the slash additional level-3 variables
residual file to be included in the residual file. Works just
like RESFIL2
RESFIL3 : . FILENAME
NAME Name of residual file Changes the default
1 Set all off-diagonal elements to 0
2 Manually reset starting values
Method of Correcting 3 Automatic ﬁX'Up (default)
unacceptable startin
FIXTAU2 P J 4 Terminate run
values for T

5 Stop program even if the starting values are
acceptable; display starting values and then
allow user to manually reset them.

1 Set all off-diagonal elements to 0
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FIXTAU3 Method of correcting
unacceptable starting 2 Manually reset starting values

values for Tﬂ

3 Automatic fix-up (default)
4 Terminate run
5 Stop program even if the starting values are

acceptable; display starting values and then
allow user to manually reset them.

No

N

LVR-BETA \F/’;rr;‘;)lgln;sr: Ifgse;:m P for predictor(s); O for outcomes (5)
g P,0 See Section 11.1 for details.
. Y Use Fisher

DOFisHER e o Fise

N Do not use Fisher

0 Same as DOFISHER:N
FISHERTYPE Controls type of 1 Use 1st derivate Fisher

Fisher acceleration
2 Use 2nd derivative Fisher(default)

See section 4.5.

B.3 Printing of variance and covariance matrices
HLM3 can provide the following files upon request.

Note that adding the command line

PRINTVARIANCE -COVARIANCE : Y
to the command file will request HLM3 to print out statistics for both tau(pi) as well as tau(beta).

Let r = number of random effects at level-1
r2 = number of random effects at level-2

1. For HLM3:
e TAUVC.DAT contains tau (tau(pi)) in r columns of r rows, the next r2 lines are the tau(beta),
and then the inverse of the information matrix (the standard errors of tau[s] are the square

roots of the diagonals). The dimensions of this matrix are
(r*(r+/2+r2x(r2+10)/2)x(r*(r+1)/2+r2*(r2+1)/2)

2. For three-level HGLM:

e TAUVC.DAT has the same format as the one for HLM3. The tau(s) are the final unit-specific
results.

The files for the gammas have the identical structure as those for two-level models.

All files are created with an n(F15.7,1X) format. That is, each entry is fifteen characters wide with
seven decimal places, followed by a space (blank character).
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If the value of r or f or r*(r+1)/2+r2*(r2+1)/2 exceeds 60, the line is split into two or more
pieces.
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C Using HLM4 in Batch Mode

Unlike the older modules (HLM2, HLM3, etc.), HLM4 does not have interactive modes to create the
MDM or specify a model. If the windows interface is not available, these file must be created with
an ASCII editor and submit them to obtain results.

C.1 Example: Creating an MDM file from raw data

The first thing that needs creating is an MDM template file (usually suffixed with .mdmt), which
tells HLM4 how to read the raw data. Here is the MDMT file from section 6.1.1;

#HLM4 MDM CREATION TEMPLATE
mdmtype: 3

rawdattype:spss
11fname:C:\HLM\Examples\measure.sav
12fname:C:\HLM\Examples\occas.sav
13fname:C:\HLM\Examples\tchr.sav
14fname:C:\HLM\Examples\sch.sav
limissing:n

timeofdeletion:now
mdmname:literacy.mdm

*begin lilvars

level4id:SCHID

level3id:TCHRID
level2id:0CCASID

EXPERTIS

STDERR

*end llvars

*begin 12vars

level4id:SCHID

level3id:TCHRID
level2id:0CCASID

OCCASION

ARTIFACT

*end 1l2vars

*begin 13vars

leveldid:SCHLID

level3id:TCHRID

COACH

NEWTCHR

PDPART

SCMT

Y2ENT

Y3ENT

*end 13vars

*begin l4vars

leveldid:SCHID

CHGCOACH

*end l4vars

The file is broken into two sections. The first is to declare the filenames of the raw data and other
characteristics of the MDM file to be made, the second chooses the variables to be included at the
various levels. Below is the first part with explanation in parentheses:

#HLM4 MDM CREATION TEMPLATE (Required to be exactly Llike this.)

mdmtype: 3 (This declares the structure of the data, and only
affects the notation used in the output. Possible values are

1 for cross sectional, 2 for Llongitudinal, 3 for cross sectional

with measurement model at Level 1 and 4 for longitudinal
with measurement model at Level 1)
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rawdattype:spss
llfname:measure.sav
12fname:occas.sav
13fname:tchr.sav

l4fname:sch.sav
llmissing:n

timeofdeletion:now

mdmname: literacy.mdm

(This declares the type of input data. Possible values are
spss, sas (version 5 transport file), stata, and ascii)

The next four lines declare the names and locations
of the four 1input files.)

(This declares whether or not there are missing data

at level-1. Possible values are n for not missing, or y
for missing data present.)

(This may be n[ow], where all level-1 cases with missing
data on selected variables will be deleted, or a[nalysis]
where the missing data will be left in and deleted at
run-time based on the model specified.)

(Specifies the name of the mdm file.)

The second part of the mdmt file specifies which variables are ID variables, and which ones go
into the mdm file as possible analysis variables. The structure looks like this:

*begin lilvars
level4id:SCHID
level3id:TCHRID
level2id:0CCASID

[list of level-1 variables,
*end lilvars

*begin 12vars
level4id:SCHID
level3id:TCHRID
level2id:0CCASID

[list of level-2 variables,
*end 12vars

*begin 13vars
level4id:SCHLID
level3id:TCHRID

[list of level-3 variables,
*end 13vars

*begin l4vars
level4id:SCHID

[list of level-4 variables,
*end l4vars

one

one

one

one

line]

line]

line]

line]

The IDs must be specified in the order shown, and must all be of the same type, either numeric
(preferable) or alphanumeric(not advised).

Once the mdmt file is created, the file must be submitted to HLM4:

C:\HLM> HLM4 -r literacy.mdmt

The results on the screen should then be examined to make sure the data were read correctly.
These descriptive statistics will also be contained in a file named HLM4MDM.STS.
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C.2 Example: Creating an HLM file and running the model

The next step is to create a file that specifies the desired model. (This is usually suffixed with a
.him) For example, we will use the model shown in section 6.2.

nonlin:n

numit:100

stopval:0.0000010000
levell:EXPERTIS=STDERR+RANDOM
level2:STDERR=INTRCPT2+0CCASION+ARTIFACT+random
level3:INTRCPT2=INTRCPT3+random
leveld:INTRCPT3=INTRCPT4+CHGCOACH+random
level3:0CCASION=INTRCPT3+random
leveld:INTRCPT3=INTRCPT4+CHGCOACH+random
level3:ARTIFACT=INTRCPT3
leveld:INTRCPT3=INTRCPT4+CHGCOACH+random
fixsigma2:1.000000

fixtaupi:3

fixtaubeta:3

fixtaugamma:3

accel:5

levellweight:none

level2weight:none

level3weight:none

leveldweight:none

hypoth:n

resfill:n

resfil2:n

resfil3:n

resfild:n

title:Unconditional model for literacy program
output: literacyl.txt

fulloutput:y

The above is very similar to an HLM3 model file, with the exception of the model specification at
the top where an extra level is shown. Here is the model part that better demonstrates the nested
nature of the model specification (the shown indentation will not run):

levell :EXPERTIS=STDERR+RANDOM
level2:STDERR=INTRCPT2+0OCCASION+ARTIFACT+random
level3:INTRCPT2=INTRCPT3+random
level4d : INTRCPT3=INTRCPT4+CHGCOACH+random
level3:0CCASION=INTRCPT3+random
level4d : INTRCPT3=INTRCPT4+CHGCOACH+random
level3:ARTIFACT=INTRCPT3
level4d : INTRCPT3=INTRCPT4+CHGCOACH+random

The basic rule here is that for each level-1 variable in the model, there needs to be a 1evel2
line, for each level-2 variable, a 1eve13 file, and for each level-3 variable, a 1eve14 line. The
order is not arbitrary and must follow the pattern above.

Assuming that the above file is named literacy1.him, then the following command should be run:

C:\HLM> HLM4 LITERACY.MDM LITERACY1.HLM
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Given the HLM file above the output would then be in literacyl.txt. Note that if html output is
desired, a .html suffix should be specified on the output: line rather than .txt.

Table C.1 presents the list of keywords and options unique to HLM4 relative to HLM3.

Table C.1 Keywords and options unique to the HLM4 command file

Keyword Function Option Definition
INTRCPT1 Level-1 intercept
+VARNAME Level-1 predictor (no centering)
+VARNAME , 2 Level-1 predictor centered around level-2 mean
+VARNAME, 3 Level-1 predictor centered around level-3 mean
Level-1 model +VARNAME , 4 Levell predictor centered around level-4 mean
LEVEL1 specification )
P +VARNAME, G Level-1 predictor centered around grand mean a...
(Note: variable names may
be specified in either upper
or lower case.)
INTRCPT2 Level-2 intercept
+VARNAME Level-2 predictor (no centering)
Level-2 model +VARNAME, 3 Level-2 predictor centered around level-3 mean
LEVEL?2 oS +VARNAME , 4 Level-2 predictor centered around level-4 mean
specification |
+VARNAME, G Level-2 predictor centered around grand mean
INTRCPT3 Level-3 intercept (must be included in the level-2 model)
+VARNAME Level-3 predictor (no centering)
Level-3 model +VARNAME , 4 Level-3 predictor centered around level-4 mean
LEVEL3 specification +VARNAME, G Level-3 predictor centered around grand mean
| del INTRCPT4 Level-3 intercept (must be included in the level-2 model)
LEVEL4 Leve f'.4 moae +VARNAME Level-3 predictor (no centering)
specification +VARNAME , G Level-3 predictor centered around grand mean
Y Yes
Create a level- N No
RESFIL4 3 residual file | VARLIST List after the slash additional level-4 variables to be
included in the residual file. Works just like RESFIL2
Name of FILENAME
RESFILANAME  residual file Changes the default
1 Set all off-diagonal elements to 0
Methotql of Manually reset starting values
corrécting Automatic fix-up (default)
FIXTAUA unacceptable 2 Terminate run
starting values 3 Stop program even if the starting values are acceptable;
for Ty 4 display starting values and then allow user to manually
5 reset them.

The command file structure for HLM3 closely parallels that of HLM2. Each line begins with a
keyword followed by a colon. After the colon is the option chosen by the user, i.e.,

KEYWORD : OPTION

As with HLM2, a pound sign (“#”) as the first character of a line can be used to introduce a
comment into the command file.



The following keywords have the same definitions and options in HLM3 as in HLM2 (Table A.1)

ACCEL CONSTRAIN DEVIANCE DF MACROIT MICROIT NONLIN NUMIT
OUTPUT RESFIL1 RESFILINAME RESFIL2 RESFIL2NAME RESFILTYPE FIXSIGMA2
STOPMACRO STOPMICRO STOPVAL TITLE LEVEL1DELETION FULLOUTPUT
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D Using HGLM in Interactive and Batch Mode

This appendix describes and illustrates how to use HGLM in interactive and batch mode to
execute analyses based on the MDM files. References are made to appropriate sections in the
manual where the procedures are described in greater details.

D.1 Example: Executing an analysis using THAIUGRP.MDM

Here is an example of an HLM2 session in the interactive mode. At the system command line
prompt, we first type the program name — HLM2 — followed by the name of the multivariate data
matrix file — THAIUGRP.MDM. The program now takes the user directly into the model
specification process.

C:\HLM> HLM2 THAIUGRP.MDM

Do you want to do a non-linear analysis? Y

Enter type of non-linear analysis:
See Chapter 5 for details regarding type of non-linear analysis.

1) Bernoulli (@ or 1)

2) Binomial (count)

3) Poisson (constant exposure)
4) Poisson (variable exposure)
5) Multinomial

6) Ordinal

type of analysis: 1

As mentioned, with one binary outcome per level-1 unit, the model choice is “1” (Bernoulli).

If “2”(Binomial) is chosen, the user will be asked:
For the non-linear analysis, which variable indicates the number of trials?
If “4”(Poisson (variable exposure)) is chosen, the user will be asked:

For the non-linear analysis, which variable indicates the exposure?
If “5”(Multinomial) or “6”(Ordinal) is chosen, the user will be asked:

How many categories does the “OUTCOME” have?

Enter maximum number of macro iterations: 25
Enter maximum number of micro iterations: 20

Specifying 25 macro iterations sets an upper limit; if, after the 25th iteration the algorithm has
not converged. The program will nonetheless terminate and print the results at that iteration.
Similarly, setting 20 as the number of micro iterations insures that, after 20 micro iterations, the
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current macro iteration will terminate even if the micro iteration convergence criterion has not
been met.

Do you wish to allow over-dispersion at level 1? N

An answer of “Y” here allows a user to estimate a level-1 dispersion parameter o2. If the
assumption of no dispersion holds, o> = 1.0. If the data are over-dispersed, o* > 1.0; if the
data are under-dispersed, o* < 1.0.

Do you want to do the Laplace-6 iterations? N
Do you want to do the Laplace-8 iterations? N

An answer of “Y” here allows us to obtain highly accurate Laplace approximation to maximum
likelihood. See Sections 7.6.3 and 8.9.2. The user will be prompted to enter maximum number of
Laplace macro iterations.

SPECIFYING A LEVEL-1 OUTCOME VARIABLE
Please specify a level-1 outcome variable
The choices are:
For MALE enter 1 For PPED enter 2 For REP1 enter 3
What is the outcome variable: 3

Do you wish to:

Examine means,variances,chi-squared, etc? Enter 1

Specify an HLM model? Enter 2
Define a new outcome variable? Enter 3
Exit? Enter 4

What do you want to do? 2

SPECIFYING AN HLM MODEL
Level-1 predictor variable specification

Which level-1 predictors do you wish to use?
The choices are:
For MALE enter 1 For PPED enter 2
level-1 predictor? (Enter @ to end) 1
level-1 predictor? (Enter @ to end) 2

Thus, we have set up a level-1 model with repetition (REP1) as the outcome and with gender
(MALE) and pre-primary experience (PPED) as predictors.

Do you want to center any level-1 predictors? N

Do you want to set the level-1 intercept to zero in this analysis? N
Level-2 predictor variable specification
Which level-2 variables do you wish to use?

The choices are:
For MSESC enter 1

Which level-2 predictors to model INTRCPT1?
Level-2 predictor? (Enter @ to end) 1
Which level-2 predictors to model MALE slope?
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Level-2 predictor? (Enter @ to end) O
Which level-2 predictors to model PPED slope?
Level-2 predictor? (Enter @ to end) O

Thus we have modeled the level-1 intercept as depending on the mean SES (MSESC) of the
school. The coefficients associated with gender and pre-primary experience are fixed. Mean SES
has been centered around its grand mean.

Do you want to constrain the variances in any of the level-2 random
effects to zero? Y

Do you want to fix INTRCPT1? N

Do you want to fix MALE? Y

Do you want to fix PPED? Y

Do you want to center any level-2 predictors? Y
(Enter @ for no centering, 2 for grand-mean)
How do you want to center MSESC? 2

ADDITIONAL PROGRAM FEATURES

Select the level-2 variables that you might consider for
inclusion as predictors in subsequent models.

The choices are:

For MSESC enter 1

Which level-2 variables to model INTRCPT1?
Level-2 variable? (Enter @ to end) O
Do you want to constrain any (more) of the gammas? N
Do you wish to use any of the optional hypothesis testing procedures? N
Do you want to do a latent variable regression? Y
Setting method of estimation to full.

Enter o for outcome, p for predictor, or i to ignore
How do you want to model INTRCPT1? P

OUTPUT SPECIFICATION
Do you want a level-1 residual file? ¥
Enter additional variables to go in residual file
The choices are:

For MALE enter 1 For PPED enter 2 For REP1 enter 3

Level-1 variable? (Enter @ to end) 1
Level-1 variable? (Enter @ to end) 2
Level-1 variable? (Enter @ to end) 3

Enter additional variables to go in residual file
The choices are:

Level-1 variable? (Enter @ to end) 1

For  MSESC enter 1

Level-2 variable? (Enter © to end) 1

Do you want a level-2 residual file? Y
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Enter additional variables to go in residual file
The choices are:

Level-1 variable? (Enter © to end) 1
For  MSESC enter 1
Level-2 variable? (Enter © to end) 1

Enter type of stat package you will use:

for SYSTAT enter 1

for SAS enter 2

for SPSS enter 3

for Stata enter 4

for Free Format enter 5
Type? 3

Do you want to see OLS estimates for all of the level-2 units? N
Enter a problem title: Bernoulli output, Thailand data
Enter name of output file: THAIBERN.OUT

MACRO ITERATION 1

Starting values computed. Iterations begun.

Should you wish to terminate the iterations prior to convergence, enter cntl-c
The value of the likelihood function at iteration = -2.400265E+003

The value of the likelihood function at iteration = -2.399651E+003

The value of the likelihood function at iteration = -2.399620E+003

The value of the likelihood function at iteration -2.399614E+003

The value of the likelihood function at iteration = -2.399612E+003

The value of the likelihood function at iteration = -2.399612E+003

The value of the likelihood function at iteration = -2.399612E+003

NouhbhwN R
1]

Macro iteration number 1 has converged after six micro iterations. This macro iteration actually
computes the linear-model estimates (using the identity link function as if the level-1 errors were
assumed normal).

These results are then transformed and input to start macro iteration 2, which is, in fact, the first
non-linear iteration.

MACRO ITERATION 2

Starting values computed. Iterations begun.

Should you wish to terminate the iterations prior to convergence, enter cntl-c
The value of the likelihood function at iteration = -1.067218E+004
The value of the likelihood function at iteration = -1.013726E+004
The value of the likelihood function at iteration = -1.011008E+004
The value of the likelihood function at iteration = -1.010428E+004
The value of the likelihood function at iteration -1.010265E+004
The value of the likelihood function at iteration = -1.010193E+004
The value of the likelihood function at iteration = -1.010188E+004
The value of the likelihood function at iteration = -1.010188E+004
The value of the likelihood function at iteration = -1.010187E+004
The value of the likelihood function at iteration 10 -1.010187E+004
The value of the likelihood function at iteration 11 -1.010187E+004
The value of the likelihood function at iteration 12 -1.010187E+004

VoNOOTUVTA,WNEER
1]
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Macro interaction 2, the first non-linear macro iteration, converged after twelve micro

iterations.

MACRO ITERATION 3

Starting values computed. Iterations begun.

Should you wish to terminate the iterations prior
The value of the likelihood function at iteration
The value of the likelihood function at iteration
The value of the likelihood function at iteration
The value of the likelihood function at iteration
The value of the likelihood function at iteration
The value of the likelihood function at iteration
The value of the likelihood function at iteration

MACRO ITERATION 4

Starting values computed. Iterations begun.

Should you wish to terminate the iterations prior
The value of the likelihood function at iteration
The value of the likelihood function at iteration
The value of the likelihood function at iteration
The value of the likelihood function at iteration
The value of the likelihood function at iteration
The value of the likelihood function at iteration
The value of the likelihood function at iteration

MACRO ITERATION 5

Starting values computed. Iterations begun.

Should you wish to terminate the iterations prior
The value of the likelihood function at iteration
The value of the likelihood function at iteration
The value of the likelihood function at iteration

MACRO ITERATION 6

Starting values computed. Iterations begun.

Should you wish to terminate the iterations prior
The value of the likelihood function at iteration
The value of the likelihood function at iteration

MACRO ITERATION 7

Starting values computed. Iterations begun.

Should you wish to terminate the iterations prior
The value of the likelihood function at iteration
The value of the likelihood function at iteration

to convergence, enter cntl-c
= -9.954836E+003
= -9.954596E+003
= -9.954567E+003
= -9.954558E+003
-9.954555E+003
-9.954554E+003
-9.954553E+003

NouhbhwNnPR
1

to convergence, enter cntl-c
= -1.000019E+004
= -1.000018E+004
= -1.000018E+004
-1.000017E+004
= -1.000017E+004
= -1.000017E+004
= -1.000017E+004

Nouih wNPR
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to convergence, enter cntl-c

1 = -1.000347E+004
2 = -1.000347E+004
3 = -1.000347E+004

to convergence, enter cntl-c
1 = -1.000375E+004
2 = -1.000375E+004

to convergence, enter cntl-c
1 -1.000375E+004
2 -1.000375E+004

Note that macro iteration 7 converged with just 2 micro iterations. Also, the change in
parameter estimates between macro iterations 6 and 7 was found negligible (less than the
criterion for convergence) so that macro iteration 8 was the final “unit-specific” macro
iteration. One final “population average” iteration is computed, and screen output for that is

given below.

MACRO ITERATION 8

Starting values computed. Iterations begun.

Should you wish to terminate the iterations prior
The value of the likelihood function at iteration
The value of the likelihood function at iteration
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Thus concludes the interactive terminal session. See Section 8.2 for an annotated output for this
run.

The interactive session annotated above produced the following command file (NEWCMD.HLM).

#This command file was run with thaiugr.mdm
STOPMICRO:0.0000010000

STOPMACRO: 0.0001000000

MACROIT:25

MICROIT:20

NONLIN:BERNOULLI

LAPLACE:n, 50

LAPLACE8:n, 50
LEVEL1:REP1=INTRCPT1+MALE+PPED+RANDOM
LEVEL2:INTRCPT1=INTRCPT2+MSESC, 2+RANDOM/
LEVEL2:MALE=INTRCPT2/
LEVEL2:PPED=INTRCPT2/
LEVEL1IWEIGHT : NONE

LEVEL2WEIGHT : NONE

RESFILTYPE:SPSS
RESFIL1:Y/MALE,PPED,REP1/MSESC
RESFILINAME:resfill.sav
RESFIL2:Y/MSESC
RESFIL2NAME:resfil2.sav

HETEROL1VAR:n

ACCEL:5

LVR:P

LEV10LS:10

MLF:y

HYPOTH: n

FIXSIGMA2:1.000000

FIXTAU:3

CONSTRAIN:N

OUTPUT:n

FULLOUTPUT:Y

TITLE:Bernoulli output, Thailand data

If one types at the system prompt:
HLM2 THAIUGRP.MDM NEWCMD.HLM
the output above would be reproduced. It is a good idea to rename the NEWCMD.HLM file if it is

to be edited and re-used. Each execution of the program will produce a NEWCMD.MLM file that
will overwrite the old one.

Note that the “NEwWCMD.HLM” file above is similar to the same file produced by a linear-model
analysis, with the addition of the following lines:

STOPMICRO:©.000010 (default convergence criterion for micro iterations)
STOPMACRO:©.000100 (default convergence criterion for micro iterations)
MACROIT: 25 (maximum number 1if macro iterations)
MICROIT:20 (maximum number if micro iterations per macro iteration)
NONLIN:BERNOULLI (type of non-linear model)

See Tables A.1 and B.1 for a description of the keywords and options.
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E Using HMLM in Interactive and Batch Mode

This appendix describes prompts and commands for creating MDM files and executing analyses
based on the MDM files. References are made to appropriate sections in the manual where the
procedures are described in greater details. To start HMLM or HMLM2, type HMLM or HMLM2 at
the system prompt.

E.1 Constructing an MDM file

The procedure for MDM creation is similar to the one for MDM for HLM2. The only difference is
that the user will be prompted with questions regarding the number of occasions contained in the
data and which the indicator variables. To create a MDM file using the NYS data sets described in
Section 10.1.1, for example, HMLM will display the following prompts to request the needed
information:

How many occasions are contained in the data? 5

Please select the 5 indicator variables:

Is ATTIT an indicator variable? N
Is AGE an indicator variable? N
Is AGE11 an indicator variable? N
Is AGE13 an indicator variable? N
Is AGE11S an indicator variable? N
Is AGE13S an indicator variable? N
Is IND1 an indicator variable? Y
Is IND2 an indicator variable? Y
Is IND3 an indicator variable? Y
Is IND4 an indicator variable? Y
Is INDS an indicator variable? Y

E.2 Executing analyses based on MDM files

The procedure for executing analyses based on MDM files is similar to the one based on MDM
files. A major difference is that only coefficients associate with variables that are invariant
across all level-1 units, i.e., their values do not vary across the units, can be specified as random.
Otherwise, the coefficients will be automatically set as non-random by the program. The
following displays prompts unique to HMLM and HMLM2 for the NYS example described in
Section 10.2.

C:\HLM> HMLM NYS.MDM

Enter type HMLM analysis:

See Chapter 9 for details regarding type of HMLM analysis.

1) Unrestricted

2) Random effects model with homogeneous level-1 variance

3) Random effects model with heterogeneous level-1 variance

4) Random effects model with log-linear model for level-1 variance

5) Random effects model with first-order autoregressive level-1 variance
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type of analysis: 3
For choices 2 to 5, the user will be prompted.
Do you want to skip the unrestricted iterations? N

If “4”(log-linear model for level-1 variance) is chosen, HMLM will ask the user to enter variables
to model sigma?, for example:

Should VAR1 be in C?

An interactive session will output a command file NEWCMD.MLM. An example for one of the
analyses discussed in Section 10.2 is given below.

#This command file was run with nys.mdm
LEVEL1:ATTIT=INTRCPT1+AGE13+AGE13S+RANDOM
LEVEL2:INTRCPT1=INTRCPT2+RANDOM
LEVEL2:AGE13=INTRCPT2+RANDOM
LEVEL2:AGE13S=INTRCPT2+RANDOM

NUMIT:50

STOPVAL : 0.0000010000

FIXTAU:3

OUTPUT:nys1.out

FULLOUTPUT:Y

TITLE:HMLM OUPUT, NYS DATA

ACCEL:5

R_E_MODEL : UNRESTRICTED

LVR:N

If one types at the system prompt:
HMLM NYS.MDM NEWCMD.MLM

the result will be the output for a model with an unrestricted covariance structure given in
Section 10.3. It is a good idea to rename the NEWCMD.MLM file if it is to be edited and re-used.
Each execution of the program will produce a NEWCMD.MLM file that will overwrite the old one.

The following keywords have the same definitions and options in HMLM as in HLM2 (Table A.1)

ACCEL DEVIANCE DF FIXTAU
LEVEL1 LEVEL2 GAMMA# HYPOTH
NUMIT OUTPUT PRINTVARIANCE -COVARIANCE
STOPVALTITLE FULLOUTPUT LVR

The following keywords are not available in HMLM:

LEV10LS HOMVAR HETERO1VAR MLF LEVEL1DELETION CONSTRAIN

FIXSIGMA2 HYPOTH LAPLACE MACROIT
MICROITNONLIN PLAUSVALS RESFIL1 RESFILINAME
RESFIL2 RESFIL2NAME RESFILTYPE STOPMACRO
STOPMICRO
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11 E.2.1 Table of keywords and options

Table E.1 Keywords and options unique to the HMLM command file

Keyword Function Option Definition
UNRESTRICTED Do only unrestricted iterations
HOMOL VAR Do homogeneous model
Do homogeneous and
HETL1VAR heterogeneous model
R E MODEL Choose type of model g
_E_| Do homogeneous and auto-
regressive model
AUTOREG .
Do homogeneous and log-linear
LOGLIN/var model
Y Do unrestricted iterations
UNRESTRICTED Possible  suppression  of N Don't do unrestricted iterations.

unrestricted

Only possible it R_E_MODEL is
not UNRESTRICTED

The following keywords have the same definitions and options in HMLM2 as in HLM3 (Table B.1)

ACCEL DEVIANCE
LEVEL1 LEVEL2
NUMIT OUTPUT
STOPVALTITLE
RESFIL3

DF FIXTAU2 FIXTAU3
LEVEL3 GAMMA# HYPOTH
PRINTVARIANCE -COVARIANCE
FULLOUTPUT LVR

The following HLM3 keywords are not available in HMLM2:

LEV10LS HOMVAR
HYPOTH LAPLACE
PLAUSVALS RESFIL1
RESFIL3 RESFIL3NAME
LVR-BETA

LEVEL1
MACROI
RESFIL
RESFIL

DELETION
T

1NAME
TYPE

CONSTRAIN
MICROIT
RESFIL2
STOPMACRO

NONLIN

12 E.2.2 Table of HMLM2 keywords and options

FIXSIGMA2

RESFIL2NAME
STOPMICRO

Table E.1 Keywords and options unique to the HMLM2 command file

Keyword Function Option Definition
UNRESTRICTED Do only unrestricted iterations
Do homogeneous model
HOMOL1VAR
Do homogeneous and
HETL1VAR
heterogeneous model
R E MODEL Choose type of model g
- Do homogeneous and auto-
AUTOREG regressive model
Do homogeneous and log-linear
LOGLIN/var model
Y Do unrestricted iterations
UNRESTRICTED Possible  suppression  of N Don't do unrestricted iterations.

unrestricted

Only possible it R_E_MODEL is
not UNRESTRICTED
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Note that HMLM and HMLM2 do not allow non-linear outcomes, use of plausible values and
multiply-imputed values, constraints of gammas, and they do not write out any residual files.
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F Using Special Features in Interactive and Batch Mode

This appendix describes and illustrates how to use the special features in interactive and batch
mode to execute analyses. References are made to appropriate sections in the manual where the
procedures are described in greater details.

F.1 Example: Latent variable analysis using the National Youth Study
data sets

The following interactive session illustrates a latent variable analysis example using the National
Youth Study (NYS) data sets. A description of the data files and the model specification can be
found in Sections 10.1.1 and 11.1.1.

C:\HLM> HMLM NYS.MDM
Enter type HMLM analysis:

1)
2)
3)
4)
5)

type

Unrestricted

Random effects
Random effects
Random effects
Random effects

of analysis: 2

model with homogeneous level-1 variance

model with heterogeneous level-1 variance

model with log-linear model for level-1 variance

model with first-order autoregressive level-1 variance

We select the homogeneous level-1 variance option for this model. Thus, using HLM2 will yield
identical results in this case.

Do you want to skip the unrestricted iterations? Y

SPECIFYING A LEVEL-1 OUTCOME VARIABLE

Please specify a level-1 outcome variable

The
For
For
For
For
What

choices are:
ATTIT enter
AGE13 enter
IND1 enter
IND4 enter
is the outcome

1 For AGE enter 2 For AGE11l enter 3
4 For AGE11S enter 5 For AGE13S enter 6
7 For IND2 enter 8 For IND3 enter 9
10 For IND5 enter 11

variable: 1

The outcome is tolerance towards deviant behavior.

SPECIFYING AN HMLM MODEL

Level-1 predictor variable specification

Which level-1 predictors do you wish to use?

The

For
For
For

choices are:

AGE13 enter
IND1 enter
IND4 enter

level-1 predictor?
level-1 predictor?

For AGE enter 2 For AGE11l enter 3
4 For AGE11S enter 5 For AGE13S enter 6
7 For IND2 enter 8 For IND3 enter 9
10 For IND5 enter 11

(Enter @ to end) 3
(Enter @ to end) O
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AGE11 is the age of participant at a specific time minus 11.

Do you want to center any level-1 predictors? N

Do you want to set the level-1 intercept to zero in this analysis? N
Level-2 predictor variable specification

Which level-2 variables do you wish to use?

The choices are:
For FEMALE enter 1 For MINORITY enter 2 For INCOME enter 3

Which level-2 predictors to model INTRCPT1?
Level-2 predictor? (Enter @ to end) 1
Level-2 predictor? (Enter @ to end) O

Which level-2 predictors to model AGE11 slope?
Level-2 predictor? (Enter @ to end) 1
Level-2 predictor? (Enter @ to end) O

Do you want to constrain the variances in any of the level-2 random
effects to zero? N

Do you want to center any level-2 predictors? N

ADDITIONAL PROGRAM FEATURES
Do you want to do a latent variable regression? Y

Enter o for outcome, p for predictor, or i to ignore
How do you want to handle INTRCPT1? P
How do you want to handle AGE11? O

INTRCPTL, the level of tolerance at age 11, is used as a predictor to model the outcome, AGE11,
the linear growth rate. Note that INTRCPT1 and AGE11 are latent variables, that is, they are free
of measurement error.

Do you want to specify a multivariate hypothesis for the fixed effects? N

OUTPUT SPECIFICATION
How many iterations do you want to do? 50

Enter a problem title: Latent variable regression, NYS Data
Enter name of output file: NYS2.OUT

Computing . . ., please wait

Partial output for this analysis is given in Section 11.1.1.

F.2 A latent variable analysis to run regression with missing data

The following interactive session illustrates a latent variable analysis to run regression with
missing data with an artificial data set. A description of the data files and the model specification
can be found in Section 11.1.2.

C:\HLM> HMLM MISSING.MDM
Enter type HMLM analysis:

1) Unrestricted
2) Random effects model with homogeneous level-1 variance
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3) Random effects model with heterogeneous level-1 variance
4) Random effects model with log-linear model for level-1 variance
5) Random effects model with first-order autoregressive level-1 variance
type of analysis: 1
SPECIFYING A LEVEL-1 OUTCOME VARIABLE
Please specify a level-1 outcome variable
The choices are:
For MEASURES enter 1 For IND1 enter 2 For IND2 enter 3
For IND3 enter 4
What is the outcome variable: 1
SPECIFYING AN HMLM MODEL
Level-1 predictor variable specification

Which level-1 predictors do you wish to use?

The choices are:
For IND1 enter 2 For IND2 enter 3 For IND3 enter 4

level-1 predictor? (Enter @ to end) 1
That is the outcome variable!

level-1 predictor? (Enter @ to end) 2
level-1 predictor? (Enter © to end)
level-1 predictor? (Enter © to end)

o W

Do you want to center any level-1 predictors? N

Do you want to set the level-1 intercept to zero in this analysis? ¥
Note that a no-intercept model is formulated (see Section 2.9.6).

Level-2 predictor variable specification
Which level-2 variables do you wish to use?

The choices are:
For DUMMY enter 1

Which level-2 predictors to model IND1 slope?
Level-2 predictor? (Enter @ to end) O
Which level-2 predictors to model IND2 slope?

Level-2 predictor? (Enter @ to end) O

Which level-2 predictors to model IND3 slope?
Level-2 predictor? (Enter @ to end) O

IND2 and IND3 are selected to predict IND1.

Do you want to constrain the variances in any of the level-2 random
effects to zero? N
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ADDITIONAL PROGRAM FEATURES
Do you want to do a latent variable regression? Y

Enter o for outcome, p for predictor, or i to ignore

How do you want to handle IND1? O
How do you want to handle IND2? P
How do you want to handle IND3? P

Do you want to specify a multivariate hypothesis for the fixed effects? N

OUTPUT SPECIFICATION
How many iterations do you want to do? 50
Enter a problem title: Latent variable analysis, Missing data example
Enter name of output file: MISSING1.O0UT

Partial output for this analysis is given in Section 11.1.2.
F.3 Commands to apply HLM to multiply-imputed data

To analyze data with multiply-imputed values for the outcome variable or only one covariate, the
user needs to manually add the following line into the command file:

PLAUSVALS: VARLIST

where VARLIST lists variables containing the multiply-imputed values.

To analyze data with multiply-imputed values for the outcome and/or covariates, the user needs
to prepare multiple MDM files. After setting up the multiple MDM files, the user have to submit
the command files to HLM2 and HLM3 as many times as the number of multiple MDM files with
an extra flag, -Mi#, where # is the sequence number, starting from 0. On the last run, you also
need the -E flag, (E for estimate).

Suppose there are 4 sets of multiply-imputed data for a two-level model, called MDATA1.MDM,
MDATA2.MDM, MDATA3.MDM, and MDATA4.MDM and the command file is ANALYSE.MLM; the
following commands need to be typed in at the system prompt:

HLM2 -MI@ MDATA1.MDM ANALYSE.MLM
HLM2 -MI1 MDATA2.MDM ANALYSE.MLM
HLM2 -MI2 MDATA3.MDM ANALYSE.MLM
HLM2 -MI3 -E MDATA.4MDM ANALYSE.MLM

F.4 Commands to apply HLM2 to create a Spatial model
This option can only be invoked if the spatial dependence information was added when the mdm

file was created. Then, add the following command line to the HLM file to accommodate spatial
dependence:

dospatialcorrelation:y
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G Using HCM2 in Interactive and Batch Mode

This appendix describes and illustrates how to use HCM2 in interactive construct MDM files, and
in both interactive and batch mode to execute analyses based on the MDM file. It also lists and
defines command keywords and options unique to HCM2. References are made to appropriate
sections in the manual where the procedures are described in greater details. In the next Section,
we show the construction of an MDM file using the educational attainment data as described in

Chapte

ri13.

G.1 Using HCM2 in interactive mode

13 G.1.1 Example: constructing an MDM file for the educational

attainment data using SPSS file input

C:\HLM>

Will yo
Enter t
for
for
for
for
for
for
for

HCM2 (type the program name at the system prompt to start)

u be starting with raw data? Y

ype of raw data:

ASCII input enter
SYSTAT .SYS file enter
SAS V5 transport file enter
SPSS file (UNIX or windows) enter
STATA .dta file enter
anything DBMSCOPY reads enter
anything Stat/Transfer reads enter

Type? 4

The “anything DBMSCOPY reads” prompt is only present on PC versions.

NouphwNR

Input name of level-1 file: ATTAINW. SAV

Input n

ame of row file: ATTAINR.SAV

Input name of column file: ATTAINCO.SAV

See Section 13.1.2 for a description of variables in the data files.

The av
For N
For

ailable level-1 variables are:
EIGHID enter 1 For SCHID
P7VRQ enter 4 For P7READ

For DADUNEMP enter 7 For DADED

For
What v
What v

MALE enter 10
ariable is the row ID? 1
ariable is the column ID? 2

enter
enter
enter

2
5
8

For
For
For

ATTAIN enter
DADOCC enter
MOMED enter

Note there are two linking ID's in the level-1 or within-cell file.

Please
Please
Please
Please
Please

specify level-1 variable # 1 (ent
specify level-1 variable # 2 (ent
specify level-1 variable # 3 (ent
specify level-1 variable # 4 (ent
specify level-1 variable # 5 (ent

er 0 to
er 0 to
er 0 to
er 0 to
er 0 to
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Please specify level-1 variable # 6 (enter @ to end): 8
Please specify level-1 variable # 7 (enter © to end): 9
Please specify level-1 variable # 8 (enter 0 to end): 10

The available row-level variables are:

For NEIGHID enter 1 For DEPRIVE enter 2
What variable is the row ID? 1

Note there is one row ID the Llevel-2 row factor file.

Please specify row-level variable # 1 (enter @ to end): 2
The available column-level variables are:

For SCHID enter 1 For DUMMY enter 2
What variable is the column ID? 1

Note there is one column ID the level-2 column factor file.
Please specify column-level variable # 1 (enter @ to end): 2

Are there missing data in the level-1 file? y

Enter name of MDM file: ATTAIN.MDM

HCM2 save send the descriptive statistics of variables for each file to the screen. It is important
to examine these carefully to ensure that no errors were made. The program will save these
statistics in a file name HCM2MDM.STS.

LEVEL-1 DESCRIPTIVE STATISTICS

VARIABLE NAME N MEAN SD MINIMUM MAXIMUM
ATTAIN 2310 0.09 1.00 -1.33 2.42
P7VRQ 2310 0.51 10.65 -27.03 42.97
P7READ 2310 -0.04 13.89 -31.87 28.13
DADOCC 2310 -0.46 11.78 -23.45 29.23
DADUNEMP 2310 0.11 0.31 0.00 1.00
DADED 2310 0.22 0.41 0.00 1.00
MOMED 2310 0.25 0.43 0.00 1.00
MALE 2310 0.48 0.50 0.00 1.00

ROW LEVEL DESCRIPTIVE STATISTICS

VARIABLE NAME N MEAN SD MINIMUM MAXIMUM
DEPRIVE 524 0.04 0.62 -1.08 2.96

COLUMN LEVEL DESCRIPTIVE STATISTICS

VARIABLE NAME N MEAN SD MINIMUM MAXIMUM
DUMMY 17 2.41 1.18 1.00 4.00

2310 level-1 records have been processed

524 row-level records have been processed
17 column-level records have been processed
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14 G.1.2 Example: Executing an unconditional model analysis using
ATTAIN.MDM

C:\HLM> HCM2 ATTAIN.MDM
Do you want to do a non-linear analysis? N
SPECIFYING A LEVEL-1 OUTCOME VARIABLE
Please specify a level-1 outcome variable
The choices are:
For ATTAIN enter 1 For P7VRQ enter 2 For P7READ enter 3
For DADOCC enter 4 For DADUNEMP enter 5 For DADED enter 6

For MOMED enter 7 For MALE enter 8
What is the outcome variable: 1

We shall model educational attainment with an unconditional model and specific the residual
row, column, and cell-specific effects as random. See Section 13.2 .

SPECIFYING AN HCM2 MODEL
Level-1 predictor variable specification
Which level-1 predictors do you wish to use?
The choices are:
For P7VRQ enter 2 For P7READ enter 3
For DADOCC enter 4 For DADUNEMP enter 5 For DADED enter 6

For MOMED enter 7 For MALE enter 8
level-1 predictor? (Enter © to end) O

Do you want to set the level-1 intercept to zero in this analysis? N

Level-1/row predictor variable specification
Which row variables do you wish to use?
The choices are:
For DEPRIVE enter 1
Which row-level predictor to model INTRCPT1, P@?
Row-level predictor? (Enter @ to end) O
Column-level predictor variable specification
Which column-level variables do you wish to use?

The choices are:
For DUMMY enter 1

Which column-level predictor to model INTRCPT1, PO?
Column-level predictor? (Enter © to end) ©

Do you want to constrain the variances in any of the row-level random
effect to zero? N

Do you want to constrain the variances in any of the column-level random
effect to zero? N
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Enter type of deflection:
for independent(default) enter 1
for cumulative enter 2

Type? 1
Select 2 if to define a cumulative effect model.

OUTPUT SPECIFICATION

Do you want a row-level residual file? N

Do you want a column-level residual file? N

How many iterations do you want to do? 100
Enter a problem title: UNCONDITIONAL MODEL
Enter name of output file: ATTAINI1.TXT

Computing . . ., please wait

The value of the likelihood function at iteration 1 = -3.208601E+003
The value of the likelihood function at iteration 2 = -3.207263E+003
The value of the likelihood function at iteration 3 = -3.205187E+003
The value of the likelihood function at iteration 4 = -3.201693E+003
The value of the likelihood function at iteration 5 = -3.196031E+003
The value of the likelihood function at iteration 6 = -3.188714E+003
The value of the likelihood function at iteration 7 = -3.182922E+003
The value of the likelihood function at iteration 8 = -3.180439E+003
The value of the likelihood function at iteration 9 = -3.179676E+003
The value of the likelihood function at iteration 10 = -3.179379E+003
The value of the likelihood function at iteration 11 = -3.179212E+003
The value of the likelihood function at iteration 12 = -3.179104E+003
The value of the likelihood function at iteration 13 = -3.179032E+003
The value of the likelihood function at iteration 14 = -3.178984E+003
The value of the likelihood function at iteration 15 = -3.178881E+003
The value of the likelihood function at iteration 16 = -3.178879E+003
The value of the likelihood function at iteration 17 = -3.178878E+003
The value of the likelihood function at iteration 18 = -3.178877E+003
The value of the likelihood function at iteration 19 = -3.178876E+003
The value of the likelihood function at iteration 20 = -3.178874E+003
The value of the likelihood function at iteration 21 = -3.178874E+003

See Section 13.2 for a discussion of the results of this unconditional model.

15 G.1.3 Example: Executing a conditional model analysis using
ATTAIN.MDM

C:\HLM> HCM2 ATTAIN.MDM
Do you want to do a non-linear analysis? N
SPECIFYING A LEVEL-1 OUTCOME VARIABLE

Please specify a level-1 outcome variable

The choices are:
For  ATTAIN enter 1 For P7VRQ enter 2 For P7READ enter 3
For DADOCC enter 4 For DADUNEMP enter 5 For DADED enter 6
For MOMED enter 7 For MALE enter 8

What is the outcome variable: 1

We shall model educational attainment with all the level-1 predictor variables. All the level-1
coefficients associated with the predictors are fixed. See Section 13.3.
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SPECIFYING AN HCM2 MODEL
Level-1 predictor variable specification

Which level-1 predictors do you wish to use?
The choices are:

For P7VRQ enter

For DADOCC enter 4 For DADUNEMP enter

For MOMED enter 7 For MALE enter

level-1 predictor? (Enter @ to end) 2
level-1 predictor? (Enter @ to end) 3
level-1 predictor? (Enter © to end) 4
level-1 predictor? (Enter © to end) 5
level-1 predictor? (Enter @ to end) 6
level-1 predictor? (Enter © to end) 7
level-1 predictor? (Enter @ to end) 8
level-1 predictor? (Enter @ to end) O

Do you want to center any level-1 predictors?
Enter @ for no centering, 2 for grand-mean
How do you want to center P7VRQ? 2

How do you want to center  P7READ? 2
How do you want to center  DADOCC? 2
How do you want to center DADUNEMP? 2
How do you want to center DADED? 2
How do you want to center MOMED? 2
How do you want to center MALE? 2

Yy

For
For

P7READ enter
DADED enter

Do you want to set the level-1 intercept to zero in this analysis? N

Level-1/row predictor variable specification
Which row variables do you wish to use?

The choices are:
For DEPRIVE enter 1

We shall use DEPRIVE to model the level-1 intercept.

Which row-level predictor to model INTRCPT1,
Row-level predictor? (Enter @ to end) 1
Which row-level predictor to model P7VRQ,
Row-level predictor? (Enter @ to end) O
Which row-level predictor to model P7READ,
Row-level predictor? (Enter @ to end) O
Which row-level predictor to model DADOCC,
Row-level predictor? (Enter @ to end) O
Which row-level predictor to model DADUNEMP,
Row-level predictor? (Enter @ to end) O
Which row-level predictor to model DADED,
Row-level predictor? (Enter @ to end) O
Which row-level predictor to model MOMED,
Row-level predictor? (Enter @ to end) O
Which row-level predictor to model MALE,
Row-level predictor? (Enter @ to end) O

Column-level predictor variable specification

Which column-level variables do you wish to u

Po?

P2

P3

P4

P5

P6

P7

P8

se?
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The choices are:

For DUMMY enter 1

Which column-level predictor to
Column-level predictor? (Enter
Which column-level predictor to
Column-level predictor? (Enter
Which column-level predictor to
Column-level predictor? (Enter
Which column-level predictor to
Column-level predictor? (Enter
Which column-level predictor to
Column-level predictor? (Enter
Which column-level predictor to
Column-level predictor? (Enter
Which column-level predictor to
Column-level predictor? (Enter
Which column-level predictor to
Column-level predictor? (Enter

model INTRCPT1,
@ to end) O
model P7VRQ,
0@ to end) O
model  P7READ,
@ to end) O
model DADOCC,
@ to end) O
model DADUNEMP,
@ to end) O
model DADED,
@ to end) O
model MOMED,
@ to end) O
model MALE,
@ to end) O

PO?
P2 slope?
P3 slope?
P4 slope?
P5 slope?
P6 slope?
P7 slope?

P8 slope?

Do you want to center any row-level predictors? y
Enter @ for no centering, 2 for grand-mean

How do you want to center

Do you want to constrain the variances in any of the row-level random

effect to zero? y
Do you want to fix
Do you want to fix
Do you want to fix
Do you want to fix
Do you want to fix
Do you want to fix
Do you want to fix
Do you want to fix

Do you want to constrain the variances in any of the column-level random

effect to zero? ¥

We shall treat the association between social deprivation and educational attainment as fixed

DEPRIVE? 2

INTRCPT1/ICPTROW? N
P7VRQ/ICPTROW? Y
P7READ/ICPTROW? Y
DADOCC/ICPTROW? Y
DADUNEMP/ICPTROW? Y
DADED/ICPTROW? Y
MOMED/ICPTROW? Y
MALE/ICPTROW? Y

across all schools. See Section 13.2.

Do
Do
Do
Do
Do
Do
Do

to
to
to
to
to
to
to
to

fix
fix
fix
fix
fix
fix
fix
fix

want
want
want
want
want
want
want
want

you
you
you
you
you
you
you
Do you
Do you want to fix

Enter type of deflection:

for independent(default) enter
for cumulative enter

Type? 1

INTRCPT1/DEPRIVE? Y
INTRCPT1/ICPTCOL? N
P7VRQ/ICPTCOL? Y
P7READ/ICPTCOL? Y
DADOCC/ICPTCOL? Y
DADUNEMP/ICPTCOL? Y
DADED/ICPTCOL? Y
MOMED/ICPTCOL? Y
MALE/ICPTCOL? Y

1
2
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OUTPUT SPECIFICATION
Do you want a row-level residual file? N
Do you want a column-level residual file? N

How many iterations do you want to do? 100

Enter a problem title: CONDITIONAL MODEL WITH THE EFFECT ASSOCIATED WITH A ROW-SPECIFIC
PREDICTOR FIXED

Enter name of output file: ATTAIN2.TXT

Computing . . ., please wait

The value of the likelihood function at iteration
The value of the likelihood function at iteration
The value of the likelihood function at iteration
The value of the likelihood function at iteration
The value of the likelihood function at iteration

= -2.391226E+003
= -2.390450E+003
-2.390158E+003
= -2.389892E+003
= -2.389646E+003

nuhwNnpR
I

The value of the likelihood function at iteration 28 = -2.384804E+003
The value of the likelihood function at iteration 29 = -2.384803E+003
The value of the likelihood function at iteration 30 = -2.384803E+003
The value of the likelihood function at iteration 31 = -2.384802E+003
The value of the likelihood function at iteration 32 = -2.384802E+003
The value of the likelihood function at iteration 33 = -2.384802E+003
The value of the likelihood function at iteration 34 = -2.384802E+003

See Section 13.2 for a discussion of the results of this conditional model.

G.2 Using HCM2 in batch mode
The interactive session in G.1.1 produced the following command file, NEWCMD.HLM.

#WHLM CMD FILE FOR C:\HLM\ATTAIN.MDM
NUMIT:100

STOPVAL : ©.0000010000
LEVEL1:ATTAIN=INTRCPT1+RANDOM

ROWCOL : INTRCPT1=THETA+RANDOMB+RANDOMC
FIXTAU:3

FIXDELTA:3

ACCEL:5

DEFLECTION:INDEPENDENT
TITLE:UNCONDITIONAL MODEL

OUTPUT :C: \HLM\ATTAIN1.TXT
FULLOUTPUT :N

If one types at the system prompt:
HCM2 ATTAIN.MDM NEWCMD.HLM

the result will be the output for the unconditional model. Note that each execution of the
program will produce a NEWCMD.HLM file that will overwrite the old one.

For the conditional model, the command file is

#WHLM CMD FILE FOR C:\HLM\ATTAIN.MDM

NUMIT:100

STOPVAL : ©.0000010000
LEVEL1:ATTAIN=INTRCPT1+P7VRQ, 2+P7READ, 2+DADOCC, 2+DADUNEMP , 2+DADED, 2+MOMED, 2+
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MALE, 2+RANDOM

ROWCOL : INTRCPT1=THETA+DEPRIVE(FIXED) , 2+RANDOMB+RANDOMC
ROWCOL : P7VRQ=THETA

ROWCOL : P7READ=THETA

ROWCOL : DADOCC=THETA

ROWCOL : DADUNEMP=THETA

ROWCOL : DADED=THETA

ROWCOL : MOMED=THETA

ROWCOL :MALE=THETA

FIXTAU:3

FIXDELTA:3

ACCEL:5

DEFLECTION:INDEPENDENT

TITLE:CONDITIONAL MODEL, WITH SOCIAL DEPRIVATION EFFECT FIXED
OUTPUT:C:\HLM\ATTAIN2.TXT

FULLOUTPUT :N

The following keywords in the above command files have the same definition and options in
HCM2 as in the other modules (e.g. Tables A.1 and B.1)

ACCEL FULLOUTPUT FIXTAU NONLIN NUMIT OUTPUT STOPVAL TITLE
FIXSIGMA2 STOPMICRO STOPMACRO DEVIANCE DF GAMMA

Had we requested residual level-1, and row and column files during the interaction session, the
command files would contain the following additional command lines specifying the type (SPSS
system file) and the names for each of the files (RESFIL1.SAV, RESROW.SAV, and RESCOL.SAV):

RESFILTYPE:SPSS
RESFILINAME:RESFIL1.SAV
RESFIL1:Y

RESROWNAME : RESROW . SAV
RESROW:Y
RESCOLNAME :RESCOL . SAV
RESCOL:Y

Table G.1 Keywords and options unique for HCM2 command file

Keyword Function Option Definition
Level-1 or INTRCPT1 Level-1 intercept )
within-cell model +VARNAME Level-1 pred!ctor (no centering) _
LEVEL1 ificati +VARNAME, 1 Level-1 predictor (group-mean centering)
spectication +VARNAME , 2 Level-1 predictor (grand-mean centering)
THETA Level-2 intercept
+VARNAME (FIXED) + Level-2 predictor (fixed and grand-mean
Level-2 or centering) . . .
ROWCOL : between-cell +VARNAME (FIXED), 2 + Level-2 pred!ctor (fixed and no centering)
INTRCPT1 or model +VARNAME (RANDOM) , 2 + Lfvgl-z) predictor (random and grand-mean
. centering
L-1 VARNAME specification +VARNAME (RANDOM) + Level-2 predictor (random and no centering)
+RANDOMB + Random main effect of the row factor
+RANDOMC + Random main effect of the column factor
Define the use of 1 Independent
a cumulative
DEFLECTION effect model 2 Cumulative
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H Using HCM3 in Batch Mode

Unlike the older modules (HLM2, HLM3, etc.), HCM3 does not have interactive modes to create
the MDM or specify a model. If the windows interface is not available, these file must be created
with an ASCII editor and submit them to obtain results.

H.1 Example: Creating an HCM3 MDM file from raw data

The first thing that needs creating is an mdm template file (usually suffixed with .mdmt), which
tells HCM3 how to read the raw data. Here is the MDMT file from section 15.1.1:

#HCM3 MDM CREATION TEMPLATE
rawdattype:spss
11fname:growth.sav
rowfname:student.sav
colfname:teacher.sav
clusfname:school.sav
llmissing:n
timeofdeletion:now
mdmname : growth.mdm
*begin lilvars
rowid:STUDID
colid:TCHRID
clusid:SCHLID

MATH

YEAR

G4D1

G4D21

G5D22

TWOWAY

*end lilvars

*begin rowvars
rowid:STUDID

DUMMY

*end rowvars

*begin colvars
colid:TCHRID
clusid:SCHLID

DUMMY

*end colvars

*begin clusvars
clusid:SCHLID

DUMMY

*end clusvars

The file is broken into two sections. The first is to declare the filenames of the raw data and other
characteristics of the MDM file to be made, the second chooses the variables to be included at the
various levels. Below is the first part with explanation in parentheses:

rawdattype:spss (This declares the type of input data. Possible values
are spss, sas (version 5 transport file), stata, and ascii)
11fname:growth.sav (The next four Llines declare the names and locations of

the four input files; level-1, row, column, and cluster,

respectively.)

rowfname:student.sav

colfname:teacher.sav

clusfname:school.sav

limissing:n (This declares whether or not there are missing data at Llevel-

1. Possible values are n for not missing, or y for missing

data present.)
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timeofdeletion:now (This may be n[ow] , where all level-1 cases with missing data
on selected variables will be deleted, or a[nalysis] where
the missing data will be Lleft in and deleted at run-time
based on the model specified.)

mdmname : growth.mdm (Specifies the name of the mdm file.)

The second part of the mdmt file specifies which variables are ID variables, and which ones go
into the mdm file as possible analysis variables. The structure looks like this:

*begin lilvars
rowid:STUDID
colid:TCHRID
clusid:SCHLID
MATH

YEAR

G4D1

G4D21

G5D22

TWOWAY

*end lilvars
*begin rowvars
rowid:STUDID
DUMMY

*end rowvars
*begin colvars
colid:TCHRID
clusid:SCHLID
DUMMY

*end colvars
*begin clusvars
clusid:SCHLID
DUMMY

*end clusvars

The ID s must be specified in the order shown, and must all be of the same type, either numeric
(preferable) or alphanumeric(not advised). The level-1 file needs to be sorted primarily by row
ID, secondarily by cluster 1D, and thirdly and the column level. The row file should be sorted by
row ID. The column file should be sorted by column ID within cluster ID, and the cluster file
sorted by cluster ID.

Once the mdmt file is created, the file must be submitted to HCM3:

C:\HLM> HCM3 -r growth.mdmt

The results on the screen should then be examined to make sure the data were read correctly.
These descriptive statistics will also be contained in a file named HCM3MDM.STS.

H.2 Example: Creating an HCM3 HLM file and running the model

The next step is to create a file that specifies the desired model. (This is usually suffixed with a
.him) For example, we will use the model shown in section 15.2.

nonlin:n

numit:100

stopval:0.0000010000
levell:MATH=INTRCPT1+YEAR+G4D1+G4D21+G5D22+TWOWAY+RANDOM
rowcol: INTRCPT1=theta+randomb+randomc
clus:theta=ICPTCLUS+randomd

355



rowcol:YEAR=theta+randomb+randomc
clus:theta=ICPTCLUS+randomd
rowcol:G4D1=theta
clus:theta=ICPTCLUS
rowcol:G4D21=theta
clus:theta=ICPTCLUS
rowcol:G5D22=theta
clus:theta=ICPTCLUS
rowcol: TWOWAY=theta
clus:theta=ICPTCLUS
fixtau:3

fixdeltal:3

fixdelta2:3

accel:5
levellweight:none
rowweight:none
clusterweight:none
hypoth:n

resfiltype:spss
resfill:n
resfillfname:resfill.sav
resrow:n
resrowfname:resrow.sav
rescol:n
rescolfname:rescol.sav
resclus:n
resclusfname:resclus.sav
deflection:cumulative
title:Unweighted model
output:docdefl.html
fulloutput:n

The above is very similar to an HCM2 model file, with the exception of the model specification at
the top where an extra level is shown. Here is the model part that better demonstrates the nested
nature of the model specification (the shown indentation will not run):

levell:MATH=INTRCPT1+YEAR+G4D1+G4D21+G5D22+TWOWAY+RANDOM
rowcol: INTRCPT1=theta+randomb+randomc
clus:theta=ICPTCLUS+randomd
rowcol:YEAR=theta+randomb+randomc
clus:theta=ICPTCLUS+randomd
rowcol:G4D1=theta

clus:theta=ICPTCLUS
rowcol:G4D21=theta
clus:theta=ICPTCLUS
rowcol:G5D22=theta
clus:theta=ICPTCLUS

rowcol: TWOWAY=theta

The rule here is that for every variable in the levell: line, there needs to be a rowcol: line in the
same order as the variables are declared in the levell: line. For each variable in a rowcol: line,
there must be clus: line. Also, note that instead of some form of INTRCPT, HCM3 uses the special
name theta to denote the intercept in the rowcol: lines.

Note that a level-1 variable may vary at the row (randomb), column(randomc), or cluster(randomd)
level. A row variable may vary at either the column or cluster levels. A column variable may
vary at the row or cluster level, and cluster variable may vary at the row level. This can make for
a very complicated model specification. For example, consider this skeleton section for just the
level-1 intercept where rowvar, colvar and clusvar are arbitrary row, column, and cluster level
variables:
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levell:outcome=intrcptl+random
rowcol:intrcptl=intrcptl+rowvar(random)+colvar(random)+rvar*colvar+randomb+randomc
clus:intrcptl=theta+clusvar(randomb)+randomd
clus:rowvar=theta+clusvar(randomb)
clus:colvar=theta+clusvar(fixed)+randomd
clus:rowvar*colvar=icptclus+clusvar[norandom]+randomd

In the rowcol: line, there are four variables: the intercept, an arbitrary row variable (rowvar) an
arbitrary column variable (colvar), and a row by column interaction term rowvar*colvar. The
random in parentheses tells the program let the variables vary. If the variable should be fixed,
substitute the word fixed instead. The interaction term cannot vary, so there is no way to specify
this. Finally, the randomb and randomc at the end of the line tells the program to let the level-1
intercept vary across rows and columns respectively. Either +randomb and +randomc can be
omitted if the level-1 variable should not be allowed to vary across rows or columns
respectively.

The clus: lines all take on the same basic form. In this example, all the variables are modeled
with a cluster intercept, which is random at level-3 except for the variable rowvar, where the
+randomd is omitted. In the clus:colvar line, clusvar is fixed at the row level, where in the previous
two lines it is allowed to vary. In the row/column interaction line, clusvar has no random/fixed
declaration because this term cannot vary at any level.

Assuming that the above file is named growth.him, then the following command should be run:

C:\HLM> HCM3 GROWTH.MDM GROWTH.HLM

The following keywords in the above command files have the same definition and options in
HCM2 as in the other modules (e.g. Tables A.1 and B.1)

ACCEL FULLOUTPUT FIXTAU NONLIN NUMIT OUTPUT STOPVAL TITLE
FIXSIGMA2 STOPMICRO STOPMACRO DEVIANCE DF TITLE GAMMA RESFILTYPE

Table H.1 Keywords and options unique for HCM3 command file

Keyword Function Option Definition
Level-1 or INTRCPT1 Level-1 intercept
LEVEL1 within-cell model ~ +VARNAME Level-1 predictor (no centering)
specification +VARNAME , 2 Level-1 predictor (grand-mean centering)
+VARNAME (FIXED),2 + Level-2 predictor (fixed and grand-mean
centering)
ROWCOL : Level-2 or +VARNAME (FIXED) + Level-2 pred!ctor (fixed and no centering)
INTRCPT1 or between-cell +VARNAME (RANDOM) , 2 + Level-2 predictor (random and grand-mean
ROW/COLUMN model centering) .
VARNAME specification +VARNAME (RANDOM) + Level-2 preqmor (random and no centering)
+RANDOMB + Random main effect of the row factor
+RANDOMC + Random main effect of the column factor
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Table H.1 Keywords and options unique for HCM3 command file (continued)

Keyword Function Option Definition
THETA Level-2 intercept
+VARNAME (FIXED) +cluster-level predictor (fixed and no centering)
CLUS : Level-3 model +VARNAME (RANDOM) +cluster-level predictor(random and no centering)
) specification +VARNAME (FIXED),2 +cluster-level predictor(fixed and grand-mean
centering)
Define the use of independent Independent
a cumulative
DEFLECTION effect model cumulative Cumulative
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| Using HLMHCM in Batch Mode

Unlike the older modules (HLM2, HLM3, etc.), HLMHCM does not have interactive modes to create
the MDM or specify a model. If the windows interface is not available, these file must be created
with an ASCII editor and submit them to obtain results.

I.1 Example: Creating an HLMHCM MDM file from raw data

The first thing that needs creating is an mdm template file (usually suffixed with .mdmt), which
tells HLMHCM how to read the raw data. Here is the MDMT file from section 17.1.1:

#HLMHCM MDM CREATION TEMPLATE
rawdattype:spss
11fname:growth.sav
12fname:student.sav
rowfname:school.sav
colfname:neigh.sav
llmissing:n
timeofdeletion:now
mdmname : growth . mdm
*begin lilvars
level2id:STUDID
AGES8

MATH

*end lilvars

*begin 12vars
level2id:STUDID
rowid:SCHID
colid:NEIGHID
FEMALE

BLACK

HISPANIC

*end 1l2vars

*begin rowvars
rowid:SCHID

SCHPOV

*end rowvars

*begin colvars
colid:NEIGHID
DISADV

*end colvars

The file is broken into two sections. The first is to declare the filenames of the raw data and other
characteristics of the MDM file to be made, the second chooses the variables to be included at the
various levels. Below is the first part with explanation in parentheses:

rawdattype:spss (This declares the type of input data. Possible values
are spss, sas (version 5 transport file), stata, and

ascii)

11fname:growth.sav (The next four Llines declare the names and locations

of the four input files; level-1, row, column, and
cluster, respectively.)
12fname:student.sav
rowfname:school.sav
colfname:neigh.sav
limissing:n (This declares whether or not there are missing data
at level-1. Possible values are n for not missing,
or y for missing data present.)
timeofdeletion:now (This may be n[ow] , where all Llevel-1 cases with
missing data on selected variables will be
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deleted, or a[nalysis] where the missing data will be Left
in and deleted at run-time based on the model specified.)

mdmname : growth.mdm (Specifies the name of the mdm file.)

The second part of the mdmt file specifies which variables are ID variables, and which ones go
into the mdm file as possible analysis variables. The structure looks like this:

*begin lilvars

level2id:STUDID

(list of level-1 variables, one per line)
*end lilvars

*begin 12vars

level2id:STUDID

rowid:SCHID

colid:NEIGHID

(list of level-2 variables, one per line)
*end l2vars

*begin rowvars

rowid:SCHID

(list of row variables, one per line)
*end rowvars

*begin colvars

colid:NEIGHID

(list of column variables, one per line)
*end colvars

The 1Ds must be specified in the order shown, and must all be of the same type, either numeric
(preferable) or alphanumeric(not advised).

Once the MDMT file is created, the file must be submitted to HLMHCM:

C:\HLM> HLMHCM -r growth.mdmt

The results on the screen should then be examined to make sure the data were read correctly.
These descriptive statistics will also be contained in a file named HLMHCMMDM.STS.

[.2 Example: Creating an HLMHCM HLM file and running the model

The next step is to create a file that specifies the desired model. (This is usually suffixed with a
.him) For example, we will use the model shown in section 15.2.

nonlin:n

numit:100000

stopval:0.0000010000
levell:MATH=INTRCPT1+AGE8+RANDOM
level2:INTRCPT1=INTRCPT2+BLACK+HISPANIC+random
rowcol:INTRCPT2=theta+DISADV(RANDOM)+randomb+randomc
rowcol:BLACK=theta

rowcol:HISPANIC=theta
level2:AGE8=INTRCPT2+BLACK+HISPANIC+random
rowcol:INTRCPT2=theta+DISADV(RANDOM)+randomb+randomc
rowcol:BLACK=theta

rowcol:HISPANIC=theta

fixtau:3

fixdelta:3

fixomega:3

accel:5
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deviance:3800.651318
df:18

hypoth:n

resfiltype:spss
resfill:n
resfillfname:resfill.sav
resfil2:n
resfil2fname:resfil2.sav
resrow:n
resrowfname:resrow.sav
rescol:n
rescolfname:rescol.sav
title:CONDITIONAL LINEAR GROWTH MODEL,WITH NEIGHBORHOOD DISADVANTAGE EFFECT RANDOM
output:growth3.html
fulloutput:n

The above is very similar to an HCM2 model file, with the exception of the model specification at
the top where an extra level is shown. Here is the model part that better demonstrates the nested
nature of the model specification (the shown indentation will not run):

levell:MATH=INTRCPT1+AGE8+RANDOM
level2:INTRCPT1=INTRCPT2+BLACK+HISPANIC+random
rowcol:INTRCPT2=theta+DISADV(RANDOM)+randomb+randomc
rowcol:BLACK=theta
rowcol :HISPANIC=theta
level2:AGE8=INTRCPT2+BLACK+HISPANIC+random
rowcol:INTRCPT2=theta+DISADV(RANDOM)+randomb+randomc
rowcol:BLACK=theta
rowcol :HISPANIC=theta

Assuming that the above file is named growth.him, then the following command should be run:
C:\HLM> HLMHCM GROWTH.MDM GROWTH.HLM
The following keywords in the above command files have the same definition and options in

HCM2 as in the other modules (e.g. Tables A.1 and B.1).

ACCEL FULLOUTPUT FIXTAU NONLIN NUMIT OUTPUT STOPVAL TITLE
FIXSIGMA2 STOPMICRO STOPMACRO DEVIANCE DF TITLE GAMMA RESFILTYPE
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with missing data, 398
Latent Variable Regression
analysis, 60, 216, 217, 218, 219, 220
dialog box, 216, 217, 219
Least squares residuals, 16
Length
ID variable, 25
Level-1
AR(1) error structure, 178
assumption of normality, 126
Bernoulli sampling model, 129, 132, 135, 136,
142, 146, 148, 150, 160, 368, 371, 426
binomial sampling model, 129, 138, 160
coefficients, 12, 14, 15, 18, 21, 23, 24, 35, 39,
44,51, 79, 80, 89, 90, 111, 140, 189, 206,
251, 262, 270, 277, 287, 406
correlated residuals, 183
covariance structure, 183
data file, 26, 84, 116, 186
file name, 32
first-order AR structure, 178, 183, 192, 204
fitted values for coefficients, 24, 51
fixed coefficient, 14
fixed coefficients, 14, 80
heterogeneity of variance, 24, 61, 62, 177, 181,
182
heterogenous variance, 24
homogeneity of variance, 69, 70, 72, 180, 195,
196, 197, 215, 323, 364, 392, 396, 398
link function, 127, 128, 129, 130, 131, 132,
133, 143, 151, 153, 161, 387
log-linear model for variance, 392
log-linear structure for variance, 177, 182
measures of variability, 52




model, 12, 23, 25, 35, 42, 65, 74, 78, 79, 83, 89,
109, 111, 119, 126, 127, 128, 129, 131, 137,
144, 178, 180, 181, 182, 183, 189, 194, 206,
251, 270, 276, 277, 286, 359, 362, 374, 381,
385

model specification, 374, 381

multinomial sampling model, 127, 132, 133,
164, 165, 169

non-randomly varying coefficient, 14

non-randomly varying effect, 80

number of variables, 32

Poisson sampling model, 130, 131, 136, 137,
139, 161, 163

predictors, 12, 79, 111

random effect, 12, 79, 111, 126, 127, 262, 277,
323

random effects, 12, 79, 90, 111

randomly varying coefficient, 14, 18, 80, 140,
325, 326

removing intercept, 73

residuals, 23, 24, 46, 48, 183, 321, 323, 324,
325

sampling model, 127, 128, 129, 130, 131, 132,
133, 134, 144, 160, 161, 163, 165

sorting of data file, 26, 85

specifying model, 35

specifying non-randomly varying coefficents,
39

structural model, 128

structural model, 23, 127, 128

structural model, 128

structural model, 130

structural model, 130

structural model, 131

structural model, 133

structural model, 133

structural model, 134

structural model, 152

structural model, 152

structural model, 160

structural model, 162

structural model, 162

structural model, 163

structural model, 166

structural model, 167

structural model, 171

structural model, 171

structural model, 176

structural model, 179

structural model, 184

structural model, 189

structural model, 206

testing homogeneity of variance, 69
unrestricted covariance structure, 177, 178, 180,
181, 182, 189, 191, 195, 215, 219, 393
variance, 11, 12, 61, 62, 63, 64, 69, 70, 79, 111,
144, 153, 160, 162, 164, 177, 178, 180, 181,
182, 191, 195, 196, 197, 198, 200, 203, 205,
215, 228, 233, 255, 257, 262, 274, 277, 364,
392, 396, 398
variance in HGLM maodel, 153, 160, 162, 164
weighting to population, 66, 67
within-cell model, 247, 260, 262, 263
LEVEL1 keyword, 374, 381
Level-2
between-cell model, 260, 263
coefficients, 12, 14, 16, 18, 19, 20, 21, 77, 79,
80, 81, 90, 97, 107, 111, 140, 218, 263, 265,
270, 287, 292, 360
data file, 26, 85, 117, 187
example of a residual file, 98
example of removing fixed effect, 75
exploratory analysis of predictors, 75
fixed effect, 81
ID variable, 85
including predictors, 37
missing data, 55
model, 11, 12, 14, 16, 18, 23, 24, 36, 38, 46, 49,
51, 61, 75, 78, 79, 80, 82, 89, 109, 111, 119,
130, 132, 133, 179, 180, 181, 184, 252, 263,
276, 292, 312, 359, 362, 374, 376, 381, 400
model specification, 374, 381
non-randomly varying effect, 81
normalizing of design weights, 66
OLS regression equations, 42
potential predictors, 75
predictors, 12, 24, 79, 111
printing of variances, 370
random coefficients, 13, 79, 90, 111, 120
random effect, 13, 20, 79, 111
residual, 24, 107
residual file, 24, 46, 48, 50, 51, 52, 82, 97, 98,
99, 100, 366, 386
selecting equation for modeling, 37
sorting of data file, 85
specifying model, 35, 37
structural model, 23, 152, 167, 171
unit 1D, 22, 25, 26
variance, 14, 80, 95, 106, 140, 277, 290, 296,
370
variance-covariance components, 80
LEVEL?2 keyword, 374, 381
Level-3
between-cluster model, 260



coefficients, 80, 113
data file, 85, 118
ID variable, 85
missing data, 87
model, 11, 21, 78, 81, 90, 109, 120, 128, 130,
184, 185, 218, 328
model specification, 374, 381
predictors, 80, 113
random effects, 81, 113
randomly varying effect, 81
residual file, 82, 97
using design weights, 88
LEVEL3 keyword, 374, 381
Level-4
coefficient, 113, 114
data file, 118
predictor, 113
random effect, 113
Likelihood ratio test, 18, 20, 70, 72, 82, 178, 180
Line plot, 304, 305, 308, 309, 310, 311, 328, 329
Link function, 127, 128, 129, 130, 131, 132, 133,
143, 151, 153, 161, 387
identity, 128, 143, 151, 153, 387
logit, 129, 132, 133, 153, 162, 163
Listwise deletion, 55
Log link function, 130, 131, 162
Logit link function, 129, 132, 153, 162
LOTUS input file, 35
LVRALPHA.DAT file, 371
LVR-BETA keyword, 375
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Macro iterations, 64, 136, 146, 151, 152, 153, 159,

367, 384, 387, 388, 390
Macro-iterations, 136, 146
specifying in interactive mode, 384
Mabhalanobis distance measures, 24, 49, 51, 97
Mabhalanobis distances, 24, 97
Make MDM — HLM2 dialog box, 33, 55
Make MDM — HLM3 dialog box, 87, 88
Make MDM — HLM4 dialog box, 119
Make MDM — HMLM dialog box, 188
MAR, 346
Maximum likelihood, 18, 135, 144
estimates, 14, 16, 18, 81, 114, 264, 278
full, 18, 60, 82, 91, 101, 114, 220, 223, 248,
253, 271, 288, 294, 366
restricted, 18, 41, 60, 82, 221, 231, 359, 361
Maximum likelihood estimates, 16, 81, 114
MCAR, 352
MDM file, 32, 85, 186, 215, 229, 383, 391

analyses based on, 206, 396, 398
constructing, 25, 188
constructing in interactive mode, 391
data file formats, 25
interactive analyses based on, 392
MDMT file, 31, 33, 377, 378, 412, 413, 418,
419
using ASCII data, 25, 26, 32, 46, 88
using SAS data, 25, 26, 35, 46, 50, 57, 83, 89,
97, 366, 387, 402
using SPSS data, 26, 35, 83, 88, 116, 186, 266,
402
using STATA data, 25, 35, 46, 50, 89, 97, 366,
402
using SYSTAT data, 25, 35, 46, 50, 83, 89, 97,
366, 387, 402
MDMT file, 31, 33, 377, 378, 412, 413, 418, 419
Menu
Input File Type, 28, 35
Optional Specifications, 61, 62, 68, 75
Meta-analysis, 52, 228, 229, 231
Micro iterations, 136, 146, 150, 151, 152, 158,
159, 161, 163, 165, 170, 367, 368, 384, 387,
388, 389, 390
Micro-iterations, 136, 146
specifying in interactive mode, 384
Missing data, 25, 29, 33, 55, 56, 57, 65, 87, 178,
184, 215, 218, 219, 220, 221, 245, 269, 284,
378, 398, 403, 413, 419
assigning code for, 25, 56, 57, 88
example of latent variable regression with, 398
handling of, 55
specifying, 29, 33, 87
using in HLM, 56
missing data in two-level models, 346
MLM file, 215
example, 392
Model
4-level, 11, 109, 113, 114
as EMF file, 39
between-cell, 260, 263
between-cluster, 260
combined, 38, 142, 180, 181, 184
cross-classified random effects, 11, 260
cumulative effect, 270, 406, 410, 417
cumulative Z-structure, 270
display mixed, 38, 90, 150
display subscripts, 38
evaluating fit, 65, 201
for count data, 126, 130, 148, 162, 163
for multi-category outcome, 127, 132, 148, 169
for multiply-imputed data, 11, 55, 60, 221, 222,



223, 224, 225, 227, 366, 368, 371, 395, 400,
401
for ordinal outcome, 127, 134, 148
level-1, 12, 109, 178, 247, 260, 262, 263, 362,
374, 381
level-2, 12, 36, 111, 132, 133, 179, 181, 184,
260, 263, 362, 374, 381
level-3, 260
nonlinear (HGLM), 60, 114, 126, 127, 129,
131, 133, 135, 140, 143, 144, 145, 146, 176,
218, 262, 264, 278, 314, 371, 375, 377, 383,
412, 418
population-average, 114, 142, 143, 144, 152,
153, 156, 160, 164, 169, 176, 264, 278, 314,
371
row factor predictor, 251, 252, 292
specification, 35, 37, 38, 89, 90, 100, 119, 120,
125, 247, 251, 255, 270, 286, 287, 292
unit-specific, 114, 142, 143, 144, 151, 153, 156,
160, 164, 167, 169, 172, 176, 264, 278, 314,
371, 376, 388
unrestricted, 178, 180, 181, 182, 189, 191, 195
with binary outcome, 126, 127, 128, 129, 149,
150, 173, 262, 265, 383
within-cell, 247, 260, 262, 263
without level-1 intercept, 73
Model based graphs, 298, 304, 308, 311, 318, 321,
324, 325, 327, 328
Models
checking, 23, 46, 97
comparison, 201
population-average, 142
specification, 23
unit-specific, 142
MQL, 140
Multi-category data
analysis of, 127, 132, 148, 169
Multinomial data, 132
Multinomial model, 127, 384
example, 164
level-1, 127, 132, 133, 164, 165, 169
unit-specific results, 169
Multiple imputation analysis, 60
Multiple Imputation MDM files dialog box, 227,
228
multiple imputation of missing data, 346
multiple outcome variables, 346
Multiply-imputed data, 221, 395
analysis of, 11, 55, 60, 221, 222, 223, 224, 225,
227, 366, 368, 371, 395, 400, 401
command in syntax, 400
-E flag, 400

example, 227

example in interactive mode, 400

outcome and covariates, 227
Multivarate data matrix file, 32, 85, 229, 383
Multivariate

hypothesis tests, 68, 82, 114

hypothesis tests for fixed effects, 223

linear models, 177

matrix data, 186

model for incomplete data, 183
Multivariate normality

assumption of, 24
Multivariate outcome, 177
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NAEP, 222
NAEP data

example, 222, 223, 422
National Youth Survey Data

example, 186, 190, 192, 193, 201, 215, 216,

217, 311, 391, 392, 393, 396, 397

NEWCMD.HLM file, 389
NEWCMD.MLM file, 389, 392, 393
No-intercept model, 60, 398

example, 74
Non-linear

analysis, 127

link function, 143

models, 146
Non-randomly varying

coefficient at level-1, 14
Number of Parameters box, 70

o 1

OL prefix, 17
OLS, 17, 18, 20, 21, 24, 42, 43, 48, 51, 52, 53, 54,
73, 97, 108, 231, 325, 326, 359, 360, 362, 387
assumptions, 20
estimates, 16, 20, 23, 24, 48, 99
example of regression equations, 42
residuals, 16, 48, 51, 53, 97
results, 23
standard errors, 21
OLS equations for level-2 units, 42
Options
for HLMZ2, 362, 364, 366, 368
for HLM3, 374, 375, 381
for HMLM, 392
for HMLMZ2, 392
Ordinal data



analysis of, 127, 134, 148
Ordinal model, 127, 384

example, 169

unit-specific results, 169
Original coefficient

latent variable analysis, 218
OUT file, 223
Outcome

specifying, 36, 248
Outcome variable

selecting, 36, 248
Output

annotated example, 41

file

name, 40

viewing, 41
Output file

viewing, 41
Over-dispersion, 144, 146, 158, 161, 163, 173,

384

specifying in interactive mode, 384
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Pairwise deletion, 55
Parameter estimates
averages, 223
in analysis of plausible values, 222
Parameter estimation, 14, 81, 114, 186, 189, 206
Plausible value analysis, 60, 221, 222, 223, 224,
225, 368, 371, 395
average of estimates, 223
standard error of the gammas, 223
Plausible values analysis, 222, 224, 371, 395
Example via Windows mode, 225
PLAUSVALS keyword, 400
Plot
line, 304, 305, 308, 309, 310, 311, 328, 329
scatter, 304, 305, 306, 308, 309, 324, 328
Poisson
distribution, 131
example of model, 161, 162
model, 139, 148, 173
sampling model, 130
Poisson model
equal exposure, 148, 161
level-1, 130, 131, 136, 137, 139, 161, 163
variable exposure, 162
Population-average
iteration, 388
models, 142
Population-average model, 114, 142, 143, 144,

152, 153, 156, 160, 164, 169, 176, 264, 278,
314, 371
differences from unit-specific, 143
Posterior variance, 24, 51, 98, 99
Posterior variances, 98
PQL, 114, 135, 140, 144, 145, 152, 153, 159, 170,
264, 278, 314
estimation, 135
full, 144
restricted, 144, 152, 159, 170
Predictor
column-specific, 247, 263, 287
Level-4, 113
row factor, 251, 252, 292
row-specific, 247, 263, 278, 287
Predictor variable
selecting, 36
Preferences dialog box, 38
Printing
gamma var-cov matrix to file, 370, 371
tau to file, 370, 371, 372, 375, 376
PRINTVARIANCE-COVARIANCE keyword,
375
Proportional odds, 134
PRSSM/MDM2 subprogram, 22
PRSSM/MDM3 subprogram, 83
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Q-Q plot, 52
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Random effect, 42
column-specific predictor, 263, 278
cross-classified model, 11, 260
level-1, 12, 79, 111, 126, 127, 262, 277, 323
level-2, 13, 20, 79, 111
level-3, 81, 113
Level-4, 113
row-specific predictor, 263, 278
with no fixed effect, 74
within-cell, 262
Random effects
distribution of, 20
Randomly varying
coefficient at level-1, 14, 18, 140, 325, 326
specifying coefficient as, 39
Regression with missing data, 219
Reliabilities, 16, 82
average estimates, 223
example, 94




Reliability, 82, 94, 223
level-1 coefficients, 16
RELIABILITY ESTIMATES, 16
REML, 60
Repeated measures, 177, 215, 391
example, 186
Repeated measures data, 11, 177, 179
Resfil File Name box, 50
RESFIL3 keyword, 374, 381
RESFIL3NAME keyword, 374, 382
Residual analyses
examples of, 48, 52
Residual file, 15, 17, 18, 22, 23, 24, 35, 46, 48, 50,
51, 52, 57, 82, 83, 97, 98, 99, 100, 107, 114,
231, 359, 366, 374, 381, 382, 385, 386, 387,
395, 406, 409
empirical Bayes, 18
example of a level-2, 98
level-2, 97
level-3, 97
LNTOTVAR, 52
MDRSVAR, 52
name, 374, 382
OLSRSVAR, 52
SPSS, 46
SPSS version, 50
structure of, 46, 51, 52
type, 387
SPSS, 46, 50
type of, 97
Residuals
analysis of, 48, 52
AR(1) model, 183
correlated at level-1, 183
empirical Bayes, 18, 48, 51, 53, 54, 55, 77, 97,
99, 107
least squares, 16
level-1, 23, 24, 46, 48, 183, 321, 323, 324, 325
level-2, 24, 107
OLS, 16, 48, 51, 53, 97
randomly varying, 35
within-person, 180
Response file, 31, 33
Restricted maximum likelihood (REML), 18, 82
Robust standard errors, 21, 43, 44, 45, 64, 72, 93,
95, 103, 106, 155, 156, 157, 160, 168, 169, 172,
173, 274, 370, 371
example, 43
Row factor, 243, 244, 252, 266, 267, 275, 280,
403, 410, 416
data file, 245, 246, 267, 283, 286
predictor model, 251, 252, 292

Row-specific predictor, 247, 263, 278, 287
random effect, 263, 278
Run Analysis option, 40
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Sampling model, 127, 128, 129, 130, 131, 132,
133, 134, 144, 160, 161, 163, 165
SAS
data file, 89
input, 89
transport file input, 35
SAS file
making MDM from, 25, 26, 35, 46, 50, 57, 83,
89, 97, 366, 387, 402
Save MDM template file dialog box, 31, 33
Scatter plot, 304, 305, 306, 308, 309, 324, 328
Select MDM type dialog box, 27, 28, 32, 188, 245,
269, 284
Select Range/Legend/Color
dialog box, 316
Shrunken estimates, 15, 54
Sorting of data, 22, 85, 282
Specification
of model, 35, 37, 38, 89, 90, 100, 119, 120, 125,
247, 251, 255, 270, 286, 287, 292
outcome variable, 36, 248
SPSS
data file, 26, 32, 83, 116
example of residual file, 50
file input, 26, 32, 83, 116, 186, 206
input file, 28
making MDM from file, 26, 35, 83, 88, 116,
186, 266, 402
residual file, 46
SSM/MDM file, 35, 146, 227, 359, 400
analysis based on, 383
Example, 83
example for V-known model, 229
name, 30, 33
SSM/MDM file type, 27
SSM/MDM/MDM file, 22, 23
Standard deviations
total and residual, 49
Standard error of the gammas
plausible value analysis, 223
Standard errors, 21, 43, 44, 45, 48, 77, 82, 95, 97,
107, 114, 143, 156, 160, 168, 172, 195, 221,
222, 223, 229, 265, 278, 366, 370, 371, 375
GLS, 44
OLS, 21
robust, 21, 43, 44, 45, 64, 72, 93, 95, 103, 106,



155, 156, 157, 160, 168, 169, 172, 173, 274,
370, 371
Starting values, 91, 374, 375, 382
correcting unacceptable, 59, 364, 374, 375, 382
STATA
making MDM from file, 25, 35, 46, 50, 89, 97,
366, 402
STATA input file, 35
structural model, 23, 127, 128, 130, 131, 133, 134,
152, 160, 162, 163, 166, 167, 171, 176, 179,
184, 189, 206
Subscripts
display in model, 38
Summary statistics, 22
Sustaining Effects Study data
example, 78, 83, 90, 101, 206, 280
SYSTAT
data file, 89
file input, 35
input, 89
making MDM from file, 25, 35, 46, 50, 83, 89,
97, 366, 387, 402

T+

Tau, 59
average estimates, 223
TAU, 43, 181, 185, 370, 371
TAUVC.DAT file, 370, 371, 372, 375, 376
TAUVCPC.DAT file, 372
Template file
for MDM, 31
for model, 389, 392, 393
Test statistic
chi-square, 19, 23, 82, 114, 265, 279
chi-square for homogeneity, 82, 114, 265, 279
likelihood ratio, 18, 20, 70, 72, 82, 178, 180
Thailand data
example, 148
Threshold, 135
t-ratio, 19, 82, 114
Treatment effect
carry-over, 270
T-to-enter statistic
for potential predictor, 75, 97
t-to-enter statistics for potential predictors, 75
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Under-dispersion, 144, 173, 384
Unit-specific

iteration, 388

models, 142
Unit-specific model, 114, 142, 143, 144, 151, 153,
156, 160, 164, 167, 169, 172, 176, 264, 278,
314, 371, 376, 388
and multinomial outcome, 169
and ordinal outcome, 169
differences from population-average, 143
Unrestricted model, 178
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Var-cov matrix
printing gamma to file, 370, 371
printing tau to file, 370, 371, 372, 375, 376
Variable exposure, 162, 383
Variance
and covariance components, 14, 16, 18, 23, 44,
80
combined model, 185
components, 16
first order AR at level-1, 178, 183, 192, 204
heterogeneity at level-1, 61, 177
heterogeneity of, 24
heterogeneity of level-1, 61, 62, 177, 181, 182
homogeneity at level-1, 69, 180, 215
homogeneity of level-1, 69, 70, 72, 195, 196,
197, 215, 323, 364, 392, 396, 398
level-1, 11, 12, 61, 62, 63, 64, 69, 70, 79, 111,
144, 153, 160, 162, 164, 177, 178, 180, 181,
182, 191, 195, 196, 197, 198, 200, 203, 205,
215, 228, 233, 255, 257, 262, 274, 277, 364,
392, 396, 398
level-1 in HGLM model, 153, 160, 162, 164
level-2, 14, 80, 95, 106, 140, 277, 290, 296, 370
log-linear at level-1, 177, 182
log-linear structure for level-1, 177, 392
posterior, 24, 51, 98, 99
printing of level-2, 370
printing to file, 370
unrestricted structure, 177, 178, 180, 181, 182,
189, 191, 195, 215, 219, 393
within-cell, 262
Variance components, 23, 44, 45, 64, 72, 95, 106,
124, 145, 155, 169, 173, 233, 255, 257, 274,
275, 290, 292, 296
chi-square test, 23
Variance-covariance
matrix, 43, 181, 185, 370, 371
test for components, 70
Variance-covariance components
average estimates, 223
hypothesis tests, 18, 20, 145




level-2, 80 Weights

matrix for fixed effects, 176 for cases, 65, 88, 275, 364
multivariate tests, 70 generalizing to level-1 population, 66, 67
printing matrix, 370 Within-cell

V-known data file, 243, 245, 246, 266, 280, 403
analysis, 228, 229 random effect, 262
option, 52, 228, 229, 231 variance, 262

V-known model, 228 Within-cell model, 247, 260, 262, 263
estimating in interactive mode, 229 Within-person variation, 179
example, 228
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