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Preface 

 

New Program Features in HLM 8 for Windows 

 

Estimating HLM from incomplete data 

- A completely automated approach that generates and analyzes multiply imputed data sets 

from incomplete data.  

- The model is fully multivariate and enables the analyst to strengthen imputation through 

auxiliary variables. 

 

Here the user specifies the HLM; the program automatically searches the data to discover which 

variables have missing values; it then estimates a multivariate hierarchical linear model 

“imputation model” in which all variables having missing values are regressed on all variables 

having complete data; it then uses the resulting parameter estimates to generate M imputed data 

sets; it then analyzes each of these in turn and combines the results using the “Rubin rules.”  

 

Flexible Combinations of Fixed Intercepts and Random Coefficients  

- Included in HLM2, HLM3, HLM4, HCM2, and HCM3. 

- Two-level examples: a) a longitudinal study with fixed child effects and random 

treatment effect; and b) a study in which children are randomly assigned to treatments 

within pre-school centers with fixed center intercepts and a random coefficient for 

treatment. 

- A three-level study in which children are nested within classrooms within schools; we 

have fixed school intercepts and a randomly varying treatment effect and randomly 

varying classroom intercepts. 

 

A concern that can arise in multilevel causal studies is that random effects may be correlated 

with treatment assignment. For example, suppose that treatments are assigned non-randomly to 

students who are nested within schools. Estimating a two-level model with random school 

intercepts will generate bias if the random intercepts are correlated with treatment effects. The 

conventional strategy is to specify a fixed effects model for schools. However, this approach 

assumes homogeneous treatment effects, leading possibly to biased estimates of the average 

treatment effect, incorrect standard errors, and inappropriate interpretations. Our tools allow the 

analyst to combine fixed intercepts with random coefficients in models that address these 

problems and to facilitate a richer summary including an estimate of the variation of treatment 

effects and empirical Bayes estimates of unit-specific treatment effects. This approach was 

proposed in Bloom, Raudenbush, Weiss, and Porter (2017). 
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1 Conceptual and Statistical Background for Two-Level Models 

 

 

 

Behavioral and social data commonly have a nested structure. For example, if repeated 

observations are collected on a set of individuals and the measurement occasions are not 

identical for all persons, the multiple observations are properly conceived as nested within 

persons. Each person might also be nested within some organizational unit such as a school or 

workplace. These organizational units may in turn be nested within a geographical location such 

as a community, state, or country. Within the hierarchical linear model, each of the levels in the 

data structure (e.g., repeated observations within persons, persons within communities, 

communities within states) is formally represented by its own sub-model. Each sub-model 

represents the structural relations occurring at that level and the residual variability at that level.  

 

This manual describes the use of the HLM computer program for the statistical modeling of two-, 

three- and four-level data structures, respectively. It should be used in conjunction with the text 

Hierarchical Linear Models: Applications and Data Analysis Methods (Raudenbush, S.W. & 

Bryk, A.S., 2002: Newbury Park, CA: Sage Publications)¹.1The HLM programs have been 

tailored so that the basic program structure, input specification, and output of results closely 

coordinate with this textbook. This manual also cross-references the appropriate sections of the 

textbook for the reader interested in a full discussion of the details of parameter estimation and 

hypothesis testing. Many of the illustrative examples described in this manual are based on data 

distributed with the program and analyzed in the Sage text. 

 

We begin by discussing the two-level model below and the use of the HLM2 program in 

Chapter 2. Building on this framework, Chapters 3 and 4 introduce the three-level model and the 

use of the HLM3 program. The four-level model and the use of the HLM4 program are discussed 

in Chapters 5 and 6. Chapters 7 and 8 discuss use of hierarchical modeling for non-normal level-

1 errors. Chapters 9 and 10 consider multivariate models that can be estimated from incomplete 

data. Chapter 11 describes several special features of HLM2 and HLM3, including analyses 

involving latent variables, multiply-imputed data, and known level-1 variances, as well as the 

procedure for graphing data and equations. Chapters 12 and 13 introduce two-level cross-

classified random effects that are applicable for analyses of models that do not have a strictly 

hierarchical data structure, and Chapters 14 and 15 discuss three-level cross-classified random 

effects models. Hierarchical linear models with cross-classified random effects are considered in 

Chapters 16 and 17. Chapter 18 illustrates HLM's ability to produce data- and model-based 

graphs. Flexible combinations of Fixed Intercepts and Random Coefficients (FIRC) is introduced 

in Chapter 19. In Chapter 20, a completely automated approach that generates and analyzes 

multiply imputed data sets from incomplete data is discussed.  

 

 

                                                
1
 Also available from SSI.  
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1.1 The general two-level model 

As the name implies, a two-level model consists of two submodels at level 1 and level 2. For 

example, if the research problem consists of data on students nested within schools, the level-1 

model would represent the relationships among the student-level variables and the level-2 model 

would capture the influence of school-level factors. Formally, there are 1,..., ji n  level-1 units 

(e.g., students) nested within 1,...,j J  level-2 units (e.g., schools).  

1.1.1 Level-1 model 

We represent in the level-1 model the outcome for case i  within unit j  as: 

Equation Section 1     

0 1 1 2 2

0

1

,

ij j j ij j ij Q j Qij ij

Q

j q j qij ij

q

Y X X X r

X r

   

 


     

  
   

    (0.01) 

where  

q j  ( 0,1,...,q Q ) are level-1 coefficients; 

qi jX  is the level-1 predictor q  for case i  in unit j ;  

ijr  is the level-1 random effect; and  

2  is the variance of ijr , that is the level-1 variance. 

 

Here we assume that the random term 
2(0, )ijr N  .  

1.1.2 Level-2 model 

Each of the level-1 coefficients, q j , defined in the level-1 model becomes an outcome variable 

in the level-2 model: 

      

0 1 1 2 2

0

1

,

q q

q

q j q q j q j q S S j q j

S

q q s s j q j

s

W W W u

W u

    

 


     

  
                                        (1.02) 

where  

q s  ( 0,1,..., qq S ) are level-2 coefficients;  

s jW  is a level-2 predictor; and  

q ju  is a level-2 random effect. 

 

We assume that, for each unit j, the vector  0 1, ,...,j j Q ju u u

 is distributed as multivariate normal, 

with each element of q ju  having a mean of zero and variance of 

( )q j qqVar u  .              (0.03) 
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For any pair of random effects q  and q , 

( , ) .q j q j qqCov u u                                             (0.04) 

These level-2 variance and covariance components can be collected into a dispersion matrix, T , 

whose maximum dimension is    1 1Q Q   . 

We note that each level-1 coefficient can be modeled at level-2 as one of three general forms: 

 

1. a fixed level-1 coefficient; e.g., 

0,q j q                               (0.05) 

2. a non-randomly varying level-1 coefficient, e.g.,  

           0

1

,
qS

q j q q s sj

s

W  


                                                      

(1.06) 

3. a randomly varying level-1 coefficient, e.g., 

     
0q j q q ju                                                                   (1.07) 

or a level-1 coefficient with both non-random and random sources of variation, 

            0

1

qS

q j q q s sj q j

s

W u  


                                                          (1.08) 

The actual dimension of T  in any application depends on the number of level-2 coefficients 

specified as randomly varying. We also note that a different set of level-2 predictors may be used 

in each of the 1Q  equations of the level-2 model.  

1.2 Parameter estimation 

Three kinds of parameter estimates are available in a hierarchical linear model: empirical Bayes 

estimates of randomly varying level-1 coefficients; generalized least squares estimates of the 

level-2 coefficients; and maximum-likelihood estimates of the variance and covariance 

components. 

1.3 Empirical Bayes (“EB”) estimates of randomly varying level-1 
coefficients, q j   

These estimates of the level-1 coefficients for each unit j  are optimal composites of an estimate 

based on the data from that unit and an estimate based on data from other similar units. 

Intuitively, we are borrowing strength from all of the information present in the ensemble of data 

to improve the level-1 coefficient estimates for each of the J  units. These “EB” estimates are 

also referred to as “shrunken estimates” of the level-1 coefficients. They are produced by HLM as 

part of the residual file output (see Section 2.5.4, Model checking based on the residual file). 

(For further discussion see Hierarchical Linear Models, pp. 45-51; 85-95.) 
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1.4 Generalized least squares (GLS) estimates of the level-2 
coefficients, qs   

Substitution of the level-2 equations for q j
 into their corresponding level-1 terms yields a 

single-equation linear model with a complex error structure. Proper estimation of the regression 

coefficients of this model (i.e., the  's) requires that we take into account the differential 

precision of the information provided by each of the J units. This is accomplished through 

generalized least squares. (For further discussion see Hierarchical Linear Models, pp. 38-44.) 

1.5 Maximum likelihood estimates of variance and covariance 
components 

Because of the unbalanced nature of the data in most applications of hierarchical linear models 

(i.e., 
jn  varies across the J  units and the observed patterns on the level-1 predictors also vary), 

traditional methods for variance-covariance component estimation fail to yield efficient 

estimates. Through iterative computing techniques such as the EM algorithm and Fisher scoring, 

maximum-likelihood estimates for 2  and T  can be obtained. (For further discussion, see 

Hierarchical Linear Models, pp. 51-56; also Chapters 13, 14).  

1.6 Some other useful statistics 

Based on the various parameter estimates discussed above, HLM2 and HLM3 also compute a 

number of other useful statistics. These include: 

 

1. Reliability of ˆ
q j . 

The program computes an overall or average reliability for the least squares estimates of each 

level-1 coefficient across the set of J  level-2 units. These are denoted in the program output as 

RELIABILITY ESTIMATES and are calculated according to Equation 3.58 in Hierarchical Linear 

Models, p. 49. 

 

2. Least squares residuals,( ˆ
q ju ).  

These residuals are based on the deviation of an ordinary least squares estimate of a level-1 

coefficient, ˆ
q j , from its predicted or “fitted” value based on the level-2 model, i.e., 

0

1

ˆ ˆ ˆˆ .
qS

q j q j q q s s j

s

u W  


 
    

 
           (0.09) 

These ordinary least square residuals are denoted in HLM residual files by the prefix OL before 

the corresponding variable names. 
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3. Empirical Bayes residuals ( *

q ju ) 

These residuals are based on the deviation of the empirical Bayes estimates, *

q j , of a randomly 

varying level-1 coefficient from its predicted or “fitted” value based on the level-2 model, i.e., 

    * *

0

1

ˆ ˆ .
qS

q j q j q q s s j

s

u W  


 
    

 
         (0.010) 

These are denoted in the HLM residual files by the prefix EB before the corresponding variable 

names. (For a further discussion and illustration of OL and EB residuals see Hierarchical Linear 

Models, pp. 47-48; and 76-95). 

1.7 Hypothesis testing 

Corresponding to the three basic types of parameter estimates based on a hierarchical linear 

model (EB estimates of random level-1 coefficients, GLS estimates of the fixed level-2 

coefficients, and the maximum-likelihood estimates of the variance and covariance components), 

are single-parameter and multi-parameter hypothesis-testing procedures. (See Hierarchical 

Linear Models, pp. 56-65). The current HLM programs execute a variety of hypothesis tests for 

the level-2 fixed effects and the variance-covariance components. These are summarized in 

Table 1.1. 

1.8 Restricted versus full maximum likelihood 

By default, two-level models are estimated by means of restricted maximum likelihood (REML). 

Using this approach, the variance-covariance components are estimated via maximum 

likelihood, averaging over all possible values of the fixed effects. The fixed effects are estimated 

via GLS given these variance-covariance estimates. Under full maximum likelihood (ML), 

variance-covariance parameters and fixed level-2 coefficients are estimated by maximizing their 

joint likelihood (see Hierarchical Linear Models, pp. 52-53). One practical consequence is that, 

under ML, any pair of nested models can be tested using a likelihood ratio test. In contrast, using 

REML, the likelihood ratio test is available only for testing the variance-covariance parameters, as 

indicated in Table 1.1.  

 

Table 1.1 Hypothesis tests for the level-2 fixed effects and the variance-covariance 
components  

 

Type of hypothesis Test statistic Program output 

Fixed level-2 effects 

 

Single Parameter:  

0 : 0q sH     

1 : 0qsH    

 

t-ratio
1
  

 

Standard feature of the Fixed Effects 

Table for all level-2 coefficients 

 

Multi-parameter:  

0 : 0H C     

1 : 0H C    

 

general linear hypothesis 

test (Wald test), chi-

square test
2
  

 

Optional output specification (see 

Section 2.8) 
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 Table 1.1 Hypothesis tests for the level-2 fixed effects and the variance-covariance 
 components (continued) 

 

Type of hypothesis Test statistic Program output 

Variance-covariance components 

 

Single-Parameter:  

0 : 0qqH     

1 : 0qqH     

 

Chi-square test
3
 

 

Standard feature of the Variance 

Components Table for all level-2 

random effects 

 

Multi-parameter:  

0 0:H T T  

1 0:H T T  

 

Difference in deviances, 

likelihood ratio test.
4
 

 

Optional output specification (see 

Section 2.8) 

 
1
See Equation 3.83 in Hierarchical Linear Models.  

2
See Equation 3.91 in Hierarchical Linear Models.  

3
See Equation 3.103 in Hierarchical Linear Models.  

 4
Here 0T  is a reduced form of 1T . 

1.9 Generalized Estimating Equations 

Statistical inferences about the fixed level-2 coefficients, 
q s , using HLM are based on the 

assumption that random effects at each level are normally distributed; and on the assumed 

structure of variation and covariation of these random effects at each level. Given a reasonably 

large sample of level-2 units, it is possible to make sound statistical inferences about 
q s  that are 

not based on these assumptions by using the method of generalized estimating equations or 

“GEE” (Zeger & Liang, 1986). Comparing these GEE inferences to those based on HLM provides 

a way of assessing whether the HLM inferences about q s  are sensitive to the violations of these 

assumptions. The simplest GEE model assumes that the outcome ijY  for case i in unit j is 

independent of the outcome i jY   for some other case, i , in the same unit; and that these 

outcomes have constant variance. Under these simple assumptions, estimation of the   

coefficients by ordinary least squares (OLS) would be justified. If these OLS assumptions are 

incorrect, the OLS estimates of q s  will be consistent (accurate in large samples) but not 

efficient. However, the standard error estimates produced under OLS will generally be 

inconsistent (biased, often badly, even in large samples).  

 

Version 7 of HLM produces the following tables, often useful for comparative purposes: 

 

 A table of OLS estimates along with the OLS standard errors. 

 A table including the OLS estimates, but accompanied by robust standard errors, that is, 

standard errors that are consistent even when the OLS assumptions are incorrect. 

 A table of HLM estimates of q s , based on GLS, and standard errors based on the 

assumptions underlying HLM. 
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 A table of the same HLM estimates, but now accompanied by robust standard errors, that 

is, standard errors that are consistent even when the HLM assumptions are mistaken. 

 

By comparing these four tables, it is possible a) to discern how different the HLM estimates and 

standard errors are from those based on OLS; and b) to discern whether the HLM inferences are 

plausibly distorted by incorrect assumptions about the distribution of the random effects at each 

level. We illustrate the value of these comparisons in Chapter 2 (for further discussion, see 

Hierarchical Linear Models, pp. 276-280). The GEE approach is very useful for strengthening 

inferences about the fixed level-2 coefficients but does not provide a basis for inferences about 

the random, level-1 coefficients or the variance-covariance components. Cheong, Fotiu, and 

Raudenbush (2001) have intensively studied the properties of HLM and GEE estimators in the 

context of three-level models. GEE results are also available for three-level data. 
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2 Working with HLM2 

 

 

 

Data analysis by means of the HLM2 program will typically involve three stages:  

 

1. construction of the “MDM file” (the multivariate data matrix);  

2. execution of analyses based on the MDM file; and  

3. evaluation of fitted models based on a residual file.  

 

We describe each stage below and then illustrate a number of special options. Data collected 

from a High School & Beyond (HS&B) survey on 7,185 students nested within 160 US high 

schools, as described in Chapter 4 of Hierarchical Linear Models, will be used for 

demonstrations. 

2.1 Constructing the MDM file from raw data 

We assume that a user has employed a standard computing package to clean the data, make 

necessary transformations, and conduct relevant exploratory and descriptive analyses. We also 

recommend exploratory graphical analyses within HLM prior to model building as described in 

detail in Section 18.1 of this manual. 

 

The first task in using HLM2 is to construct the Multivariate Data Matrix (MDM) from raw data or 

from a statistical package. We generally work with two raw data files: a level-1 file and a level-2 

file. Both files must be sorted by the level-2 ID (It is possible, however, to build the MDM file 

from the level-1 file above, though this option is not suggested when the level-1 file is very 

large. The level-1 file must be sorted by level-2 ID. The level-1 file name will be selected as both 

the level-1 and level-2 file). 

 

For the HS&B example, the level-1 units are students and the level-2 units are schools. The two 

files are linked by a common level-2 unit ID, school id in our example, which must appear on 

every level-1 record. In constructing the MDM file, the HLM program will compute summary 

statistics based on the level-1 unit data and store these statistics together with level-2 data.  

 

The procedure to create a MDM file consists of three major steps. The user needs to 

 

 Inform HLM of the input and MDM file type.  

 Supply HLM with the appropriate information for the data, the command and the MDM 

files.  

 Check if the data have been properly read into HLM. 

 

2.2 Executing analyses based on the MDM file 

Once the MDM file is constructed, all subsequent analyses will be computed using the MDM file 

as input. It will therefore be unnecessary to read the larger student-level data file in computing 

these analyses. The efficient summary of data in the MDM file leads to faster computation. The 
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MDM file is like a “system file” in a standard computing package in that it contains not only the 

summarized data but also the names of all of the variables. 

 

Model specification has three steps:  

 

 Specifying the level-1 model, which defines a set of level-1 coefficients to be computed 

for each level-2 unit. 

 Specifying a level-2 structural model to predict each of the level-1 coefficients.  

 Specifying the level-1 coefficients to be viewed as random or non-random. 

 

The output produced from these analyses includes: 

 

 Ordinary least squares and generalized least squares results for the fixed coefficients 

defined in the level-2 model.  

 Estimates of variance and covariance components and approximate chi-square tests for 

the variance components.  

 A variety of auxiliary diagnostic statistics.  

 

Additional output options and hypothesis-testing procedures may be selected. 

2.3 Model checking based on the residual file 

After fitting a hierarchical model, it is wise to check the tenability of the assumptions underlying 

the model: 

 

 Are the distributional assumptions realistic?  

 Are results likely to be affected by outliers or influential observations?  

 Have important variables been omitted or non-linear relationships been ignored?  

 

These questions and others can be addressed by means of analyses of the HLM residual files. A    

level-1 residual file includes: 

 

 The level-1 residuals (discrepancies between the observed and fitted values). 

 Fitted values (FV) for each level-1 unit (that is, values predicted on the basis of the 

model). 

 The observed values of all predictors included in the model. 

 Selected level-2 predictors useful in exploring possible relationships between such 

predictors and level-1 residuals.  

 

A level-2 residual file includes: 

 

 Fitted values for each level-1 coefficient (that is, values predicted on the basis of the 

level-2 model). 

 Ordinary least squares (OL) and empirical Bayes (EB) estimates of level-2 residuals 

(discrepancies between level-1 coefficients and fitted values).  

 Empirical Bayes coefficients, which are the sum of the EB estimates and the fitted values. 

 Dispersion estimates useful in exploring sources of variance heterogeneity at level 1.  
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 Expected and observed Mahalanobis distance measures useful in assessing the 

multivariate normality assumption for the level-2 residuals.  

 Selected level-2 predictors useful in exploring possible relationships between such 

predictors and level-2 residuals.  

 Posterior variances (PV). 

 

For HLM2 FML analyses, there is an additional set of posterior variances. See Chapter 9 in 

Hierarchical Linear Models for a full discussion of these methods. 

2.4 Windows, interactive, and batch execution 

Formulation and testing of models using HLM programs can be achieved via Windows, 

interactive, or batch modes. Most PC users will find the Windows mode preferable. This draws 

on the visual features of Windows while preserving the speed of use associated with a command-

oriented (batch) program. Non-PC users have the choice of interactive and batch modes only. 

Interactive execution guides the user through the steps of the analysis by posing questions and 

providing a menu of options. In this chapter, we employ the Windows mode for all the examples. 

Descriptions and examples on how to use HLM2 in interactive and batch modes are given in 

Appendix A. 

2.5 An example using HLM2 in Window mode 

Chapter 4 in Hierarchical Linear Models presents a series of analyses of data from the HS&B 

survey. A level-1 model specifies the relationship between student socioeconomic status (SES) 

and mathematics achievement in each of 160 schools; at level-2, each school's intercept and 

slope are predicted by school sector (Catholic versus public) and school mean social class. We 

reproduce one analysis here (see Table 4.5 in Hierarchical Linear Models, p. 82). 

2.5.1 Constructing the MDM file from raw data 

PC users may construct the MDM file directly from different types of input files including SPSS, 

ASCII, SAS, SYSTAT, and STATA, or indirectly from many additional types of data file formats 

through the  third-party software module included in the HLM program.  

 

Non-PC users may construct the MDM file with one of the following types of input files: ASCII 

data files, SYSTAT data files, or SAS V5 transport files.  

 

In order for the program(s) to correctly read the data, the IDs need to conform to the following 

rules: 

 

1. For ASCII data the ID variables must be read in as character (alphanumeric). These IDs 

are indicated by the A field(s) in the format statement. For all other types of data, the ID 

may be character or numeric.  

2. The level-1 cases must be grouped together by their respective level-2 unit ID. To 

assure this, sort the level-1 file by the level-2 ID field prior to entering the data into HLM2. 

3. If the ID is numeric, it must be in the range 13(10 1)   to 13(10 1)    (i.e. 12 digits). 

Although the ID may be a floating point number, only the integer part is used. 

4. If the ID variable is character, the length must not exceed 12 characters. Furthermore, 

the  IDs at a given level must all be the same length. This is often a cause of problems. 

For example, imagine your data has IDs ranging from “1” to “100”. You will need to 
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recreate the IDs as “001” to “100”. In other words, all spaces (blank characters) should be 

coded as zeros. 

5. For non-ASCII files, the program can only properly deal with numeric variables (with 

the exception of character ID variables). Other data types, such as a “Date format”, will 

not be processed properly. 

6. For non-ASCII files with missing data, one should only use the “standard” missing 

value code. Some statistical packages (SAS, for example) allow for a number of missing 

value codes. The HLM modules are incapable of understanding these correctly, thus these 

additional missing codes need to be recoded to the more common “.” (period) code.  

2.5.1.1 SPSS file input 

We first illustrate the use of SPSS file input and then consider input from ASCII data files. Data 

input requires a level-1 file and a level-2 file. 

 

Level-1 file. For our HS&B example data, the level-1 file (HSB1.SAV) has 7,185 cases and four 

variables (not including the SCHOOL ID). The variables are: 

 

 MINORITY, an indicator for student ethnicity (1 = minority, 0 = other) 

 FEMALE, an indicator for student gender (1 = female, 0 = male)  

 SES, a standardized scale constructed from variables measuring parental education, 

occupation, and income  

 MATHACH, a measure of mathematics achievement    

 

Data for the first ten cases in HSB1.SAV are shown in Fig. 2.1. 

 

Note: level-1 cases must be grouped together by their respective level-2 unit ID. To assure this, 

sort the level-1 file by the level-2 unit ID field prior to entering the data into HLM2. 

 

 

Figure 2.1  First ten cases in HSB1.SAV 

Level-2 file. At level 2, the illustrative data set HSB2.SAV consists of 160 schools with 6 variables 

per school. The variables are: 

 

 SIZE (school enrollment)  

 SECTOR (1 = Catholic, 0 = public)  

 PRACAD (proportion of students in the academic track) 
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 DISCLIM (a scale measuring disciplinary climate)  

 HIMNTY (1 = more than 40% minority enrollment, 0 = less than 40%)  

 MEANSES (mean of the SES values for the students in this school who are included in the 

level-1 file) 

 

The data for the first ten schools are displayed in Fig 2.2. 

 

 

Figure 2.2  First ten cases in HSB2.SAV 

As mentioned earlier, the construction of an MDM file consists of three major steps. This will 

now be illustrated with the HS&B example. 

 
To inform HLM of the input and MDM file type 

 

1. At the WHLM window, open the File menu. 

2. Choose Make new MDM file…Stat package input (see Figure 2.3). A Select MDM 

type dialog box opens (see Figure 2.4). 

3. Select HLM2 and click OK. A Make MDM - HLM2 dialog box will open (see Figure 

2.5). 

 

 

Figure 2.3  WHLM window 
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Figure 2.4  Select MDM type dialog box 

To supply HLM with appropriate information for the data, the command, and the MDM files: 

 

1. Select SPSS/Windows from the Input File Type pull-down menu (see Figure 2.5).  

2. Specify the structure of data. The three choices are cross-sectional, longitudinal, and 

measures within groups. The data in HSB1.SAV are cross-sectional.  

3. Click Browse in the Level-1 Specification section to open an Open Data File 

dialog box. 

4. Open a level-1 SPSS system file in the HLM folder (HSB1.SAV in our example). The 

Choose Variables button will be activated.  

 

Figure 2.5  Make MDM - HLM2 dialog box 
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5. Click Choose Variables to open the Choose Variables - HLM2 dialog box and 

choose  the  ID and variables by clicking the appropriate check boxes (See Figure 

2.6). To deselect, click the box again.  

6. Select the options for missing data in the level-1 file (there is no missing data in 

HSB1.SAV; see Section 2.6 for details). 

7. Click the selection button for measures within persons for the type of nesting of 

input data if the level-1 data consist of repeated measures or item responses. With 

this selection, WHLM will use in its displays and output model notations that match 

those used in Hierarchical Linear Models  for studies on individual change and latent 

variables (Chapters 6 and 11). The default type is persons within groups. It is 

generally used when the level-1 data are comprised of cross-sectional measures. With 

this option, WHLM will use model notations that correspond to those used for 

applications in organization research (Chapters 4 and 5). 

8. Click Browse in the Level-2 specification section to open an Open Data File dialog 

box. 

9. Open a level-2 SPSS system file in the HLM folder (HSB2.SAV in our example). The 

Choose Variables button below Browse will be activated. 

10. Click Choose Variables to open the Choose Variables - HLM2 dialog box and 

choose the ID and variables by clicking the appropriate check boxes (see Figure 2.7). 

11. Check the box include spatial dependence matrix to specify spatial dependence, if 

applicable (see Section 11.4 for details). The Spatial Dependence Specification 

box  should only be used if you have spatial dependence data and wish to run this 

kind of model.  

12. Enter a name for the MDM file in the MDM file name box (for example, HSB.MDM).  

 

 

 

Figure 2.6  Choose Variables - HLM2 dialog box for the level-1 file, HSB1.SAV 
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Figure 2.7  Choose variables - HLM2 dialog box for the level-2 file, HSB2.SAV  

13. Click Save mdmt file in the MDM template file section to open a Save MDM 

template file dialog box. Enter a name for the MDMT file (for example, 

HSBSPSS.MDMT). Click Save to save the file. The command file saves all the input 

information entered by the user. It can be re-opened by clicking the Open mdmt file 

button (see Figure 2.5). To make changes to an existing MDMT file, click the Edit 

mdmt file button. 

14. Note that HLM will also save the input information into another file called 

CREATMDM.MDMT when the MDM is created.  

15. Click the Make MDM button. A screen displaying the prompts and responses for MDM 

creation will appear. 

 

 



26 
 

 

Figure 2.8  Descriptive Statistics for the MDM file, HSB.MDM 

To check whether the data have been properly read into HLM 

 

3 When the screen disappears, the level-1 and level-2 descriptive statistics will 

automatically be displayed (See Figure 2.8). Pay particular attention to the N column. It is 

not an uncommon mistake to forget to sort by  the ID variable, which can lead to a lot (or 

most) of the data not being processed. Close the Notepad window when done. Use the 

Save As option to give it a new name if later use of this file is anticipated. The file can 

also be opened by clicking on the Display Stats button. 

4 Click Done. The WHLM window displays the type and name on its title bar (hlm2 & 

HSB.MDM) and the level-1 variables on a drop-down menu (See Figure 2.9). 

 

 

Figure 2.9  WHLM: hlm2 MDM File window for HSB.MDM 

2.5.1.2 ASCII file input 

Below is the procedure for creating a multivariate data matrix file with input from ASCII files. 

 
To inform HLM of the input and MDM file type 

 

1. At the WHLM window, open the File menu. 

2. Choose Make new MDM file…ASCII input. A Select MDM type dialog box opens. 

3. Select HLM2 (see Figure 2.4) and click OK. A Make MDM File – HLM2 will open (see 

Figure 2.10). 
 
To supply HLM with appropriate information for the data, the command, and the MDM files 

 

1. Click Browse in the Level-1 specification section to open an Open Data File dialog 

box. Open a level-1 ASCII data file in the HLM examples folder (HSB1.DAT in our 

example). The file name (HSB1.DAT) appears in the Level-1 File Name box. 

2. Enter the number of variables into the Number of Variables box (4 in our example) 

and the data entry format in the Data Format box (A4,4F12.3 in our example).  

 

Note that the ID is included in the format statement, but excluded in the Number of Variables 

box. Rules for input format statements are given in Section A.2 in Appendix A. 
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Figure 2.10 Make MDM – HLM2 dialog box 

3. Click Labels to open the Enter Variable Labels dialog box. 

4. Enter the variable names into the boxes (MINORITY, FEMALE, SES, MATHACH for our 

example, see Figure 2.11). Click OK. 

5. Click the Missing Data button to enter level-1 missing data info (there is no missing 

data in HSB1.DAT; see Section 2.6 for details). 

6. Click Browse in the Level-2 specification section to open an Open Data File dialog 

box. Open a level-2 ASCII data file in the HLM folder (HSB2.DAT in our example). The 

file name (HSB2.DAT in our example) will appear in the Level-2 File Name box. 

7. Enter the number of variables into the Number of Variables box (6 in our example) 

and the data entry format in the Data Format box (A4,6F12.3 in our example). 

8. Click Labels to open the Enter Variable Labels dialog box for the level-2 variables. 

9. Enter the variable names into the Variable boxes (SIZE, SECTOR, PRACAD, DISCLIM, 

HIMINTY, MEANSES in our example, see Figure 2.12). Click OK. 

10. Enter an MDM file name in the MDM File Name box (for example, HSB.MDM).  

11. Click Save mdmt file in the MDM template file section to open a Save MDM 

template file dialog box. Enter a name for the MDMT file (for example, 

HSBASCII.MDMT). Click Save to save the file. The command file saves all the input 

information entered by the user. It can be re-opened or changed by clicking either the 

Open mdmt file or the Edit mdmt file button (see Figure 2.10).  
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Figure 2.11 Enter Variable Labels dialog box for level-1 file, HSB1.DAT  

 

Figure 2.12 Enter Variable Labels dialog box for level-2 file, HSB2.DAT 
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To check whether the data have been properly read into HLM 

 

The procedure is the same as for SPSS file input (see Section 2.5.1.1 for a complete description). 

2.5.1.4 SAS transport, SYSTAT, STATA  file input and other formats for raw data  

For SAS transport, SYSTAT or STATA file input, a user selects either SAS 5 transport, SYSTAT 

or STATA from the Input File Type drop-down menu as appropriate to open the Open Data File 

dialog box. With the third-party software module included in the current version, HLM will read 

data from  EXCEL, LOTUS and many other formats. Select Anything else from the Input File 

Type drop-down menu before clicking on the Browse button in the input file specifications 

sections. If the data type is set on the File, Preferences screen, the program will default to your 

selected type for both input data and residual files. 

2.5.2 Executing analyses based on the MDM file 

Once the MDM file is constructed, it can be used as input for the analysis. As mentioned earlier, 

model specification has three steps: 

 Specification of the level-1 model. In our example, we shall model mathematics 

achievement (MATHACH) as the outcome, to be predicted by student SES. Hence, the 

level-1 model will have two coefficients: the intercept and the SES-MATHACH slope. 

 Specification of the level-2 prediction model. We shall predict each school's intercept by 

school SECTOR and MEANSES in our example. Similarly, SECTOR and MEANSES will 

predict each school's SES-MATHACH slope. 

 Specification of level-1 coefficients as random or non-random. We shall model both the 

intercept and the slope as having randomly varying residuals. That is, we are assuming 

that the intercept and slope vary not only as a function of the two predictors, SECTOR and 

MEANSES, but also as a function of a unique school effect. The two school residuals 

(e.g., for the intercept and slope) are assumed sampled from a bivariate normal 

distribution. 

 

The procedure for executing analyses based on the MDM file is described below. 

 
Step 1: To specify the level-1 prediction model 

 

1. From the HLM window, open the File menu. 

2. Choose Create a new model using an existing MDM file to open an Open MDM File 

dialog box. Open an existing MDM file (HSB.MDM in our example). The name of the 

MDM file will be displayed on the title bar of the main window. A list box for level-1 

variables (>>Level-1<<) will appear (see Figure 2.13).  

3. Click on the name of the outcome variable (MATHACH in our example). Click 

Outcome variable (see Figure 2.13). The specified model will appear in equation 

format. 
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Figure 2.13 Model window for the HS&B example 

4. Click on the name of a predictor variable and click the type of centering (SES and add 

variable group centered, see Figure 2.14). The predictor will appear on the equation 

screen and each regression coefficient associated with it will become an outcome in 

the Level-2 model (see Figure 2.15). 

 

 

Figure 2.14 Specification of model predictor, SES, for the HS&B example 
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Figure 2.15 Model window for the HS&B example 

Step 2: To specify the level-2 prediction model 

 

1.  Select the equation containing the regression coefficient(s) to be modeled  by clicking on the 

equation ( 0  (intercept) and 1  (SES slope) in our HS&B example). A list box for level-2 

variables (>>Level-2<<) will appear (see Figure 2.16). 

2. Click to select the variable(s) to be entered as predictor(s) and the type of centering. For our 

example, select SECTOR and add variable uncentered, and MEANSES and add variable 

grand-mean centered to model 0  and 1 , see Figure 2.16.  

3. HLM allows the model to be displayed in three alternative forms. Figure 2.17 displays the 

model specified in the default notation familiar to users of previous versions of HLM. 

 

 

Figure 2.16 Specification of the level-2 model 
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Figure 2.17 Model window for the HS&B example 

4. In addition, the model can also be displayed in a mixed model formulation and with complete 

subscripts for all coefficients present in the model as illustrated in Figure 2.18. The mixed 

model is obtained by clicking the Mixed button at the bottom of the main window. The 

model is shown as a single equation, obtained by substituting the equations for 0  and 1  in 

the level-1 equation. This notation shows the model in a familiar linear regression format, 

and also draws attention to any cross-level interaction terms present in the combined model. 

By using the Preferences dialog box accessible via the File menu (see details in Section 2.8) 

both the mixed model formulation and the model with subscripts for all coefficients can be 

displayed automatically. The model can also be saved as an EMF file for later use in reports 

or papers.  

 

 

Figure 2.18 Alternative model window for the HS&B example 

Step 3: To specify level-1 coefficients as random or non-random 

 

The program begins by assuming that only the intercept ( 0 ) is specified as random. The 1u  at 

the end of the 1  equation is grayed out and constrained to zero (See Figure 2.15), i.e. this level-

1 coefficient is specified as “fixed”. In the HS&B example, both level-1 coefficients, 0  and 1 , 

are to be specified as random. To specify the SES slope as randomly varying, click on the 



33 
 

 

equation for 
1  so that the error term 

1u  is enabled. Note that one can toggle the error term in 

any of the three following ways: 

 

 Click on the error term, 
1u . 

 Type u. 

 Right-click on the yellow box, which will bring up a single-item menu toggle error 

term. Click on the button. 

 

Steps 1 to 3 are the three major steps for executing analyses based on the MDM file. Other 

analytic options are described in Section 2.9. After specifying the model, a title can be given to 

the output and the output file can be named by the following procedure: 

 

1. Select Basic Settings to open the Basic Model Specifications – HLM2 dialog box. 

Enter a title in the Title field  (for example, Intercept and slopes-as-Outcomes Model) 

and an output file name in Output file name field (see Figure 2.19). Click OK. See 

Section 2.8 for the definitions of entries and options in Basic Model Specifications – 

HLM2 dialog box. 

2. Open the File menu and choose Save As to open a Save command file dialog box. 

3. Enter a command file name (for example, HSB1.MDM). 

4. Click Run Analysis. A dialog box displaying the iterations will appear (see Figure 

2.20). 

 

Note: If you wish to terminate the computations early, press the Ctrl-C key combination once. 

This will stop the analysis after the current iteration and provide a full presentation of results 

based on that iteration. If you press Ctrl-C more than once, however, computation is terminated 

immediately and all output is lost. 
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Figure 2.19 Basic Model Specifications – HLM2 dialog box for the HS&B example  

 

 

Figure 2.20 Iteration screen  

2.5.3 Annotated HLM2 output 

The output file will automatically be displayed in the format specified via the Preference menu. 

It can also be opened by selecting the View Output option from the File menu. Here is the 

output produced by the Windows session described above (see example HSB1.MDM). 
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  Specifications for this HLM2 run 
 
Problem Title: Intercepts and Slopes-as-outcomes Model 
 
The data source for this run = HSB.MDM 
The command file for this run = HSB1.MLM 
Output file name = hlm2.html 
The maximum number of level-1 units = 7185 
The maximum number of level-2 units = 160 
The maximum number of iterations = 100 
Method of estimation: restricted maximum likelihood 
 
The outcome variable is MATHACH  

 
Summary of the model specified 

 
Level-1 Model 

 
    MATHACHij = β0j + β1j*(SESij) + rij 

 
Level-2 Model 

 
 β0j = γ00 + γ01*(SECTORj) + γ02*(MEANSESj) + u0j 
    β1j = γ10 + γ11*(SECTORj) + γ12*(MEANSESj) + u1j 
 
SES has been centered around the group mean. 
MEANSES has been centered around the grand mean. 

 
Mixed Model 

 
  MATHACHij = γ00 + γ01*SECTORj + γ02*MEANSESj  
      + γ10*SESij + γ11*SECTORj*SESij + γ12*MEANSESj*SESij  
       + u0j + u1j*SES+ rij 

  

The information presented on the first page or two of the HLM2 printout summarizes key details 

about the MDM file (e.g., number of level-1 and level-2 units, whether weighting was specified), 

and about both the fixed and random effects models specified for this run. In this particular case, 

we are estimating the model specified by Equations 4.14 and 4.15 in Hierarchical Linear 

Models. 

 
Level-1 OLS Regressions 
 

Level-2 Unit INTRCPT1  SES slope 

1224  9.71545 2.50858 

1288  13.51080 3.25545 

1296  7.63596 1.07596 

1308  16.25550 0.12602 

1317  13.17769 1.27391 

1358  11.20623 5.06801 

1374  9.72846 3.85432 

1433  19.71914 1.85429 

1436  18.11161 1.60056 

1461  16.84264 6.26650 
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When first analyzing a new data set, examining the OL equations for all of the units may be 

helpful in identifying possible outlying cases and bad data. By default, HLM2 does not print out 

the ordinary least squares (OL) regression equations, based on the level-1 model. The OLS 

regression equations  for the first 10 units, as shown here, were obtained using optional settings 

on the Other Settings menu. 

 

The average OLS level-1 coefficient for INTRCPT1 = 12.62075 
The average OLS level-1 coefficient for SES = 2.20164 

 

This is a simple average of the OLS coefficients across all units that had sufficient data to permit 

a separate OLS estimation.  

 

Least Squares Estimates 

 σ
2
 = 39.03409  

 
Least-squares estimates of fixed effects 

 

Fixed Effect  Coefficient 
 Standard 
error 

 t-ratio 
 Approx. 
d.f. 

 p-value 

For INTRCPT1, β0  
    INTRCPT2, γ00  12.083837 0.106889 113.050 7179 <0.001 
     SECTOR, γ01  1.280341 0.157845 8.111 7179 <0.001 
     MEANSES, γ02  5.163791 0.190834 27.059 7179 <0.001 
For SES slope, β1  
    INTRCPT2, γ10  2.935664 0.155268 18.907 7179 <0.001 
     SECTOR, γ11  -1.642102 0.240178 -6.837 7179 <0.001 
     MEANSES, γ12  1.044120 0.299885 3.482 7179 <0.001 

 
Least-squares estimates of fixed effects 
(with robust standard errors)  

 

Fixed Effect  Coefficient 
 Standard 
error 

 t-ratio 
 Approx. 
d.f. 

 p-value 

For INTRCPT1, β0  
    INTRCPT2, γ00  12.083837 0.169507 71.288 7179 <0.001 
     SECTOR, γ01  1.280341 0.299077 4.281 7179 <0.001 
     MEANSES, γ02  5.163791 0.334078 15.457 7179 <0.001 
For SES slope, β1  
    INTRCPT2, γ10  2.935664 0.147576 19.893 7179 <0.001 
     SECTOR, γ11  -1.642102 0.237223 -6.922 7179 <0.001 
     MEANSES, γ12  1.044120 0.332897 3.136 7179 0.002 

 

The first of the fixed effects tables are based on OLS estimation. The second table provides 

robust standard errors. Note that the standard errors associated with 00 , 01 , and 12  are smaller 

than their robust counterparts. 

 

The least-squares likelihood value = -2.336211E+004 
Deviance = 46724.22267 
Number of estimated parameters = 1 
 
 Starting Values 

 

σ
2

(0) = 36.72025 

 



37 
 

 

τ(0) 

INTRCPT1,β0     2.56964    0.28026 

SES,β1      0.28026    -0.01614 

 

      New τ(0) 

INTRCPT1,β0     2.56964    0.28026 

SES,β1      0.28026    -0.01614 

 

The initial starting values failed to produce an appropriate variance-covariance matrix (τ(0)). An 

automatic fix-up was introduced to correct this problem (New τ(0)). 

 

Estimation of fixed effects 
(Based on starting values of covariance components)  

 

Fixed Effect  Coefficient 
 Standard 
error 

 t-ratio 
 Approx. 
d.f. 

 p-value 

For INTRCPT1, β0  
    INTRCPT2, γ00  12.094864 0.204326 59.194 157 <0.001 
     SECTOR, γ01  1.226266 0.315204 3.890 157 <0.001 
     MEANSES, γ02  5.335184 0.379879 14.044 157 <0.001 
For SES slope, β1  
    INTRCPT2, γ10  2.935219 0.168674 17.402 157 <0.001 
     SECTOR, γ11  -1.634083 0.260672 -6.269 157 <0.001 
     MEANSES, γ12  1.015061 0.323523 3.138 157 0.002 

 

Above are the initial estimates of the fixed effects. These are not to be used in drawing 

substantial conclusions.  

 
The value of the log-likelihood function at iteration 1 = -2.325199E+004 
The value of the log-likelihood function at iteration 2 = -2.325182E+004 
The value of the log-likelihood function at iteration 3 = -2.325174E+004 
The value of the log-likelihood function at iteration 4 = -2.325169E+004 
The value of the log-likelihood function at iteration 5 = -2.325154E+004 
. . .  
The value of the log-likelihood function at iteration 57 = -2.325094E+004 
The value of the log-likelihood function at iteration 58 = -2.325094E+004 
The value of the log-likelihood function at iteration 59 = -2.325094E+004 
The value of the log-likelihood function at iteration 60 = -2.325094E+004 
 

Below are the estimates of the variance and covariance components from the final iteration and 

selected other statistics based on them. 

 
******* ITERATION 61 ******* 
 

σ
2
 = 36.70313 

τ 
INTRCPT1, β0    2.37996    0.19058 

SES,β1    0.19058    0.14892 
 

τ (as correlations) 

 
INTRCPT1, β0    1.000 0.320 

SES,β1    0.320 1.000 
  

Level-1 variance components 

 

Level-2 variance-covariance 

components 

 

Level-2 variance-covariance 

components expressed as 

correlations 
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Random level-1 
coefficient 

Reliability 
estimate 

INTRCPT1,β0 0.733 
SES,β1 0.073 

 

These are average reliability 

estimates for the random 

level-1 coefficients 

 
  

The value of the log-likelihood function at iteration 61 = -2.325094E+004 
 

The next three tables present the final estimates for:  the fixed effects with GLS and robust 

standard errors, variance components at level-1 and level-2, and related test statistics.  

 

Final estimation of fixed effects: 

 

Fixed Effect  Coefficient 
 Standard 
error 

 t-ratio 
 Approx. 
d.f. 

 p-value 

For INTRCPT1, β0  
    INTRCPT2, γ00  12.095006 0.198717 60.865 157 <0.001 
     SECTOR, γ01  1.226384 0.306272 4.004 157 <0.001 
     MEANSES, γ02  5.333056 0.369161 14.446 157 <0.001 
For SES slope, β1  
    INTRCPT2, γ10  2.937787 0.157119 18.698 157 <0.001 
     SECTOR, γ11  -1.640954 0.242905 -6.756 157 <0.001 
     MEANSES, γ12  1.034427 0.302566 3.419 157 <0.001 

 
Final estimation of fixed effects 
(with robust standard errors)  

 

Fixed Effect  Coefficient 
 Standard 
error 

 t-ratio 
 Approx. 
d.f. 

 p-value 

For INTRCPT1, β0  

    INTRCPT2, γ00  12.095006 0.173688 69.637 157 <0.001 

     SECTOR, γ01  1.226384 0.308484 3.976 157 <0.001 

     MEANSES, γ02  5.333056 0.334600 15.939 157 <0.001 

For SES slope, β1  

    INTRCPT2, γ10  2.937787 0.147615 19.902 157 <0.001 

     SECTOR, γ11  -1.640954 0.237401 -6.912 157 <0.001 

     MEANSES, γ12  1.034427 0.332785 3.108 157 0.002 

 

The first table provides model-based estimates of the standard errors while the second table 

provides robust estimates of the standard errors. Note that the two sets of standard errors are 

similar. If the robust and model-based standard errors are substantively different, it is 

recommended that the  tenability of key assumptions should be investigated further (see Section 

4.3 on examining residuals). 

 
Final estimation of variance components 

 

Random Effect 
 Standard 
 Deviation 

        Variance 
    Component 

  d.f. χ
2
 p-value 

INTRCPT1, u0 1.54271 2.37996 157 605.29503 <0.001 
SES slope, u1 0.38590 0.14892 157 162.30867 0.369 
level-1, r 6.05831 36.70313       
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Statistics for current covariance components model 

 
Deviance = 46501.875643 
Number of estimated parameters = 4 

2.5.4 Model checking based on the residual file 

HLM2 provides the data analyst with a means of checking the fit and distributional assumptions 

of the model by producing residual files for the level-1 and level-2 models. These files may be 

requested using the Basic Model Specifications – HLM2 dialog box (see Fig. 2.19). The level-1 

and level-2 residual files will be written as SPSS, SAS, STATA, SYSTAT or ASCII data files. In the 

case of  SPSS and STATA, the residual files will be written out so that the respective packages 

may use them immediately. The other forms of raw data will require submitting them as 

command streams. 

2.5.4.4 The level-1 residual file 

2.5.4.1.1   Structure of the level-1 residual file 

The level-1 residual file will contain level-1 residuals (the differences between the observed and 

fitted values), the fitted values, the square root of 2 , the values of the level-1 and level-2 

predictors entered in the model, and those of other level-1 and level-2 variables selected by the 

user. To illustrate, we show how to prepare SPSS residual files. 

 

To create the SPSS level-1 residual file type   

 

1. Select Basic Settings to open the Basic Model Specifications – HLM2 dialog box. 

2. Click Level-1 Residual File to open a Create Level-1 Residual File dialog box (see 

Figure 2.21).  

3. For the level-1 and level-2 variables, the box displays two columns of variables. The 

predictor variables in the model are in the Variables in residual file column. Others 

are listed in the Possible choices column. To include any of them in the residual file 

for exploratory purposes, double-click on their labels. 

4. Select SPSS residual file type (default). 

5. Enter a name for the residual file in the Residual File Name box (for example, 

RESFIL1.SAV, see Figure 2.21). Click OK. 
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Figure 2.21 Create Level-1 Residual File dialog box 

 

Figure 2.22 Level-1 Residual File  

Data for the first ten cases in RESFIL1.SAV are shown in Figure 2.22. The file consists of the 

level-2 ID, L2ID, and the following variables: 

 

 L1RESID: the difference between the fitted and observed value for each level-1 unit. 

 FITVAL: the fitted value for each level-1 unit. 

 SIGMA: the square root of 2 . 
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The variables SES, MATHACH, SECTOR, and MEANSES are described in Section 2.5.1.1. 

2.5.4.1.2   Some possible residual analyses 

We illustrate a possible use of a residual file in examining the tenability of the assumption of 

normal distribution of level-1 errors, whose violations could adversely influence the estimated 

standard errors for the estimates of the fixed effects and inferential statistics (see Hierarchical 

Linear Models p. 266). Figure 2.23 displays a normal Q-Q plot of the level-1 residuals for the 

7,185 students based on the final fitted model. The plot is approximately linear, suggesting there 

is not a serious departure from a normal distribution and that the assumption is tenable. 

  

Figure 2.23 Q-Q plot of level-1 residuals 

2.5.4.5 The level-2 residual file 

This file will contain the EB residuals (see Equation 1.10 above), OL residuals (see Equation 1.9 

above), and fitted values, i.e., 

0q qs s jW   

for each level-1 coefficient. By adding the OL residuals to the corresponding fitted values, the 

analyst can also obtain the OL estimate of the corresponding level-1 coefficient q j . The file also 

produces the EB estimate 
*

q j  of each level-1 coefficient, q j . 

 

In addition, the file will contain Mahalanobis distances (which are discussed below), estimates of 

the total and residual standard deviations (log metric) within each unit, the values of the 

predictors used in the level-2 model, and any other level-2 prediction variables selected by the 

user. 
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To create the SPSS level-2 residual file type   

 

1. Select Basic Settings to open the Basic Model Specifications – HLM2 dialog box. 

2. Click Level-2 Residual File to open a Create Level-2 Residual File dialog box. 

3. Double-click the variables to be entered into the residual file (for our example, select 

DISCLIM, PRACAD, HIMINTY and SIZE, see Figure 2.24). 

4. Select SPSS as Residual File Type. Note that SYSTAT, STATA or SAS file type can 

be created as well, or the residuals written to file in free format. By default, a SYSTAT 

file will be created. To set the default file type created to one of the other formats, the 

Preference dialog box (see Section 2.8) can be used. 

 

 

Figure 2.24 Create Residual File dialog box 

5. Enter a name for the residual file in the Residual File Name box (for example 

RESFIL2.SPS, see Figure 2.24). Click OK. 

 

An example of an SPSS version of a level-2 residual file is shown in Figure 2.25. Only the data 

from the first ten units and the first 8 variables are reproduced here. This file can be used to 

construct various diagnostic plots. 

2.5.4.2.1 Structure of the level-2 residual file 

The residual file contains a single record per unit. The first variable in this file contains the unit 

ID, followed by the number of level-1 units within that level-2 unit (denoted by nj), and various 

summary statistics (chipct through mdrsvar). These are followed by the two EB residuals; the two 

OL residuals; and the fitted or predicted values of the level-1 coefficients based on the estimated 

level-2 models. Next are the EB coefficients ecintrcp and ecses, which are the sum of the fitted 
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values plus the EB residuals. The posterior variances and covariances of the estimates of the 

intercept and the SES slopes are given next (pv00 to pvc10). Finally, the level-2 predictors used in 

the analysis plus those additional level-2 predictors requested by the user for inclusion in the file 

are given (not shown in Figure 2.24).  

 

While most of this is straightforward, the information contained in the first set of variables for 

each unit merits elaboration. nj is the number of cases for level-2 unit j . It is followed by two 

variables, chipct and mdist. If we model q  level-1 coefficients, mdist would be the Mahalanobis 

distance (i.e., the standardized squared distance of a unit from the center of a v -dimensional 

distribution, where v  is the number of random effects per unit). Essentially, mdist provides a 

single, summary measure of the distance of a unit's EB estimates, 
*

q j , from its “fitted value,” 

0 0q q s jW  . 

 

 

Figure 2.25 SPSS version of residual file 

If the normality assumption is true, then the Mahalanobis distances should be distributed 

approximately 
2

( )v . Analogous to univariate normal probability plotting, we can construct a Q-Q 

plot of mdist vs. chipct. chipct are the expected values of the order statistics for a sample of size J  

selected from a population that is distributed 
2

( )v . If the Q-Q plot resembles a 45 degree line, we 

have evidence that the random effects are distributed v-variate normal. In addition, the plot will 

help us detect outlying units (i.e., units with large mdist values well above the 45 degree line). It 

should be noted that such plots are good diagnostic tools only when the level-1 sample sizes, nj, 

are at least moderately large. (For further discussion see Hierarchical Linear Models, pp. 274-

280.) 

 

After mdist, three estimates of the level-1 variability are given:  

 The natural logarithm of the total standard deviation within each unit, lntotvar. 
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 The natural logarithm of the residual standard deviation within each unit based on its 

least squares regression, olsrsvar. Note, this estimate exists only for those units that have 

sufficient data to compute level-1 OLS estimates.  

 The mdrsvar, the natural logarithm of the residual standard deviation from the final fitted 

fixed effects model.  

The natural log of these three standard deviations (with the addition of a bias-correction factor 

for varying degrees of freedom) is reported (see Hierarchical Linear Models, p. 219). We note 

that these statistics can be used as input for the V-known option in HLM2 in research on group-

level correlates of diversity (Raudenbush & Bryk, 1987; also see Sections 2.8.9 and 9.3). 

2.5.4.2.2  Some possible residual analyses  

We illustrate below some of the possible uses of a level-2 residual file in examining the 

adequacy of fitted models and in considering other possible level-2 predictor variables. (For a 

full discussion of this topic see Chapter 9 of Hierarchical Linear Models.) Here are the basic 

statistics for each of the variables created as part of the HLM2 residual file. 

 

  N Minimum Maximum Mean Std. Deviation 

nj 160 14 67 44.91 11.855 

chipct 160 .006 11.537 1.99115 1.967047 

mdist 160 .003 13.218 2.00727 2.144775 

lntotvar 160 1.265 2.138 1.82057 .150434 

olsrsvar 160 1.272 2.087 1.78983 .137449 

mdrsvar 160 1.314 2.072 1.79039 .134968 

ebintrcp 160 -3.718 4.162 .00000 1.312584 

ebses 160 -.378 .438 .00000 .141577 

olintrcp 160 -7.714 5.545 -.01079 1.847386 

olses 160 -3.560 3.803 -.01823 1.460555 

fvintrcp 160 5.760 17.754 12.63155 2.490807 

fvses 160 .515 3.650 2.21987 .775690 

ecintrcp 160 4.710 18.928 12.63155 2.815492 

ecses 160 .288 3.845 2.21987 .788504 

pv00 160 .486 1.255 .66785 .140621 

pv10 160 .036 .098 .05033 .011378 

pv11 160 .121 .138 .12900 .003583 

pvc00 160 .449 1.257 .63936 .147741 

pvc10 160 .030 .097 .04682 .011911 

pvc11 160 .138 .247 .16255 .017345 

size 160 100.000 2713.000 1097.82500 629.506431 

sector 160 .000 1.000 .43750 .497636 

pracad 160 .000 1.000 .51394 .255897 

disclim 160 -2.416 2.756 -.01513 .976978 

himinty 160 .000 1.000 .27500 .447916 

meanses 160 -1.188 .831 .00000 .413973 

Valid N (listwise) 160         

 

Examining OL and EB residuals. Figure 2.26 shows a plot of the OL vs EB residuals for the 

SES slopes. As expected, the EB residuals for the slope are much more compact than the OL 

residuals. While the latter ranges between ( 4.0, 4.0 ), the range for the EB residuals is only (

0.5, 0.5 ). (For a further discussion see Hierarchical Linear Models, pp. 87-92.) 
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Figure 2.26 OL versus EB residuals for the SES slopes 

Exploring the potential of other possible level-2 predictors. Figure 2.27 shows a plot of EB 

residuals against a possible additional level-2 predictor, PRACAD, for the intercept model. 

Although the relationship appears slight (a correlation of 0.15), PRACAD will enter this model as 

a significant predictor. (For a further discussion of the use of residual plots in identifying 

possible level-2 predictors see Hierarchical Linear Models, pp. 267-270.) 

 

Figure 2.27 EB residuals against a possible additional level-2 predictor, PRACAD, for the 
intercept model 

Next, in Figure 2.28, we see a plot of the OL vs EB residuals for the intercepts. Notice that while 

the EB  intercepts are “shrunk” as compared to the OL estimates, the amount of shrinkage for the 

intercepts as shown in Figure 2.28 is far less than for the SES slopes as shown in Figure 2.26. 
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Figure 2.28 OL versus EB residuals for the intercepts 

Examining possible nonlinearity of a level-2 predictor's relationship to an outcome. Next, 

in Fig. 2.29, is an example of a plot of EB residuals, in this case the SES slope, against a variable 

included in the model. This plot suggests that the assumption of a linear relationship between the 

SES slope and MEANSES is appropriate. (That is, the residuals appear randomly distributed 

around the zero line without regard to values of MEANSES.) 

 

Figure 2.29 EB residuals for SES slope against MEANSES 

2.6 Handling of missing data      

HLM2 provides three options for handling missing data at level 1: listwise deletion of cases when 

the MDM file is made, listwise deletion of cases when running the analysis (See Figure 2.3), and 

analysis of multiply-imputed data (see Section 11.2). A set of level-1 variables to be used as 

basis for runtime deletion for a series of models based on the same MDM can also be selected via 
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the Other Settings, Estimation Settings menu by using the Level-1 Deletion Variables 

option. These follow the conventional routines used in standard statistical packages for 

regression analysis and the general linear model. Listwise deletion of cases when the MDM file is 

made is based on the variables selected for inclusion in the MDM file, while listwise deletion 

when running the analysis only takes the variables included in the model into account.  

 

At level 2, HLM2 assumes complete data. If you have missing data at level 2, you should either 

impute a value for the missing information or delete the units in question, or preferably use 

methods described in Section 11.2. Failure to do so will cause the automatic listwise deletion 

of level-2 units with missing data when the MDM file is created. 

 

For ASCII file input, click Missing Data in the Make MDM – HLM2 dialog box. The dialog box 

displayed in Fig. 2.30 will open. 

 

 

 

Figure 2.30 Missing Data dialog box 

Assuming you have missing data, you should click Yes in the Missing Data? box, and select 

deletion when making the MDM file or when running analyses. Then, if you have coded all of 

your missing values for all of the variables to the same number, click the Same button. When 

you specify the variable names, enter this number in the box to right of the first variable in the 

Enter Variable Labels dialog box (see Fig. 2.31). If you have more than one missing value 

code, check the Different button, and enter these codes for each respective variable on the Enter 

Variable Labels screen. 
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Figure 2.31 Enter Variable Labels dialog box for missing ASCII data 

For non-ASCII data at level 1, you should click Yes in the Missing Data? field, and select when 

you want to implement the listwise deletion by selecting one of the two options in this group 

box. Then, when HLM2 encounters values coded as missing, it will recognize these properly. It is 

important to note that some statistics packages (e.g. SAS) allow for more than one kind of 

missing data code. HLM2 (and HLM3, etc.) will recognize only the standard, “system-missing” 

code. 

 

How HLM2 handles missing data differs a bit in the ASCII and non-ASCII cases. For ASCII data, it 

is very important that you don't have any missing data codes or blanks in the level 2 file. HLM2 

will read these as valid data; missing data codes as they are coded, and blanks will be read as 

zeros. For non-ASCII data, the program will skip over cases that have missing data in them, 

essentially performing listwise deletion on the level-2 data file. Note: For non-ASCII file input, 

the user has to either prepare system-missing values or missing value codes for the missing data. 

2.7 The Basic Model Specifications - HLM2 dialog box 

The Basic Model Specifications – HLM2 dialog box (see Fig. 2.32) is used to indicate the 

distribution of the outcome variable, to request residual files and to provide a title and the 

locations and names of output files. 
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Figure 2.32 Basic Model Specifications - HLM2 dialog box 

2.8 Other analytic options 

2.8.1 Controlling the iterative procedure 

 

Figure 2.33 Iteration Control - HLM2 dialog box 

The iterative procedure settings can be changed by opening the Iteration Control – HLM2 dialog 

box. To do so, select the Iteration Settings option from the Other Settings menu. Table 2.1 

lists the definitions and options in the Iteration Control – HLM2 dialog box. See Fig. 2.33; note 

the linking numbers in figure and table. 
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Table 2.1 Table of definitions and options in Iteration Control - HLM2 dialog box  

Key Terms Function Option Definition 

1, 2 Number of  

       iterations 

Maximum number of iterations positive 

 integer 

 

 3   Frequency of  

      accelerator 

Controls frequency of use of  

acceleration 
integer  3 Selects how often the  

accelerator is used.  

Default is 10. 

 4   % change to  

      stop iterating  

Convergence criterion for 

maximum likelihood estimation 

positive 

 real 

number 

Default: 0.000001.  

Can be specified  

to be more (or less)  

restrictive 

5   How to handle  

     bad Tau(0)  

Method of correcting unacceptable 

starting values 

3 choices 1. Set off-diagonal to 0 

2. Manual reset  

     (starting values) 

3. Automatic fix-up  

     (default) 

2.8.2 Estimation control 

 

Figure 2.34 Estimation Settings – HLM2 dialog box 

The Estimation Settings – HLM2 dialog box, accessed via the Estimation Settings option on 

the Other Settings menu, offers additional control over the iterative procedure. 

 

HLM2 will use restricted maximum likelihood estimation by default. The type of likelihood used 

is set in the Type of Likelihood group box (see Fig. 2.34), where full maximum likelihood 

estimation may alternatively be requested (see Hierarchical Linear Models, pp. 52-53.)  
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Full maximum Adaptive Gaussian Quadrature and LaPlace and EM LaPlace iterations may be 

requested when nonlinear (HGLM) models are fitted. The maximum number of iterations 

required, which has to be a positive integer, should be entered in the LaPlace Iteration Control 

or EM LaPlace Iteration Control group box (see Fig. 2.34).   

 

The Estimation Settings – HLM2 dialog box may also be used to access dialog boxes used in 

defining special analyses, e.g. latent variable regression, applying HLM to multiply-imputed data, 

and plausible value analysis. The Fixed Intercept, Random Coefficient option is used to 

invoke the fiting of fixed intercepts random coefficients in models as discussed in Chapter 19. 

The Diagonalize Tau option constrains the variance-covariance matrix to a diagonal matrix; in 

other words no covariation between random coefficients are assumed or estimated if this option 

is checked. 

 

These special features, associated with the Plausible values, Multiple imputation and Latent 

Variable Regression buttons in the Estimation Settings – HLM2 dialog box, are discussed in 

Chapter 11.  

2.8.3 Constraints on the fixed effects 

A user may wish to constrain two or more fixed effects to be equal. For example, Barnett, 

Marshall, Raudenbush, & Brennan (1993) applied this approach in studying correlates of 

psychological distress in married couples. Available for each person were two parallel measures 

of psychological distress. Hence, for each couple, there were four such measures (two per 
person). At level-1 these measures were modeled as the sum of a “true score” plus error:

 

1 1 2 2 ,i j j i j j i j i jY X X r     

 

where 
1i jX  is an indicator for females, 

2i jX  is an indicator for males, and 
i jr  is a measurement 

error. Hence 1 j  is the “true score” for females and 2 j  is the “true score” for males. At level 2, 

these true scores are modeled as a function of predictor variables, one of which was marital role 

quality, jW , a measure of one's satisfaction with one's marriage. (Note that this is also a model 

without a level-1 intercept.) A simple level-2 model is then:  

1 10 11 1

2 20 21 2 .

j j j

j j j

W u

W u

  

  

  

  
 

The four coefficients to be considered are 10 11 20 21, , , .     We may, for instance, wish to specify 

some constraints of fixed effects. 

2.8.4 To put constraints on fixed effects 

1. Open the Other Settings, Estimation Settings menu. 

2. Click the Constraint of fixed effects button to open the Constrain Gamma dialog 

box. Enter 1 in the Sector boxes (see Figure 2.35 for an example). Click OK. The 

constraint imposed is 11 21  . 
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Coefficients with 0s are not constrained, and those with 1s are. A user is allowed to impose 

multiple constraints up to 5. Each set of the constrained coefficients will share the same value 

from 1 to 5.  

 

 

Figure 2.35 Constrain Gammas dialog box for the Barnett et al.'s (1993) example 

2.8.5 Modeling heterogeneity of level-1 variances 

Users may wish to estimate models that allow for heterogeneous level-1 variances. A simple 

example (see HSB3.HLM) using the HS&B data would be a model that postulates that the two 

genders have different means in and variances of math achievement scores. To specify a model 

that hypothesizes different central tendency and variability in math achievement for the two 

genders, the model displayed in Fig. 2.36 must first be set up. 

 

To model heterogeneity of level-1 variances 

 

1. Open the Other Settings menu and select the Estimation Settings option to open the 

Estimation Settings – HLM2 dialog box. 

2. Click the Heterogeneous sigma^2 button to open the Heterogeneous sigma^2 

Predictors of level-1 variance dialog box. Double-click FEMALE to enter as a 

variable in the Predictors of level-1 variance box (see Figure 2.37 for an example). 

Click OK. 
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Figure 2.36 Model window for the modeling heterogeneity of level-1 variances example 

 

 

Figure 2.37 Heterogeneous sigma^2: Predictors of level-1 variance dialog box 

The model estimated is a log linear-model for the level-1 variances, which can be generally 

stated as: 

 2

0 1exp FEMALEij ij     

The following is a selected annotated output of the model run. 
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Final estimation of fixed effects: 

 

Fixed Effect  Coefficient 
 Standard 
error 

 t-ratio 
 Approx. 
d.f. 

 p-value 

For INTRCPT1, β0  
    INTRCPT2, γ00  13.345271 0.253915 52.558 159 <0.001 
For FEMALE slope, β1  
    INTRCPT2, γ10  -1.359401 0.171411 -7.931 7024 <0.001 

 
Final estimation of fixed effects 
(with robust standard errors)  
 

Fixed Effect  Coefficient 
 Standard 
error 

 t-ratio 
 Approx. 
d.f. 

 p-value 

For INTRCPT1, β0  
    INTRCPT2, γ00  13.345271 0.260426 51.244 159 <0.001 
For FEMALE slope, β1  
    INTRCPT2, γ10  -1.359401 0.185181 -7.341 7024 <0.001 

 
Final estimation of variance components 

 

Random Effect 
Standard 
 Deviation 

      Variance 
 Component 

  d.f. χ
2
 p-value 

INTRCPT1, u0 2.84757 8.10864 159 1601.08000 <0.001 
level-1, r 6.23256 38.84483       

 
Statistics for the current model 

 
Deviance = 47051.483085 
Number of estimated parameters = 4 

 
Results for Heterogeneous σ

2
 

(macro iteration 4) 
 
Var(R) = σ

2
 and log(σ

2
) = α0 + α1(FEMALE) 

 
Model for level-1 variance 

 

Parameter  Coefficient 
 Standard 
Error 

 Z-ratio  p-value 

INTRCPT1 ,α0 3.70771 0.024645 150.444 0.000 
FEMALE ,α1 -0.09307 0.034023 -2.736 0.007 

 
Summary of Model Fit 

 

Model 
Number of 
Parameters 

Deviance 

1. Homogeneous σ
2
 4 47051.48309 

2. Heterogeneous σ
2
 5 47044.02705 

 

Model Comparison χ
2
 d.f. p-value 

Model 1 vs Model 2 7.45604 1 0.006 
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The Z-ratio for 0  (Z = -7.341) and Z-ratio for 
1  (Z =-2.736) for FEMALE indicate that the math 

achievement scores of males are on average higher as well as more variable than those for 

females. Furthermore, a comparison of the fits of the models suggests that the model with 

heterogeneous within-school variances appears appropriate ( 2  = 7.45604, df = 1). See Chapter 

10 in this manual for details on model comparisons. 

2.8.6 Specifying level-1 deletion variables 

If, when making the MDM file,  “Delete missing data when running analyses” was specified,  this 

feature may be used to alter the default behavior of the programs. By default, the programs will 

delete missing data on the basis of the level-1 variables actually in the model. While in many 

cases this is the desired behavior, in other situations it may not be. For instance, one might be 

running  and comparing analyses that have different level-1 models. With many datasets, this can 

lead to comparing results that have a different number of level-1 records used. To solve this 

problem, check the option to delete missing data “when making the MDM file” (see Figure 2.30). 

2.8.7 Using design weights 

In many studies, data arise from sample surveys in which units have been selected with known 

but unequal probabilities. In these cases, it will often be desirable to weight observations in order 

to produce unbiased estimates of population parameters. According to standard practice in such 

cases, the information from each unit is weighted inversely proportional to its probability of 

selection. 

 

Suppose, for instance, that in a pre-election poll, ethnic minority voters are over-sampled to 

insure that various ethnic groups are represented in the sample. Without weighting, the over-

sampled groups would exert undue influence on estimates of the proportion of voters in the 

population favoring a specific candidate. Use of design weights can yield unbiased estimates of 

the population parameters. 

 

Design weights are also commonly used to correct for differential non-response of sub-groups. 

Response rates are estimated for relevant sub-groups, and information from each respondent is 

weighted inversely proportional to the probability of response. That way, respondents who are 

over-represented in a sample as a function of non-response are appropriately weighted down. 

2.8.4.1 Design weighting in the hierarchical context 

Hierarchical data can be described as arising from a multi-stage sampling procedure. For 

example, schools might be sampled from a national frame of schools and then, within each 

school, students might then be sampled from a list of all students attending the school. 

Probabilities at each level might be known but unequal. For example, one might over-sample 

private schools and then over-sample minority students within each school. Weights might be 

constructed at each level to be inversely proportional to the probability of selection at that level. 

In some cases, weights might be available at only one level. For example, in a two-level design 

with students nested within schools, one might compute the marginal probability that a student is 

selected as the product of the probability that student's school is selected multiplied by the 

conditional probability that the student is selected given that his or her school is selected. In 

another context, suppose persons are selected with known probability and then followed 

longitudinally over time. In this case, we have occasions at level 1 nested within persons at level 

2. The only weight may be a level-2 weight, inversely proportional to the probability of selection 
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of that person. It is, of course, possible to include level-1 weights as well, but it is common to 

have weights only at level-2 in such longitudinal studies. 

 

HLM 7 uses a method of computation devised by Pfefferman et al. (1998) for hierarchical data. 

This method, based on weighting the information of each case in the framework of maximum 

likelihood, is more appropriate than the method of weighting in earlier versions of HLM, which 

used a more conventional approach of weighting observations.  

2.8.7.1 Weighting in two-level designs 

In the two-level context, weights might be available at level 1, at level 2 or at both levels. If 

weights are available at level-1 only, the methodology used in HLM 7 assumes that these weights 

are inversely proportional to 
ijP , the marginal probability of that student i in school j is selected 

into the sample. HLM  7 will then normalize the weight to have a mean of 1.0. Thus we have 

Equation Section 2  


 


J

j

n

i

ij

ij

ij
j

P

PN
w

1 1

/1

/
          (0.011) 

 

in which case  


 


J

J

n

i

ij

j

Nw
1 1

             (0.012) 

 

where N is the total sample size of level-1 units. In contrast, if weights are available only at level 

2, the methodology assumes that these weights are inversely proportional to 
jP  the probability of 

selection of the level-2 unit. In this case, HLM 7 will again normalize the weight to have a mean 

of 1.0, yielding 

 

1
1/

ij

j J

ijj

J/P
 =  ,w

P


           (0.013) 

in which case  

1
.

J

jj
w J


             (0.014) 

 

where J is the total number of level-2 units. If weights are available at both level-1 and level-2, 

the methodology assumes that the level-1 weight is |i jP , the conditional probability of selection 

of unit i given that unit j was selected, so that | |i j ij jP P P . The level-2 weight is assumed to be 

inversely proportional to jP . In this case, HLM will normalize the level-1 weight within level-2 

units: 
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



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/1

/
          (0.015) 

 

so that the sum of these weights within a level-2 unit will be 

 





jn

i

jji nw
1

|                  (0.016) 

 

where 
jn  is the sample size of level-1 units in level-2 unit j. 

2.8.7.2 Weighting in three-level designs 

In the three-level context, weights might be available at any one of the three levels, at any pair of 

them, or at all three levels. Normalization proceeds in a fashion completely analogous to that in 

the case of two levels. If weights are available only at level 1, we assume these are inversely 

proportional to 
ijkP , the marginal probability of selection of unit ijk. Similarly, if weights are 

available only at level 2 or only at level 3, the corresponding probabilities are 
jkP  or kP , 

respectively. If the weights are at levels 1 and 2 but not 3, the corresponding probabilities are 

|i jkP  and 
jkP ; if at levels 2 and 3 (but not 1), the corresponding probabilities are 

|j kP  and kP ; if 

the weights are at levels 1 and 3 (but not 2), the corresponding probabilities are 
|i kP  and kP . If 

weights are present at all three levels, the probabilities are 
|i jkP ,  

|j kP  and kP  . 

To apply weights for both levels 

 In HLM, weights are selected at the time of analysis, not when the MDM file is made: 

  

1. Select the Estimation Settings option from the Other Settings menu. 

2. Click the Weighting button to access the pull-down menus used to select the weighting 

variables at any level. 

 

Note that the cover sheet of each HLM output reminds the user of the weighting specification 

chosen. 

2.8.8 Hypothesis testing 

2.8.8.1 Multivariate hypothesis tests for fixed effects 

HLM allows multivariate hypothesis tests for the fixed effects. For instance, for the model 

displayed in Fig. 2.39, a user can test the following composite null hypothesis: 

0 01 11: 0,H     

where 01  is the effect of SECTOR on the intercept and 11  is the effect of sector on the SES 

slope. 
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Figure 2.39 Model window 

Below is a procedure that illustrates a Windows execution of the hypothesis test. 

 
To pose a multivariate hypothesis test among the fixed effects  

 

1. Open the Other Settings menu and select the Hypothesis Settings option to open 

the Hypothesis Testing – HLM2 dialog box (See Figure 2.40). 

2. Click “1” to open the General Linear Hypothesis: Hypothesis 1 dialog box and to 

specify the first hypothesis (see Fig 2.41 for the contrasts for testing both of the effects 

of SECTOR on the intercept and on the SES slope as null, see Hierarchical Linear 

Models, p. 82). Then, click the “2” button for the second column and enter a 1 on the 

11  line in the second column. Click OK. 

 

 

Figure 2.40 Optional Hypothesis Testing/Estimation dialog box 
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Figure 2.41 General Linear Hypothesis: Hypothesis 1 dialog box 

The HLM2 output associated with this test appears in Section 2.8.8.3 below. (For a further 

discussion of this multivariate hypothesis test for fixed effects see Hierarchical Linear Models, 

pp. 58-61, 81-85). 

2.8.8.2 Testing homogeneity of level-1 variances 

By default, HLM2 assumes homogeneity of residual variance at level 1. That is, it specifies a 

common 2  within each of the J level-2 units. As an option, HLM2 tests the adequacy of this 

assumption. 

 
To test homogeneity of level-1 variances 

 

1. Click the Test homogeneity of level-1 variance box (Figure 2.40). 

2. The HLM2 output associated with this test also appears in Section 2.8.8.3 below. (For a 

further discussion of this test see Hierarchical Linear Models, pp. 263-267. We advise 

that users review these pages carefully before using this procedure.) 

2.8.8.3 Multivariate tests of variance-covariance components specification 

HLM2 also provides, as an option, a multi-parameter test for the variance-covariance components. 

This likelihood-ratio test compares the deviance statistic of a restricted model with a more 

general alternative. The user must input the value of the deviance statistic and related degrees of 

freedom for the alternative specification. Below we compare the variance-covariance 

components of two Intercept-and-Slope-as-Outcome models. One treats 1  as random and the 

other does not. 

 
To specify a multivariate test of variance-covariance components  

 

Enter the deviance and the number of parameters in the Deviance Statistics box and in the 



60 
 

 

Number of Parameters box (see Fig. 2.40) respectively (the two numbers for our example are 

46512.978000 and 4, obtained in Section 2.5.3). 

 

The HLM2 output associated with this test appears in the section below. (For a further discussion 

of this multi-parameter test see Hierarchical Linear Models, pp. 63-65, 83-85). Below is an 

example of a selected HLM2 output that illustrates optional hypothesis testing procedures. 

 
 The outcome variable is MATHACH  

 
Summary of the model specified 

 
Level-1 Model 

 
MATHACHij = β0j + β1j*(SESij) + rij  

 
Level-2 Model 

 

   β0j = γ00  + γ01*(SECTORj) + γ02*(MEANSESj) + u0j 

    β1j = γ10 + γ11*(SECTORj) + γ12*(MEANSESj) + u1j 

 
SES has been centered around the group mean. 
 
MEANSES has been centered around the grand mean. 

 
Mixed Model 

 
    MATHACHij = γ00 + γ01*SECTORj + γ02*MEANSESj  
    + γ10*SESij + γ11*SECTORj*SESij + γ12*MEANSESj*SESij  
     + u0j + u1j*SES  
 

Note, the middle section of output has been deleted. We proceed directly to the final results 

page. 

 

Final estimation of fixed effects: 
 

Fixed Effect  Coefficient 
 Standard 
error 

 t-ratio  Approx. 
d.f. 

 p-value 

For INTRCPT1, β0  
    INTRCPT2, γ00  12.095250 0.198627 60.894 157 <0.001 
     SECTOR, γ01  1.224401 0.306117 4.000 157 <0.001 
     MEANSES, 
γ02  5.336698 0.368978 14.463 157 <0.001 
For SES slope, β1  
    INTRCPT2, γ10  2.935664 0.150690 19.482 7022 <0.001 
     SECTOR, γ11  -1.642102 0.233097 -7.045 7022 <0.001 
     MEANSES, 
γ12  1.044120 0.291042 3.588 7022 <0.001 
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Final estimation of fixed effects 
(with robust standard errors)  
 

Fixed Effect  Coefficient 
 Standard 
error 

 t-ratio  Approx. 
d.f. 

 p-value 

For INTRCPT1, β0  
    INTRCPT2, γ00  12.095250 0.173679 69.641 157 <0.001 
     SECTOR, γ01  1.224401 0.308507 3.969 157 <0.001 
     MEANSES, 
γ02  5.336698 0.334617 15.949 157 <0.001 
For SES slope, β1  
    INTRCPT2, γ10  2.935664 0.147576 19.893 7022 <0.001 
     SECTOR, γ11  -1.642102 0.237223 -6.922 7022 <0.001 
     MEANSES, 
γ12  1.044120 0.332897 3.136 7022 0.002 

 
Final estimation of variance components 
 

Random Effect 
Standard 
 Deviation 

Variance 
 Component 

  d.f. χ
2 p-value 

INTRCPT1, u0 1.54118 2.37524 157 604.29895 <0.001 
level-1, r 6.06351 36.76611       

 
Statistics for current covariance components model 
 
Deviance = 46502.952743 
Number of estimated parameters = 2 

 

For the likelihood ratio test, the deviance statistic reported above is compared with the value 

from the alternative model manually. The result of this test appears below. 

 

Variance-Covariance components test 
 
χ

2
 statistic = 10.02526 

Degrees of freedom = 2 
p-value = 0.007 

 

A model that constrains the residual variance for the SES slopes, 1 , to zero appears appropriate. 

(For a further discussion of this application see Hierarchical Linear Models, pp. 83-85.) 

 

Test of homogeneity of level-1 variance 
 

χ
2
 statistic = 244.08638  

degrees of freedom = 159 
p-value = 0.000 

 

These results indicate that there is variability among the (J = 160) level-2 units in terms of the 

residual within-school (i.e., level-1) variance. (For a full discussion of these results see 

Hierarchical Linear Models, pp. 263-267.) 
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Results of General Linear Hypothesis Testing - Test 1 
 

   Coefficients   Contrast  
For INTRCPT1, β0 
    INTRCPT2, γ00 12.095250 0.0000 0.0000 
     SECTOR, γ01 1.224401 1.0000 0.0000 
     MEANSES, γ02 5.336698 0.0000 0.0000 
For SES slope, β1 
    INTRCPT2, γ10 2.935664 0.0000 0.0000 
     SECTOR, γ11 -1.642102 0.0000 1.0000 
     MEANSES, γ12 1.044120 0.0000 0.0000 

Estimate 1.2244 -1.6421 

Standard error of estimate 0.3085 0.2372 
   
    χ

2
 statistic = 60.527852 

    Degrees of freedom = 2 
    p-value = <0.001 

 

The table above is a reminder of the multivariate contrast specified. The chi-square statistic and 

associated p-value indicate that it is highly unlikely that the observed estimates for 
01  and 

11  

could have occurred under the specified null hypothesis. 

2.9 Output options 

There are a few options relating to the output that can be selected on the Other Settings, Output 

Settings menu: 

 

 # of OLS estimates shown (HLM2 only) – this controls the number of OLS estimates 

printed in the output. See the output in Section 2.5.3. 

 Print variance-covariance matrices – see Section A.5. 

 Print reduced output – if this is checked, only the header page and the final results 

are printed. 

 

Starting values, OLS estimates (if present), etc. will not be printed. 

 

 

Figure 2.42 Output Settings – HLM2 dialog box 

2.10  Models without a level-1 intercept 

In some circumstances, users may wish to estimate models without a level-1 intercept. Consider, 

for example, a hypothetical study in which three alternative treatments are implemented within 

each of  J hospitals. One might estimate the following level-1 (within-hospital) model:  



63 
 

 

 

1 1 2 2 3 3 ,ij j ij j ij j ij ijY X X X r       

 

where 
qi jX  (q = 1,2,3) are indicator variables taking on a value of 1 if patient i in hospital j has 

received treatment q, 0 otherwise; and 
q j  is the mean outcome in hospital j of those receiving 

treatment q. At level-2, the treatment means 
q j   are predicted by characteristics of the hospitals. 

Of course, the same data could alternatively be modeled by a level-1 intercept and two treatment 

contrasts per hospital, but users will sometimes find the no-intercept approach is more 

convenient. 

 

An example of a no-intercept model appears on page 174 of Hierarchical Linear Models. The 

vocabulary growth of young children is of interest. Both common sense and the data indicated 

that children could be expected to have no vocabulary at 12 months of age. Hence, the level-1 

model contained no intercept: 

 
2

1 2( 12) ( 12)ti i ti i ti tiY e     AGE AGE   

 

where AGEt i
 is the age of child i at time t in months and 

t iY  is the size of that child's vocabulary 

at that time. 

 
To delete an intercept from a level-1 model 

 

Click INTRCPT1 on the >>Level-1<< drop-down list. Click delete variable from model. 

2.11  Coefficients having a random effect with no corresponding fixed 
effect 

A user may find it useful at times to model a level-1 predictor as having a random effect but no 

fixed effect. For example, it might be that gender differences in educational achievement are, on 

average, null across a set of schools; yet, in some schools females outperform males while in 

other schools males outperform females. In this case, the fixed effect of gender could be set to 

zero while the variance of the gender effect across schools would be estimated. 

 

The vocabulary analysis in Hierarchical Linear Models supplies an example of a level-1 

predictor having a random effect without a corresponding fixed effect. For the age interval under 

study, it was found that, on average, the linear effect of age was zero. Yet this effect varied 

significantly across children. The level-1 model estimated was:  

 

   
2

1 212 12AGE AGEt i i t i i t i t iY e       

 

However, the level-2 model was:  
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1 1

2 20 2

i i

i i

r

r



 



 
 

 

Notice that AGE – 12 has a random effect but no fixed effect. 

 
To delete the fixed effect from a level-2 model 
 

1. Select the equation from which the fixed effect is to be removed. 

2. Click INTRCPT2 on the >>Level-2<< drop-down list. Click delete variable from 

model. 

2.12 Exploratory analysis of potential level-2 predictors 

The user may be interested in computing  “t-to-enter statistics“ for potential level-2 predictors to 

guide specification of subsequent HLM2 models. The implementation procedure is as follows. 

 
To implement exploratory analysis of potential level-2 predictors 

 

1. Open the Other Settings menu and choose Exploratory Analysis (level 2). A Select 

Variables For Exploratory Analysis dialog box appears. 

2. Click the equation associated with a regression coefficient to model the corresponding 

coefficient. Click to select variables for exploratory analysis. (Figure 2.43 displays the 

level-2 predictors chosen for our HS&B example).  

3. Click Return to Model Mode to return to the model window. 

 

The following contains a selected HLM2 output to illustrate exploratory analysis of potential 

level-2 predictors. 

 

 

Figure 2.43 Select Variables For Exploratory Analysis dialog box for the HS&B example 
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Exploratory Analysis: estimated level-2 coefficients and their standard errors obtained by 
regressing EB residuals on level-2 predictors selected for possible inclusion in subsequent HLM 
runs 

 
Level-1 Coefficient Potential Level-2 Predictors 

   

INTRCPT1,β0     

  SIZE PRACAD DISCLIM HIMINTY 
Coefficient 0.000 0.690 -0.161 -0.543 
Standard Error 0.000 0.404 0.106 0.229 
t-value 1.569 1.707 -1.515 -2.372 

   

SES,β1     

  SIZE PRACAD DISCLIM HIMINTY 
Coefficient 0.000 0.039 -0.005 -0.058 
Standard Error 0.000 0.044 0.012 0.025 
t-value 1.297 0.899 -0.425 -2.339 

  

 

The results of this exploratory analysis suggest that HIMINTY might be a good candidate to 

include in the INTRCPT1 model. The t-values represent the approximate result that will be 

obtained when one additional predictor is added to any of the level-2 equations. This means that 

if HIMINTY is added to the model for the INTRCPT1, for example, the apparent relationship 

suggested above for HIMINTY in the SES slope model might disappear. (For a further discussion 

of the use of these statistics see discussion in Hierarchical Linear Models, p. 270 on 

“Approximate t-to-Enter Statistics.”) 
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3. Conceptual and Statistical Background for Three-Level 
Models  

 

 

Equation Section 3 

The models estimated by HLM3 are applicable to a hierarchical data structure with three levels of 

random variation in which the errors of prediction at each level can be assumed to be 

approximately normally distributed. Consider, for example, a study in which achievement test 

scores are collected from a sample of children nested within classrooms that are in turn nested 

within schools. This data structure is hierarchical (each child belongs to one and only one 

classroom and each classroom belongs to one and only one school); and there are three levels of 

random variation: variation among children within classrooms, variation among classrooms 

within schools, and variation among schools. The outcome (achievement test scores) makes the 

normality assumption at level 1 reasonable, and the normality assumption at the classroom and 

school levels will often also be a sensible one.  

 

Chapter 8 of Hierarchical Linear Models discusses several applications of a three-level model. 

The first is a three-level cross-sectional study as described above. A second case involves time-

series data collected on each subject where the subjects are nested within organizations. This 

latter example is from the Sustaining Effects Study, where achievement data were collected at 

five time points for each child. Here the time-series data are nested within children and the 

children are nested within schools. A third example in Chapter 8 involves measures taken on 

each of the multiple classes taught by secondary school teachers. The classes are nested within 

teachers and the teachers within schools. A final example involves multiple items from a 

questionnaire administered to teachers. The items vary “within teachers” at level 1, the teachers 

vary within schools at level 2, and the schools vary at level 3. In effect, the level-1 model is a 

model for the measurement error associated with the questionnaire. Clearly, there are many 
interesting applications of a three-level model. 

3.1 The general three-level model 

The three-level model consists of three submodels, one for each level. For example, if the 

research problem consists of data on students nested within classrooms and classrooms within 

schools, the level-1 model will represent the relationships among the student-level variables, the 

level-2 model will capture the influence of class-level factors, and the level-3 model will 

incorporate school-level effects. Formally there are i = 1, ..., jkn  level-1 units (e.g., students), 

which are nested within each of j = 1,..., kJ  level-2 units (e.g., classrooms), which in turn are 

nested within each of k = 1,..., K  level-3 units (e.g., schools).  

 

3.1.1 Level-1 model 

In the level-1 model we represent the outcome for case i within level-2 unit j and level-3 unit k 

as:  
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where 

 

p j k  (p = 0,1,..., P) are level-1 coefficients,  

p j ka   is a level-1 predictor p for case i in level-2 unit j and level-3 unit k,  

   
i j ke  is the level-1 random effect, and  

   2  is the variance of 
i j ke , that is the level-1 variance. 

 

Here we assume that the random term 
i j ke  ~ N (0, 2 ). 

3.1.2 Level-2 model 

Each of the 
p j k  coefficients in the level-1 model becomes an outcome variable in the level-2 

model:  
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0

1

,

p p

p
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 (0.018) 

where 

 

p qk  (q = 0,1,..., pQ ) are level-2 coefficients,  

   q j kX   is a level-2 predictor, and  

   p j kr   is a level-2 random effect. 

 

We assume that, for each unit j, the vector  0 1, , ,j k j k P j kr r r

is distributed as multivariate 

normal where each element has a mean of zero and the variance of p j kr   is:  

( )p j k ppr Var .         (0.019) 

For any pair of random effects p and 'p ,  

   ( , ) .p j k p j k ppr r  Cov         (0.020) 

 

These level-2 variance and covariance components can be collected into a dispersion matrix, T , 

with a maximum dimension is ( 1) ( 1)P P   .  
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We note that each level-1 coefficient can be modeled at level 2 as one of three general forms: 

 

 a level-1 coefficient that is fixed at the same value for all level-2 units; e.g.,  

 

         
0p j k p k  ,            (0.021) 

 

 a level-1 coefficient that varies non-randomly among level-2 units, e.g.,  

     

         
0

1

pQ

p j k p k pqk q jk

q

X  


   ,         (0.022) 

 

 a level-1 coefficient that varies randomly among level-2 units, e.g., 

 

                    
0p j k p k p j kr                     (0.023) 

or 

               
0

1

.
pQ

p j k p k pqk q j k p j k

q

X r  


             (0.024) 

 

The actual dimension of T  in any application depends on the number of level-1 coefficients 

specified as randomly varying. We also note that a different set of level-2 predictors may be used 

in each of the 1P   equations that form the level-2 model.   

3.1.3 Level-3 model 

Each of the level-2 coefficients, p q k , defined in the level-2 model becomes an outcome variable 

in the level-3 model: 

0 1 1 2 2

0

1

,

p q p q

p q

pqk pq pq k pq k pq S S k pqk

S

pq pq s s k pqk

s

W W W u

W u


     

  

    

 
    

 (0.025) 

where 

p q s  ( 0,1, , p qs S ) are level-3 coefficients,  

   s kW   is a level-3 predictor, and  

   p qku   is a level-3 random effect. 

 

We assume that, for each level-3 unit, the vector of level-3 random effects (the p qku  terms) is 

distributed as multivariate normal, with each having a mean of zero and with covariance matrix 

T , whose maximum dimension is:  
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We note that each level-2 coefficient can be modeled at level-3 as one of three general forms: 

 

1. as a fixed effect, e.g., 

 

0 ,pqk pq             (0.027) 

 

2. as non-randomly varying, e.g. 

 

0

1

,
p qS

pqk pq pq s sk

s

W


              (0.028) 

 

3. as randomly varying, e.g. 

 

0pqk pq pqku               (0.029) 

 

or  

        0

1

.
p qS

pqk pq pq s sk pqk

s

W u


                (0.030) 

 

The actual dimension of T  in any application depends on the number of level-3 coefficients 

specified as randomly varying. We also note that a different set of level-3 predictors may be used 

in each equation of the level-3 model. 

3.2 Parameter estimation  

Three kinds of parameter estimates are available in a three-level model: empirical Bayes 

estimates of randomly varying level-1 and level-2 coefficients; maximum-likelihood estimates of 

the level-3 coefficients (note: these are also generalized least squares estimates); and maximum-

likelihood estimates of the variance-covariance components. The maximum-likelihood estimate 

of the level-3 coefficients and the variance-covariance components are printed on the output for 

every run. The empirical Bayes estimates for the level-1 and level-2 coefficients may optionally 

be saved in the “residual files” at levels 2 and 3, respectively. Reliability estimates for each 

random level-1 and level-2 coefficient are always produced. The actual estimation procedure for 

the three-level model differs a bit from the default two-level model. By default, HLM2 uses a 

“restricted maximum likelihood“ approach in which the variance-covariance components are 

estimated by means of maximum likelihood and then the fixed effects (level-2 coefficients) are 

estimated via generalized least squares given those variance-covariance estimates. In HLM3, not 

only the variance-covariance components, but also the fixed effects (level-3 coefficients) are 

estimated by means of maximum likelihood. This procedure is referred to as “full” as opposed to 

“restricted” maximum likelihood (For a further discussion of this see Hierarchical Linear 

Models, pp. 52-53). Note that full maximum likelihood is also available as an option for HLM2. 



70 
 

 

3.3 Hypothesis testing 

As in the case of the two-level program, the three-level program routinely prints standard errors 

and t-tests for each of the level-3 coefficients (“the fixed effects”) as well as a chi-square test of 

homogeneity for each random effect. In addition, optional “multivariate hypothesis tests“ are 

available in the three-level program. Multivariate tests for the level-3 coefficients enable both 

omnibus tests and specific comparisons of the parameter estimates just as described in the 

section Multivariate hypothesis tests for fixed effects in this chapter. Multivariate tests regarding 

alternative variance-covariance structures at level 2 or level 3 proceed just as in the section 

Multivariate tests of variance-covariance components specification in this chapter.  

 

The use of full maximum likelihood for parameter estimation in HLM3 has a consequence for 

hypothesis testing. For both restricted and full maximum likelihood, one can test alternative 

variance-covariance structures by means of the likelihood-ratio test as described in the section 

Multivariate tests of variance-covariance components specification. However, in the case of full 

maximum likelihood, it is also possible to test alternative specifications of the fixed coefficients 

by means of a likelihood-ratio test. In fact, any pair of nested models can be compared using the 

likelihood-ratio test under full maximum likelihood. By nested models, we refer to a pair of 

models in which the simpler model can be derived by imposing constraints on the parameters of 

the more complex model. Any pair of nested two-level models can be compared using a 

likelihood ratio test.   
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4 Working with HLM3 

 

 

 

As in the case of the two-level program, data analysis by means of the HLM3 program will 

typically involve three stages: 

 

 Construction of an MDM file (the multivariate data matrix)  

 Execution of analyses based on the MDM file  

 Evaluation of fitted models based on residual files 

 

As in HLM2, HLM3 analyses can be executed in Windows, interactive, and batch modes. We 

describe a Windows execution below. We consider interactive and batch execution in Appendix 

B. A number of special options are presented at the end of the chapter. 

4.1 An example using HLM3 in Windows mode 

Chapter 8 in Hierarchical Linear Models presents a series of analyses of data from the US 

Sustaining Effects Study, a longitudinal study of children's growth in academic achievement 

during the primary years. A level-1 model specifies the relationship between age and academic 

achievement for each child. At level 2, the coefficients describing each child's growth vary 

across children within schools as a function of demographic variables. At level 3, the parameters 

that describe the distribution of growth curves within each school vary across schools as a 

function of school-level predictors. 

To illustrate the operation of the HLM3 program, we analyze another data set having a similar 

structure. The level-1 data are time-series observations on 1721 students nested within 60 urban 

public primary schools and mathematics achievement is the outcome. These data are provided 

along with the HLM software so that a user may replicate our results in order to assure that the 

program is operating correctly. 

4.1.1 Constructing the MDM file from raw data  

In constructing the MDM file, the user has the same range of options for data input for HLM3 as 

for HLM2 (see Section 2.5.1). We first describe the use of SPSS file input and then consider 

ASCII, SYSTAT, SAS, and other data file formats. 

4.1.1.1 SPSS input 

Data input requires a level-1 file (in our illustration a time-series data file), a level-2 file (child-

level file), and a level-3 (school-level) file. 

Level-1 file.    

The level-1 file, EG1.SAV, has 7242 observations collected on 1721 children beginning at the end 

of grade one and followed up annually thereafter until grade six. There are four level-1 variables 

(not including the schoolid and the childid). Time-series data for the first two children are shown 

in Figure 4.1.  

 

There are eight records listed, three for the first child and five for the second. (Typically there 

are four or five observations per child with a maximum of six.) The first ID is the level-3 (i.e., 
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school) ID and the second ID is the level-2 (i.e., child) ID. We see that the first record comes from 

school 2020 and child 273026452 within that school. Notice that this child has three records, one 

for each of three measurement occasions. Following the two ID fields are that child's values on 

four variables: 

 

 YEAR (year of the study minus 3.5)  

This variable can take on values of 2.5 , 1.5 , 0.5 , 0.5 , 1.5 , and 2.5  for the six years 

of data collection.  

 GRADE  

The grade level minus 1.0 of the child at each testing occasion. Therefore, it is 0 at grade 

1, 1 at grade 2, etc.  

 MATH  

A math test in an IRT scale score metric.  

 RETAINED  

An indicator that a child is retained in grade for a particular year (1 = retained, 0 = not 

retained). 

 

 

Figure 4.1  First eight cases in EG1.SAV 

We see that the first child, child 27306452 in school 2020, had values of 0.5, 1.5, and 2.5 on 

year. Clearly, that child had no data at the first three data collection waves (because we see no 

values of 2.5 , 1.5 , or 0.5 on year), but did have data at the last three waves. We see also that 

this child was not retained in grade during this period since the values for GRADE increase by 1 

each year and since RETAINED takes on a value of 0 for each year. The three MATH scores of that 

child (1.15, 1.13, 2.30) show no growth in time period 1.5. Oddly enough, the time-series record 

for the second child (child 273030991 in school 2020) displays a similar pattern in the same 

testing. 

 

Note: The level-1 and level-2 files must also be sorted in the same order of level-2 ID nested 

within level-3 ID, e.g., children within schools. If this nested sorting is not performed, an 

incorrect multivariate data matrix file will result. 
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Level-2 file.   

The level-2 units in the illustration are 1721 children. The data are stored in the file EG2.SAV. 

The level-2 data for the first eight children are listed below. The first field is the schoolid and the 

second is the childid. Note that each of the first ten children is in school 2020.  

 

There are three variables: 

 FEMALE (1 = female, 0 = male)  

 BLACK (1 = African-American, 0 = other)  

 HISPANIC (1= Hispanic, 0 = other) 

 

We see, for example, that child 273026452 is a Hispanic male (FEMALE = 0,  BLACK = 0, 

HISPANIC = 1). 

 

 

Figure 4.2  First eight children in EG2.SAV 

Level-3 file.   

The level-3 units in the illustration are 60 schools. Level-3 data for the first seven schools are 

printed below. The full data are in the file EG3.SAV. The first field on the left is the schoolid. 

There are three level-3 variables: 

 SIZE, number of students enrolled in the school 

 LOWINC, the percent of students from low income families 

 MOBILE, the percent of students moving during the course of a single academic year 

We see that the first school, school 2020, has 380 students, 40.3% of whom are low income. The 

school mobility rate is 12.5%. 
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Figure 4.3  First seven schools in EG3.SAV 

In sum, there are four variables at level 1, three at level 2 and three at level 3. Note that the ID 

variables do not count as variables. Once the user has identified the two sets of IDs, the number 

of variables in each file, the variable names, and the filenames, creation of the MDM file is 

exactly analogous to the three major steps described in the Section 2.5.1.1. The user first informs 

HLM that the input files are SPSS system files and the MDM is a three-level file. Then HLM is 

supplied with the appropriate information for the data. Note that the three files are linked by 

level-2 and level-3 IDs here.  

 

 

Figure 4.4  Make MDM – HLM3 dialog box for EG.MDM 
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Figure 4.5  Choose Variables – HLM3 dialog box for level-1 file, EG1.SAV 

Note: In addition, the program can handle missing data at level-1 only, with the same options 

available as discussed in HLM2. HLM3 will listwise delete cases with missing data at levels two 

and three. The three level program handles design weights at all three levels. 

 

The response file, EGSPSS.MDMT, contains a log of the input responses used to create the MDM 

file, EG.MDM, using EG1.SAV, EG2.SAV, and EG3.SAV. Figure 4.4 displays the dialog box used to 

create the MDM file. Figure 4.5 shows the dialog box for the level-1 file, EG1.SAV.  

 

Note: As in the case of HLM2, after constructing the MDM file, you should check whether the data 

have been properly read into HLM by examining the descriptive statistics of the MDM file. 

4.1.1.2 ASCII input 

The procedure for constructing an MDM file from ASCII data files is similar to that for SPSS file 

input. The major difference is that the format statements must be entered for the three data files, 

variable names, and missing value codes, if applicable. Rules about the format are included in 

the Appendix. An example is included in the response file, EGASCII.MDMT, which constructs the 

MDM file, EGASCII.MDM, using EG1.DAT, EG2.DAT, and EG3.DAT. Figure 4.6 shows the dialog 

box for creating the MDM file, displaying the input responses of EGASCII.MDMT. 
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Figure 4.6   Make MDM – HLM3 dialog box for EGASCII.MDM 

4.1.1.3 Other file input 

For SAS and SYSTAT file input, a user selects either SAS5 transport or SYSTAT from the Input 

File Type drop-down list box as appropriate before clicking the Browse buttons in the file 

specification sections and follows the same steps for SPSS input type to create MDM files. 

4.1.1.4 Other file type input 

HLM3 has the same range of options for data input as HLM2. In addition to SYSTAT, SPSS, 

STATA, free format, and SAS, the Windows version (through a third-party module) allows 

numerous other data formats from, for example, EXCEL, and LOTUS input. See Section 2.5.1 for 

details. 

4.2 Executing analyses based on the MDM file 

Once the MDM file is constructed, it is used as input for the analysis. Model specification via the 

Windows mode has five steps: 

 

1. Specification of the level-1 model. In our case we shall model mathematics achievement 

(MATH) as the outcome, to be predicted by YEAR in the study. Hence, the level-1 model will 

have two coefficients for each child: the intercept and the YEAR slope. 

2. Specification of the level-2 prediction model. Here each level-1 coefficient – the  intercept 

and the YEAR slope in our example – becomes an outcome variable. We may select certain 

child characteristics to predict each of these level-1 coefficients. In principle, the level-2 

parameters then describe the distribution of growth curves within each school. 
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Figure 4.7  Model Window for the public school example 

3. Specification of level-1 coefficients as random or non-random across level-two units. We 

shall model the intercept and the YEAR slope as varying randomly across the children within 

schools. 

4. Specification of the level-3 prediction model. Here each level-2 coefficient becomes an 

outcome, and we can select level-3 variables to predict school-to-school variation in these 

level-2 coefficients. In principle, this model specifies how schools differ with respect to the 

distribution of growth curves within them. 

5. Specification of the level-2 coefficients as random or non-random across level-3 units. 

 

Following the five steps above, we first specify a model with no child- or school-level 

predictors. The Windows execution is very similar to the one for HLM2 as described in Section 

2.5.2. The command file, EG1.HLM, contains the model specification input responses. To open 

the command file, open the File menu and choose Edit/Run old command file. Figure 4.7 

displays the model specified in both standard and mixed model notation. 

4.2.1 An annotated example of HLM3 output 

Here is the output produced by the model described above. The first page of the output gives the 

specification of the model. 
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  Problem Title: UNCONDITIONAL LINEAR GROWTH MODEL 
 
  

 The data source for this run  = EG.MDM     Name of the MDM file 
  The command file for this run = eg1.mlm    Name of the command file 
  Output file name              = hlm3.html     Name of this output file 
  The maximum number of level-1 units = 7230   There are 7230 observations 
  The maximum number of level-2 units = 1721   There are 1721 children 
  The maximum number of level-3 units = 60   There are 60 schools 
  The maximum number of iterations = 100  
  Method of estimation: full maximum likelihood  
 

Level-1 Model 

     
 MATHijk = π0jk + π1jk*(YEARijk) + eijk 

 
Level-2 Model 

 
    π0jk = β00k + r0jk 
    π1jk = β10k + r1jk 

 
Level-3 Model 

 
    β00k = γ000 + u00k 
    β10k = γ100 + u10k 

 
Mixed Model 

 
    MATHijk = γ000 + γ100*YEARijk 
    + r0jk  + r1jk *YEARijk 
    + u00k  + u10k *YEARijk + eijk 
 

Next come the initial parameter estimates or “starting values.” Users should not base inferences 

on these values, the sole purpose of which is to get the iterations started. 

 

Least Squares Estimates 

 

 σ2 = 1.21432  

 
Least-squares estimates of fixed effects  

 

Fixed Effect  Coefficient 
 Standard 
error 

 t-ratio 
 Approx. 
d.f. 

 p-value 

For INTRCPT1, π0 
   For INTRCPT2, β00 
           INTRCPT3, γ000  -0.827685 0.013431 -61.623 7228 <0.001 
For YEAR slope, π1 
   For INTRCPT2, β10 
           INTRCPT3, γ100  0.765828 0.009293 82.410 7228 <0.001 
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Least-squares estimates of fixed effects (with robust standard errors)  

 

Fixed Effect  Coefficient 
 Standard 
error 

 t-ratio 
 Approx. 
d.f. 

 p-value 

For INTRCPT1, π0 
   For INTRCPT2, β00 
        INTRCPT3, γ000  -0.827685 0.072631 -11.396 7228 <0.001 
For YEAR slope, π1 
   For INTRCPT2, β10 
        INTRCPT3, γ100  0.765828 0.018892 40.537 7228 <0.001 

 
The least-squares likelihood value = -1.096090E+004 
Deviance = 21921.80879 
Number of estimated parameters = 3 
 
For starting values, data from 7230 level-1 and 1721 level-2 records were used  

 
Starting Values 

 

σ2
(0) = 0.29710 

 

τπ(0) 
INTRCPT1,π0    0.71125    0.05143 

YEAR,π1    0.05143    0.01582 

 

τβ(0) 
INTRCPT1   YEAR   

INTRCPT2,β00 INTRCPT2,β10 

   0.14930    0.01473 

   0.01473    0.01196 

 
The value of the log-likelihood function at iteration 1 = -8.169527E+003 
The value of the log-likelihood function at iteration 2 = -8.165377E+003 
. . .  

 
Final Results - Iteration 9 
Iterations stopped due to small change in likelihood function 
 
******* ITERATION  9 ******* 
 

σ2 = 0.30148 

 
Standard error of σ2 = 0.00660 
 

τπ 

INTRCPT1,π0    0.64049    0.04676 

YEAR,π1    0.04676    0.01122 
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Standard errors of τπ 

INTRCPT1,π0    0.02515    0.00499 

YEAR,π1    0.00499    0.00196 

 

τπ (as correlations) 

INTRCPT1,π0   1.000   0.551 

YEAR,π1   0.551   1.000 

 

Note that the estimated correlation between true status at YEAR = 3.5 (halfway through third 

grade) and true rate of change is estimated to be 0.551 for children in the same school. 

 

Random level-1 coefficient Reliability estimate 

INTRCPT1,π0 0.839 
YEAR,π1 0.190 

 

Reliabilities of child parameter estimates. 

τβ 
INTRCPT1   YEAR   

INTRCPT2,β00 INTRCPT2,β10 

   0.16531    0.01705 

   0.01705    0.01102 

 

Standard errors of τβ 

INTRCPT1   YEAR   

INTRCPT2,β00 INTRCPT2,β10 

   0.03641    0.00720 

   0.00720    0.00252 

 

τβ (as correlations) 

INTRCPT1/INTRCPT2,β00   1.000   0.399 

YEAR/INTRCPT2,β10   0.399   1.000 
 

Notice that the estimated correlation between true school mean status at YEAR = 3.5 and true 

school-mean rate of change is 0.399. 

 

Random level-2 coefficient   Reliability estimate 

INTRCPT1/INTRCPT2,β00 0.821 
YEAR/INTRCPT2,β10 0.786 

 

Reliabilities of school-level parameter estimates. These indicate the reliability with which we 

can discriminate among level-2 units using their least-squares estimates of 0  and 1 . Low 

reliabilities do not invalidate the HLM analysis. Very low reliabilities (e.g., < 0.10), often indicate 

that a random coefficient might be considered fixed in subsequent analyses. 
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Final estimation of fixed effects: 
 

Fixed Effect  Coefficient 
 Standard 
 error 

 t-ratio 
 Approx. 
d.f. 

 p-value 

For INTRCPT1, π0 
   For INTRCPT2, β00 

         INTRCPT3, γ000  -0.779309 0.057829 -13.476 59 <0.001 

For YEAR slope, π1 
   For INTRCPT2, β10 
         INTRCPT3, γ100  0.763029 0.015263 49.993 59 <0.001 

 

The above table indicates that the average growth rate is significantly positive at 0.763 logits per 

year, 49.997.t   

 

Final estimation of fixed effects (with robust standard errors)  
 

Fixed Effect  Coefficient 
 Standard 
 error 

 t-ratio 
 Approx. 
d.f. 

 p-value 

For INTRCPT1, π0 
   For INTRCPT2, β00 

         INTRCPT3, γ000  -0.779309 0.057830 -13.476 59 <0.001 

For YEAR slope, π1 
   For INTRCPT2, β10 
         INTRCPT3, γ100  0.763029 0.015260 50.000 59 <0.001 

 

Note that the results with and without robust standard errors are nearly identical. If the robust 

and model-based standard errors are substantially different, further investigation of the tenability 

of key assumptions (see Section 4.3 on examining residuals) is recommended. 

 

Final estimation of level-1 and level-2 variance components 
 

Random Effect 
 Standard 
 Deviation 

     Variance 
 Component 

  d.f. χ
2
 p-value 

INTRCPT1,r0 0.80030 0.64049 1661 13679.62589 <0.001 
YEAR slope,r1 0.10595 0.01122 1661 2132.50756 <0.001 
level-1, e 0.54907 0.30148       

 
Final estimation of level-3 variance components 
 

Random Effect 
 Standard 
 Deviation 

   Variance 
 Component 

  d.f. χ
2
 p-value 

INTRCPT1/INTRCPT2,u00 0.40658 0.16531 59 488.30922 <0.001 

YEAR/INTRCPT2,u10 0.10498 0.01102 59 377.43020 <0.001 

 

The results above indicate significant variability among schools in terms of mean status at YEAR 

= 3.5 (χ
2
 = 488.34499, df = 59) and in terms of school-mean rates of change (χ

2
 of 377.40852, df 

= 59). 

 

 Statistics for the current model 
 
Deviance = 16326.231407 
Number of estimated parameters = 9 
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Exploratory Analysis: estimated level-2 coefficients and their standard errors obtained by 
regressing EB residuals on level-2 predictors selected for possible inclusion in subsequent HLM 
runs 
 

Level-1 Coefficient Potential Level-2 Predictors 

YEAR,π1    

  FEMALE BLACK HISPANIC 
Coefficient 0.001 -0.029 0.005 
Standard Error 0.003 0.006 0.006 
t-value 0.369 -4.835 0.761 

  
 
Exploratory Analysis: estimated level-3 coefficients and their standard errors obtained by 
regressing EB residuals on level-3 predictors selected for possible inclusion in subsequent HLM 
runs 
 

Level-1 Coefficient Potential Level-3 Predictors 

YEAR/INTRCPT2,β10    

  SIZE LOWINC MOBILITY 
Coefficient  -0.000  -0.001  -0.002 
Standard Error  0.000  0.000  0.001 
t-value  -1.525  -2.871  -1.962 

  

 

Just as in the case of the two-level program, the potential predictors not included in the model to 

be employed as significant predictors in subsequent models is indicated approximately by the “t-

values” given above. Note: because of the metric of school size (100s and 1000s), the actual 

coefficients and standard errors are too small to be printed. The t-values are not, however. 

4.3 Model checking based on the residual files  

HLM3 produces three residual files, one each at levels 1 and  2 (see Chapter 2 for a discussion of 

these files) and one at level-3 (containing estimates of the  s). These files will contain the EB 

residuals defined at the various levels, fitted values, and OLS residuals, and EB coefficients. In 

addition, level-2 predictors can be included in the level-2 residual file and level-3 predictors in 

the level-3 residual file. However, other statistics provided in the residual file of HLM2, for 

example the Mahalanobis distance measures, are not available in the residual files produced by 

HLM3. The procedures for requesting level-3 residual files are similar to those for HLM2 as 

described in Section 2.5.4. 

 

The files in this example are structured as SPSS data files and can be directly opened in SPSS. 

As with HLM2, the user can also specify STATA, SYSTAT or SAS command file format for the 

residual file. The result will be STATA, SYSTAT or SAS data files. (For more details see Section 

2.5.4.) Alternatively, the data can be obtained in free form (i.e., as a text file) by selecting the 

Free Format option on the Create Level-3 Residual File dialog box. These residual files can 

then be read into any other computing package. The list of variables in the level-3 residual file 

and their attributes are shown in Figure 4.8, while the first 10 records contained in this file are 

shown in Figure 4.10.  
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Figure 4.8  List of variables and attributes for level-3 residual file 

An example of the level-2 residual file produced in the above analysis is shown in Figure 4.9. 

Only data from school 2020 are given. 

 

We see that the level-3 ID (l3id) is the first variable and the level-2 ID (l2id) is the second. The 

third variable is njk, the number of observations associated with child j in school k. The empirical 

Bayes estimates of the residuals, 
p j kr , are given next, including, respectively, the intercept 

(ebintrcpt1) and the year effect (ebyear). The ordinary least squares estimates of the same 

quantities (olintrcpt1 and olyear); and the fitted values, that is, the predicted values of the 
p j k s 

for a given child based on the fixed effects (fvintrcpt1 and fvyear) and random school effect, 

follow. These are followed by the EB coefficients. Finally, the posterior variances and 

covariances (pv2_0_0, pv2_1_0, and pv2_1_1) of the empirical Bayes estimates are given. 

 

 

Figure 4.9  First 12 children in level-2 residual file 

We see that the first child in the data set has schoolid 2020 and childid 273026452. That child has 

3 time-series observations. The predicted growth rate for that child (the YEAR effect) is the fitted 
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value .953. That child's empirical Bayes residual YEAR effect is .004. Thus, the EB coefficient 

(“ebyear”) is computed as:  

Equation Section 4 
* * *

1 10 1

0.953 0.004

0.957

j k k j kr  

 

 



FVYEAR EBYEAR           (0.031) 

 

The empirical Bayes estimate for the child's intercept, *

0 j k  (“ecintrcp”), is computed similarly. 

The level-3 residual file, printed below, has a similar structure. Only the data for the first 10 

schools are given. We see that the level-3 ID (l3id) is the first value given, and is followed by nk, 

the number of children in school k. This is followed by the empirical Bayes estimates of the  s, 

including, respectively, the intercept (eb00) and the year effect (eb10). The ordinary least squares 

estimates of the same quantities (ol00 and ol10); and the fitted values, that is, the predicted values 

of the  s for a given school based on that school's effect and the fixed effects (fv0_0 and fv1_0). 

The EB coefficients are given next. Finally, the posterior variances and covariances 

(pv3_0_0_0_0, pv3_1_0_0_0, and pv3_1_0_1_0) of the estimates are given. 

 

 

Figure 4.10 First 10 schools in level-3 residual file 

We see that the first unit, school 2020, has nk = 21 children. The predicted YEAR effect for 

school 2020 is the fitted value .763, that is, the maximum-likelihood estimate of the school mean 

growth rate in the case of this unconditional model. That school's empirical Bayes residual YEAR 

effect is .190. Thus HLM3 constructs the empirical Bayes estimate of that school's YEAR effect 

(mean rate of growth, “ec_10”) as  

* * *

10 100 1k ku     =  fv01 + eb10         (0.032) 

                       =.763 + .190 = .953. 

 

Similarly, HLM3 constructs the empirical Bayes estimate for the school's intercept, 
*

00k  

(“ec0_0”), using fv0_0 + eb00. 
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Note that the empirical Bayes estimate of the school YEAR effect, 0.953, is the fitted value for 

each child in that school (in the level-2 residual file). This will be true in any model that is 

unconditional at level 2, that is, any model with no child-level predictors such as race, ethnicity or 

female. When level-2 predictors are in the model, the level-2 fitted values will also depend on 

those predictors. 

4.4  Specification of a conditional model 

The above example involves a model that is “unconditional” at levels 2 and 3; that is, no 

predictors are specified at each of those levels. Such a model is useful for partitioning variation 

in intercepts and growth rates into components that lie within and between schools (see 

Hierarchical Linear Models, Chapter 8), but provides no information on how child or school 

characteristics relate to the growth curves. Figure 4.11 shows a model that incorporates 

information about a child's race and ethnicity and a school's percent low income. Moreover, we 

explore the possibility that several other predictors (gender, school enrollment, and percent 

mobility) might help account for variation in subsequent models. 

 

Figure 4.11 Model window for the public school example 

The results of the analysis are given below. 

    

  Problem Title: LINEAR GROWTH OVER GRADE, MINORITY, LOW INCOME 
   
  The data source for this run  = EG.MDM 
  The command file for this run = eg2.mlm 
  Output file name              = hlm3.html 
  The maximum number of level-1 units = 7230 
  The maximum number of level-2 units = 1721 
  The maximum number of level-3 units = 60 
  The maximum number of iterations = 100  
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  Method of estimation: full maximum likelihood 
  The outcome variable is MATH  
 

Summary of the model specified 
 
Level-1 Model 

     
  MATHijk = π0jk + π1jk*(YEARijk) + eijk 

 
Level-2 Model 

 
    π0jk = β00k + β01k*(BLACKjk) + β02k*(HISPANICjk) + r0jk 
    π1jk = β10k + β11k*(BLACKjk) + β12k*(HISPANICjk) + r1jk 

 
Level-3 Model 

 
    β00k = γ000 + γ001(LOWINCk) + u00k 
    β01k = γ010  
    β02k = γ020  
    β10k = γ100 + γ101(LOWINCk) + u10k 
    β11k = γ110  
    β12k = γ120  

 
Mixed Model 

 
    MATHijk = γ000 + γ001*LOWINCk + γ010*BLACKjk + γ020*HISPANICjk 
    + γ100*YEARijk + γ101*YEARijk*LOWINCk + γ110*YEARijk*BLACKjk + γ120*YEARijk*HISPANICjk 
    + r0jk  + r1jk *YEARijk  + u00k  + u10k *YEARijk + eijk 
 

Least Squares Estimates 

σ2 = 1.07437  

 
Least-squares estimates of fixed effects  
 

Fixed Effect  Coefficient 
 Standard 
       error 

 t-ratio 
 Approx. 
        d.f. 

 p-value 

For INTRCPT1, π0 
   For INTRCPT2, β00 
         INTRCPT3, γ000  0.187343 0.040175 4.663 7222 <0.001 
            LOWINC, γ001  -0.008941 0.000568 -15.733 7222 <0.001 
   For BLACK, β01 
         INTRCPT3, γ010  -0.405550 0.041045 -9.881 7222 <0.001 
   For HISPANIC, β02 
         INTRCPT3, γ020  -0.285918 0.049723 -5.750 7222 <0.001 
For YEAR slope, π1 
   For INTRCPT2, β10 
         INTRCPT3, γ100  0.906001 0.027528 32.912 7222 <0.001 
            LOWINC, γ101  -0.001768 0.000392 -4.512 7222 <0.001 
   For BLACK, β11 
          INTRCPT3, 
γ110  -0.015548 0.028610 -0.543 7222 0.587 
   For HISPANIC, β12 
          INTRCPT3, 
γ120  0.032732 0.034446 0.950 7222 0.342 
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Least-squares estimates of fixed effects (with robust standard errors)  
 

Fixed Effect  Coefficient 
 Standard 
       error 

 t-ratio 
 Approx. 
        d.f. 

 p-value 

For INTRCPT1, π0 
   For INTRCPT2, β00 
           INTRCPT3, γ000  0.187343 0.106837 1.754 7222 0.080 
            LOWINC, γ001  -0.008941 0.001287 -6.948 7222 <0.001 
   For BLACK, β01 
           INTRCPT3, γ010  -0.405550 0.106437 -3.810 7222 <0.001 
   For HISPANIC, β02 
           INTRCPT3, γ020  -0.285918 0.089893 -3.181 7222 0.001 
For YEAR slope, π1 
   For INTRCPT2, β10 
           INTRCPT3, γ100  0.906001 0.031606 28.665 7222 <0.001 
            LOWINC, γ101  -0.001768 0.000446 -3.968 7222 <0.001 
   For BLACK, β11 
           INTRCPT3, γ110  -0.015548 0.030859 -0.504 7222 0.614 
   For HISPANIC, β12 
           INTRCPT3, γ120  0.032732 0.037194 0.880 7222 0.379 

 
The least-squares likelihood value = -1.051825E+004 
Deviance = 21036.49127 
Number of estimated parameters = 9 
 
For starting values, data from 7230 level-1 and 1721 level-2 records were used  
 

Starting Values 

 

σ2
(0) = 0.29710 

 

τπ(0) 

INTRCPT1,π0    0.69259    0.04914 

YEAR,π1    0.04914    0.01481 

 

  

 τβ(0) 
INTRCPT1   YEAR   

INTRCPT2,β00 INTRCPT2,β10 

   0.05922    0.00290 

   0.00290    0.01057 

 
The value of the log-likelihood function at iteration 1 = -8.127397E+003 
The value of the log-likelihood function at iteration 2 = -8.121908E+003 
The value of the log-likelihood function at iteration 3 = -8.121269E+003 
The value of the log-likelihood function at iteration 4 = -8.121059E+003 
The value of the log-likelihood function at iteration 5 = -8.120942E+003 

. . .  

 
Final Results - Iteration 9 
Iterations stopped due to small change in likelihood function 
 

σ2 = 0.30162 

Standard error of σ2 = 0.00660 
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τπ 

INTRCPT1,π0    0.62231    0.04657 

YEAR,π1    0.04657    0.01106 

 

 Standard errors of τπ 

INTRCPT1,π0    0.02451    0.00491 

YEAR,π1    0.00491    0.00196 

 

 τπ (as correlations) 

INTRCPT1,π0   1.000   0.561 

YEAR,π1   0.561   1.000 

 

Random level-1 coefficient   Reliability estimate 

INTRCPT1,π0 0.835 
YEAR,π1 0.188 

 

 τβ 
INTRCPT1   YEAR   

INTRCPT2,β00 INTRCPT2,β10 

   0.07808    0.00082 

   0.00082    0.00798 

 

 Standard errors of τβ 

INTRCPT1   YEAR   

INTRCPT2,β00 INTRCPT2,β10 

   0.01991    0.00441 

   0.00441    0.00194 

  

τβ (as correlations) 

INTRCPT1/INTRCPT2,β00   1.000   0.033 

YEAR/INTRCPT2,β10   0.033   1.000 

 

Random level-2 coefficient   Reliability estimate 

INTRCPT1/INTRCPT2,β00 0.702 
YEAR/INTRCPT2,β10 0.735 

 
The value of the log-likelihood function at iteration 9 = -8.119604E+003 
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Final estimation of fixed effects: 
 

Fixed Effect  Coefficient 
 Standard 
        error 

 t-ratio 
 Approx. 
        d.f. 

 p-
value 

For INTRCPT1, π0 
   For INTRCPT2, β00 
           INTRCPT3, γ000  0.140628 0.127486 1.103 58 0.275 
            LOWINC, γ001  -0.007578 0.001691 -4.482 58 <0.001 
   For BLACK, β01 
           INTRCPT3, γ010  -0.502091 0.077879 -6.447 1597 <0.001 
   For HISPANIC, β02 
           INTRCPT3, γ020  -0.319381 0.086099 -3.709 1597 <0.001 
For YEAR slope, π1 
   For INTRCPT2, β10 
           INTRCPT3, γ100  0.874501 0.039144 22.340 58 <0.001 
            LOWINC, γ101  -0.001369 0.000523 -2.619 58 0.011 
   For BLACK, β11 
           INTRCPT3, γ110  -0.030918 0.022453 -1.377 1597 0.169 
   For HISPANIC, β12 
           INTRCPT3, γ120  0.043085 0.024652 1.748 1597 0.081 

 
Final estimation of fixed effects (with robust standard errors)  
 

Fixed Effect  Coefficient 
 Standard 
        error 

 t-ratio 
 Approx. 
        d.f. 

 p-
value 

For INTRCPT1, π0 
   For INTRCPT2, β00 
           INTRCPT3, γ000  0.140628 0.113814 1.236 58 0.222 
            LOWINC, γ001  -0.007578 0.001396 -5.428 58 <0.001 
   For BLACK, β01 
           INTRCPT3, γ010  -0.502091 0.076842 -6.534 1597 <0.001 
   For HISPANIC, β02 
           INTRCPT3, γ020  -0.319381 0.081918 -3.899 1597 <0.001 
For YEAR slope, π1 
   For INTRCPT2, β10 
           INTRCPT3, γ100  0.874501 0.037287 23.453 58 <0.001 
            LOWINC, γ101  -0.001369 0.000499 -2.744 58 0.008 
   For BLACK, β11 
           INTRCPT3, γ110  -0.030918 0.022274 -1.388 1597 0.165 
   For HISPANIC, β12 
           INTRCPT3, γ120  0.043085 0.024368 1.768 1597 0.077 

 
Final estimation of level-1 and level-2 variance components 
 

Random Effect 
  Standard 
  Deviation 

        Variance 
   Component 

  d.f.             χ
2
 p-value 

INTRCPT1,r0 0.78886 0.62231 1659 13364.57298 <0.001 
YEAR slope,r1 0.10518 0.01106 1659 2126.73092 <0.001 
level-1, e 0.54920 0.30162       

 
Final estimation of level-3 variance components 
 

Random Effect 
   Standard 
   Deviation 

     Variance 
 Component 

  d.f. χ
2
 p-value 

INTRCPT1/INTRCPT2,u00 0.27943 0.07808 58 254.96395 <0.001 
YEAR/INTRCPT2,u10 0.08935 0.00798 58 277.26967 <0.001 
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Statistics for the current model 
 
Deviance = 16239.207347 
Number of estimated parameters = 15 

 
Exploratory Analysis: estimated level-2 coefficients and their standard errors obtained by 
regressing EB residuals on level-2 predictors selected for possible inclusion in subsequent HLM 
runs 
 

Level-1 Coefficient Potential Level-2 Predictors 

YEAR,π1  

  FEMALE 
Coefficient 0.001 
Standard Error 0.003 
t-value 0.454 

  
 
Exploratory Analysis: estimated level-3 coefficients and their standard errors obtained by 
regressing EB residuals on level-3 predictors selected for possible inclusion in subsequent HLM 
runs 
 

Level-1 Coefficient Potential Level-3 Predictors 

YEAR/INTRCPT2,β10   

  SIZE MOBILITY 
Coefficient -0.000 -0.000 
Standard Error 0.000 0.001 
t-value -1.155 -0.540 
  

4.5 Other program features 

The options available for HLM3 are similar to those available with HLM2. The differences are 

outlined below. 

4.5.1 Basic specifications 

The level-3 residual files may also be specified. They are specified similarly to the level-2 

residuals. 

4.5.2 Iteration control 

The Mode of iteration acceleration section of this screen is primarily intended for people who 

have data large enough to cause the accelerator (and final) iterations to take a prohibitive amount 

of time. While for most data the 2
nd

 derivative option is recommended, users with large amounts 

of data (particularly with large ratios of level-1 to level-2 data) may find the 1
st
 derivative Fisher 

useful, although this will make the standard errors of  2  and the τ matrices more crude. If the 

third option, No accelerator, is selected, there will be no Fisher iterations will be performed. 

This will make large MDMs run faster, but will have the side effect of not producing standard 

errors of 2  and the tau matrices. If you want to suppress any Fisher iterations, but do want to 

have the above mentioned standard errors, choose 1
st
 or 2

nd
 derivative Fisher, and set the value in 

the Frequency of accelerator box to the number of iterations + 1. 

4.5.3 Estimation settings 

HLM3 has the same options as HLM2. 
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4.5.4  Hypothesis testing 

HLM3 does not have the test of level-1 homogeneity. 

4.5.5 Output settings 

HLM3 output does not include OLS estimates. 
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5 Conceptual and Statistical Background for Four-Level 
Models  

 

 

 

HLM4 handles models with data that have a four-level nested structure. A four-level hierarchy 

would arise in the HLM3 illustrative example described in the last chapter, for example, if the 

students who were repeatedly observed while attending a given school were also nested within 

classrooms. With an additional clustering unit of classrooms, the achievement data would be 

triply nested. The time-series data are nested within students, the students nested within 

classrooms, and the classrooms nested within schools. In a different scenario, with the 

incorporation of a measurement model for the repeated measures on mathematics achievement 

for the same example, one would implement four-level analyses. Hough, Bryk, Pinnell, Kerbow, 

Fountas, and Scharer (2008), for example, used this approach with four-level models to study the 

effect of school-based coaching on the growth in teacher expertise in literary practices. The 

level-1 model in their study was a measurement error model associated with repeated measures 

on teacher expertise, the level-2 model studied the growth trajectories of the “true scores” on the 

expertise, and the level-3 and level-4 models investigated the associations of the growth 

trajectory parameters with teacher- and school-level correlates, respectively. For examples of 

similar level-1 measurement error models (in three-level analyses), see pp. 248-249 in Chapter 8 

and Chapter 11 of Hierarchical Linear Models. 

5.1 The general four-level model 

The four-level model consists of four submodels, one for each level. For example, if the research 

problem consists of data on students nested within classrooms, classrooms within schools, and 

classrooms within school districts, the level-1 model will represent the relationships among the 

student-level variables, the level-2 model will capture the influences of class-level correlates, the 

level-3 model will incorporate school-level effects, the level-4 model will handle district-level 

factors. 

 

Formally there are i = 1, ..., jkln  level-1 units (e.g., students), which are nested within each of j = 

1,..., klJ  level-2 units (e.g., classrooms) nested within each of k = 1,..., lK  level-3 units (e.g., 

schools) nested within each of l = 1,…, L level-4 units (e.g., school districts). 

5.1.1 Level-1 model 

In the level-1 model, the user can select notation according to the type of application (e.g., a 

cross-sectional model versus a model with longitudinal data). In the case of a cross-sectional 

model, we represent the outcome for case i within level-2 unit j, level-3 unit k and level-4 unit l 

as:  

     

0 1 1 2 2

0

1

,

i j kl j kl j kl i j kl j kl i j kl p j kl pi j kl i j kl

P

j kl p j kl pij kl i j kl

p

Y a a a e

a e

   

 


     

  
    (5.1) 
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where 

 

p j kl  (p = 0,1,..., P) are level-1 coefficients; 

pij kla   is a level-1 predictor p for case i in level-2 unit j, level-3 unit k, and level-4 unit l;  

   
i j kle  is the level-1 random effect; and  

   2  is the variance of
i j kle , that is the level-1 variance. 

 

Here we assume that the random term 
i j kle  ~ N (0, 2 ). 

5.1.2 Level-2 model 

Each of the 
p j kl  coefficients in the level-1 model becomes an outcome variable in the level-2 

model:  

 

0 1 1 2 2

0

1

,

p p

p

p j kl p kl p kl j kl p kl j kl pQ kl Q j kl p j kl

Q

p kl pqkl q j kl p j kl

q

X X X r

X r

    

 


     

  
   (5.2) 

where 

 

pqkl  (q = 0,1,..., pQ ) are level-2 coefficients; 

   
q j klX is a level-2 predictor; and  

   
p j klr  is a level-2 random effect. 

 

We assume that, for each level-2 unit, the vector of level-1 random effects (the p q klr  terms) is 

distributed as multivariate normal, with each having a mean of zero and with covariance matrix 

T , with a maximum dimension ( 1) ( 1)P P   . 

5.1.3 Level-3 model 

Each of the level-2 coefficients, p q kl , defined in the level-2 model, becomes an outcome 

variable in the level-3 model: 

 

 

0 1 1 2 2

0

1

,

p q p q

p q

pqkl pq l pq l kl pq l kl pq S l S kl pqkl

S

pq pq sl s kl pqkl

s

W W W u

W u

    

 


     

  
     (5.3) 
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where 

 

pq sl  ( 0,1, , p qs S ) are level-3 coefficients,  

   
s klW   is a level-3 predictor, and  

   
pqklu   is a level-3 random effect. 

 

We assume that, for each level-3 unit, the vector of level-3 random effects (the 
pqklu  terms) is 

distributed as multivariate normal, with each having a mean of zero and with covariance matrix 

T , whose maximum dimension is:  
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5.1.4 Level-4 model 

Each of the level-3 coefficients, 
pq sl , defined in the level-3 model, becomes an outcome 

variable in the level-4 model: 

 

  

0 1 1 2 2

0

1

,

p qs p qs

p qs

pqsl pqs pq s l pq s l pqG G l pq sl

G

pq s pq sg g l pq sl

g

Z Z Z

Z

     

  


     

  
    (5.5) 

where 

 

pq sg  ( 0,1, , pqsg G ) are level-4 coefficients,  

glZ   is a level-4 predictor, and  

   pq sl   is a level-4 random effect. 

We assume that, for each level-4 unit, the vector of level-4 random effects (the pq sl  terms) is 

distributed as multivariate normal, with each having a mean of zero and with covariance matrix 

T , whose maximum dimension is:  

 

                    
0 0

( 1) ( 1)
pq pq

pq pq

pq pq

       ,S S
 

                   (5.6) 

5.2 Parameter estimation  

Three kinds of parameter estimates are available in a four-level model: empirical Bayes 

estimates of randomly varying level-1, level-2, and level-3 coefficients; maximum-likelihood 
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estimates of the level-4 coefficients (note: these are also generalized least squares estimates); and 

maximum-likelihood estimates of the variance-covariance components. Both HLM3 and HLM4 

estimate the variance-covariance components and the fixed effects (level-4 coefficients) by 

means of full maximum likelihood. In nonlinear models, the coefficients are estimated via 

penalized quasi-likelihood. Unlike HGLM, however, only unit-specific and not population-

averaged results are available.    

 

5.3 Hypothesis testing 

As in the case of the three-level program, the three-level program routinely prints standard errors 

and  t-tests for each of the level-3 coefficients (“the fixed effects”) as well as a chi-square test of 

homogeneity for each random effect. In addition, optional “multivariate hypothesis tests“ and 

residual files are available in the four-level program.   
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6 Working with HLM4 

 

 

 

Data analysis by means of the HLM4 program involves similar stages regarding MDM creation, 

analyses, and fit evaluation as in the case of the two- and three-level programs. HLM4 analyses 

can be executed in Windows, interactive, and batch modes. We describe a Windows execution 

below. We consider interactive and batch execution in Appendix D.  

6.1 An example using HLM4 in Windows mode   

To illustrate the operation of the HLM4 program, we reanalyze a subset of data from Hough, 

Bryk, Pinnell, Kerbow, Fountas, and Scharer (2008). Hough et al. used a four-level model to 

examine the association between school-based coaching and the development of teachers' 

expertise in literary instruction. The level-1 model in their study was a measurement error model 

associated with 1317 repeated observations on a measure of classroom instruction, which they 

called teaching expertise. (This measurement model relates the observed data to a “true” or latent 

score plus some error of measurement. See below.)  The level-2 model represented a growth 

model for each teacher's “true scores” on teaching expertise, and the level-3 and level-4 models 

investigated the associations of the growth trajectory parameters with teacher- and school-level 

correlates with data from 219 teachers from 17 schools, respectively. 

 

The  example illustrates the use of a level-1 in HLM as a measurement model. In brief,  

 

  2

0 , ~ 0,mtij tij mtij mtij mtijY N      

 

where 

 

mtijY  is the observed measure on occasion t for teacher i in school j,  

tij  is the true or latent value for teacher expertise, and  

mtij   is the error of measurement associated with the observed rating m on occasion t for  

 teacher i in school j. 

 

(Note, in this data set there is only one observed rating per occasion. As a result the number of 

level-1 and level-2 units are identical.) 

 

In most applications, mtij  is unknown and assumed normally distributed with constant variance. 

In contrast in this application, the Rasch measurement model for the observed outcomes, mtijY , 

also provides a standard error estimate for each observed measure, smtij . We explicitly represent 

this by multiplying both sides of the level-1 model by the inverse of the standard error, 
1

mtij mtija s , yielding 

 

  * * *

0 , ~ 0,1 .mtij mtij tij mtij mtijY a e e N   
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The variance at level-1 is now assumed known and fixed at a value of 1.0. 

6.1.1 Constructing the MDM file from raw data  

The user has the same range of options for data input for HLM4 as for HLM3. We will use SPSS 

file input for the illustrative example. 

6.1.1.1 SPSS input 

Data input requires a level-1 file (in our illustration a measurement data file), a level-2 file (“true 

scores” file), a level-3 (teacher level), and a level-4 (school level) file. 

 

Level-1 file. The level-1 file, MEASURE.SAV, has 1317 observations collected on 219 teachers on 

up to 9 different occasions. Data for the first three teachers are shown in Fig. 6.1. Each of these 

teachers was observed on three occasions. (Some teachers in the study were observed on as 

many as nine occasions over three years.)  

 

The first column contains the level-4 (i.e., school) ID, next is the level-3 (i.e., teacher) ID, and this 

is followed by the level-2 (i.e., occasion) ID. We see that the first record comes from school 

1100, teacher 1100002, and occasion 11000026. Following the teacher ID fields are that teacher's 

values on two variables: 

 expertis   
A composite Rasch measure of teachers' classroom literacy practice rated on some 

particular occasion (weighted by the inverse of its standard error of measurement.)  

 invstder  
The inverse of the standard error of measurement associated with that individual rating 

(the standard errors are generated as part of the Rasch rating scale model.)  

 

 

Figure 6.1  First nine cases in MEASURE.SAV 

Level-2 file. The level-2 units consisted of the 1317 occasions when measurements on classroom 

literary practice were made. The data are stored in the file OCCAS.SAV. The level-2 data for the 

first nine records are listed below. It has the same three ID's as the level-1 file. The two occasion-

level variables are included in the file: 

 occasion   
This variable identifies the specific data collection time point, counted up from the first 

study occasion in the fall of year1 (a value of 0) through the end of the study in the spring 
of year 3 (a value of 8).   
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 artifact  
A dummy variable introduced into the analysis to adjust for a measurement artifact that 

occurred with the first-year spring scores (at occasion = 2).  

 

 

Figure 6.2  First nine cases in OCCAS.SAV 

The first teacher in this data file, Teacher 1100002 in school 1100, was observed on three 

occasions during the second year of the study (i.e. occasions 3 through 5). The same was true for 

the next two teachers. In general, the data collection patterns vary among teachers in this study 

depending upon their employment history at the school and when they first became eligible for 

classroom coaching.  

 

Level-3 file. The level-3 units are the 219 teachers. The data are stored in the TCHR.SAV file. The 

first field is the school ID and the second is the teacher ID. Note that each of the first ten teachers 

is in school 1100. There are six variables in this file: 

 coach    

The average number of one-on-one coaching sessions per month that each teacher 

received over the course of the study  

 newwtch                      
A dummy variable indicating that the teacher had three or fewer years of classroom 

teaching experience at onset of study participation                                                              

 pdpart                                                                                                                                       

A composite measure of teachers' exposure to literacy professional development prior to 

the onset of the study  

 scmt                                                                                                                              

A scale score on the teacher's commitment to the school measured at study onset 

 y2ent                                                                                                                                      

A dummy variable indicating the teacher began work at the school during the second year 

of the study 
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 y3ent                                                                                                                             

A dummy variable indicating the teacher began work at the school during the third year 

of the study 

 

 

Figure 6.3  First ten teachers in TCHR.SAV 

Level-4 file. The school level data from 17 schools appear in SCH.SAV. The first field is the school 

ID. This is followed by: 

 chgcoach                                                                                                                                     

A dummy variable indicating that a coaching change occurred during the course of the 

study. This happened with only one school in the sample. 

 

 

Figure 6.4  First ten schools in SCH.SAV 

The response file, LITERACY.MDMT, contains a log of the input responses used to create the MDM 

file, LITERACY.MDM, using MEASURE.SAV, OCCAS.SAV, TCHR.SAV, and SCH.SAV. Figure 6.5 

shows the dialog box used to create the MDM file. Note that the model notation selected is 

longitudinal with measurement model data. Choosing this option affects the notation used for 

subscripts and model parameters in the Windows interface and program output.  
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Figure 6.5  Make MDM – HLM4 dialog box for LITERACY.MDM 

6.2 Executing analyses based on the MDM file 

The MDM file can now be used as input for analysis. Model specification via the Windows mode 

has seven steps: 

1. Specification of the level-1 model. In our example data set, EXPERTIS is the outcome and we use 

INVSTDER as a level-1 predictor. We also delete the standard intercept from the level-1 model. 

At a subsequent step (see step 8 below) we will specify the level-1 random effect as having a 
known variance of 1.0.  

2. Specification of the level-2 prediction model. In this measurement model application, the level-1 

coefficient associated with INVSTDER becomes the outcome variable. (As noted above, this 

coefficient now represents the true or latent score on a particular occasion.) At level 2, we model 

this outcome as a function of OCCAS. That is, we specify a linear growth model for teacher's 

expertise development over the course of the study. This allows us to represent for every teacher 

both their initial status and growth rate on the expertise measure over time. We also include as a 

fixed effect in the level-2 model for the measurement artifact that occurred at the third time 

point, ARTIFACT.  

3. The “true score” level-2 outcomes are specified as randomly varying between teachers. 

4. Specification of the level-3 prediction model. In general, one may select different level-3 

predictors for each level-3 equation. In the example below, we illustrate this with four of the 

variables included in the MDM file.  

5. Specification of level-3 equations as fixed, random or non-randomly varying. The intercept and 

the OCCASION slope, which capture the initial status and growth rate of expertise in literary 

practice, are specified as randomly varying within schools. The effect for ARTIFACT is fixed to 
the same value for all teachers within a given school. 
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6. Specification of the level-4 prediction model. In general, each level-3 coefficient becomes an 

outcome, and we can select level-4 variables to predict school-to-school variation in these level-

3 coefficients. Given the relatively small number of school in the data set (J = 17) no level-3 
predictors are used in the example.  

7. Specification of the level-4 equations as fixed, random or non-randomly varying. In the example, 

mean school initial status on expertise, mean growth rates for teacher expertise and the size of 
the measurement artifact are all allowed to vary randomly across schools. 

 

 

Figure 6.6  Estimation Settings dialog box 

8. Finally, to specify the level-1 variance as fixed at a value of 1.0, per the measurement model 

described above, open the Other Settings menu, select Estimation Settings, enter 1.0 in the text 

box for Fix Sigma^2 to specific value. 

6.2.1 A 4-level measurement model example 

To illustrate the use of HLM4 we posed the following model for teacher expertise 

development: 
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Figure 6.7  Model window for the conditional model  for the literacy program example 

6.3 An annotated example of HLM4 output 

 
Problem Title: HLM4 example, measurement model 
The data source for this run = literacy.mdm 
The command file for this run = C:\whlmtemp.hlm 
Output file name = C:\hlm4measurement model example.html 
The maximum number of level-1 units = 1317 
The maximum number of level-2 units = 1317 
The maximum number of level-3 units = 219 
The maximum number of level-4 units = 17 
The maximum number of iterations = 100 
Method of estimation: full maximum likelihood 
 
The outcome variable is EXPERTIS  
 

Summary of the model specified 

 
Level-1 Model 
      EXPERTIS mtij = ψ1tij*(INVSTDERmtij)  

 
Level-2 Model 
      ψ1tij = π10ij + π11ij*(OCCASIONtij) + π12ij*(ARTIFACTtij) + e1tij  
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Level-3 Model 
      π10ij = β100j + β101j*(NEWTCHRij) + β102j*(PDPARTij) + β103j*(SCMTij) + r10ij 
      π11ij = β110j + β111j*(COACHij) + β112j*(NEWTCHRij) + β113j*(PDPARTij) + β114j*(SCMTij) + r11ij 
      π12ij = β120j  

 
Level-4 Model 
     β100j = γ1000 + u100j 
  β101j = γ1010 
  β102j = γ1020 
  β103j = γ1030 
  β110j = γ1100 + u110j 
  β111j = γ1110 
  β112j = γ1120 
  β113j = γ1130 
  β114j = γ1140 
  β120j = γ1200 + u120j 
 
COACH NEWTCHR PDPART SCMT have been centered around the level-4 mean.  
 
For starting values, data from 1317 level-1, 1312 level-2, 214 level-3 and 17 level-4 records were used 

 
Final Results - Iteration 61 
Iterations stopped due to small change in likelihood function 
 
σ

2
e 

INVSTDER,ψ1     0.31788 

 

 σ
2

e (as correlations) 
 INVSTDER,ψ1    1.000 

 
Random level-1 coefficient Reliability estimate 

INVSTDER  0.821 

 

 

 τπ 
INVSTDER   INVSTDER  

INTRCPT2,π10   OCCASION,π11 

0.93753 0.01861 

0.01861 0.00113 

 

 τπ (as correlations) 
 INVSTDER/INTRCPT2,π10    1.000    0.571 

 INVSTDER/OCCASION,π11    0.571    1.000 

 
Random level-2 coefficient   Reliability estimate 
INVSTDER/INTRCPT2  0.740 
INVSTDER/OCCASION  0.077 
 
Note: The reliability estimates reported above are based on only 214 of 219 units that had sufficient data 
for computation. Fixed effects and variance components are based on all the data. 
 

Note, among teachers within schools, there is a positive correlation of 0.571 between their initial 

status and expertise development. 
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τβ 

   INVSTDER     INVSTDER     INVSTDER  

   INTRCPT2     OCCASION     ARTIFACT  

   INTRCPT3,β100    INTRCPT3,β110    INTRCPT3,β120 

0.28840 -0.03214 0.16341 

-0.03214 0.03798 -0.05972 

0.16341 -0.05972 0.22678 

 

 τβ (as correlations) 

 INVSTDER/INTRCPT2/INTRCPT3,β100    1.000   -0.307    0.639 

 INVSTDER/OCCASION/INTRCPT3,β110   -0.307    1.000   -0.643 

 INVSTDER/ARTIFACT/INTRCPT3,β120    0.639   -0.643    1.000 

 

In contrast, at the school level a negative correlation, -.307, exists between school mean initial 

status on  teachers' expertise and school-level growth rates. 

 

Random level-3 coefficient   Reliability estimate 
INVSTDER/INTRCPT2/INTRCPT3  0.727 
INVSTDER/OCCASION/INTRCPT3  0.965 
INVSTDER/ARTIFACT/INTRCPT3  0.747 

 
The value of the log-likelihood function at iteration 61 = -3.447675E+003 

Final estimation of fixed effects 
 

Fixed Effect  Coefficient 
 Standard 
error 

 t-ratio 
 Approx. 
d.f. 

 p-value 

 For INVSTDER, ψ1 
   For INTRCPT2, π1 0 
     For INTRCPT3, β1 0 0 
        INTRCPT4, γ1 0 0 0 -0.042320 0.152308 -0.278 32 0.783 
     For NEWTCHR, β1 0 1 
        INTRCPT4, γ1 0 1 0 -0.520219 0.226444 -2.297 178 0.022 
     For PDPART, β1 0 2 
        INTRCPT4, γ1 0 2 0 0.167179 0.092189 1.813 178 0.069 
     For SCMT, β1 0 3 
        INTRCPT4, γ1 0 3 0 0.137797 0.085591 1.610 178 0.107 
   For OCCASION, π1 1 
     For INTRCPT3, β1 1 0 
        INTRCPT4, γ1 1 0 0 0.208296 0.048144 4.327 32 <0.001 
     For COACH, β1 1 1 
        INTRCPT4, γ1 1 1 0 0.261937 0.078204 3.349 178 0.001 
     For NEWTCHR, β1 1 2 
        INTRCPT4, γ1 1 2 0 0.009542 0.027833 0.343 178 0.731 
     For PDPART, β1 1 3 
        INTRCPT4, γ1 1 3 0 0.004064 0.009894 0.411 178 0.681 
     For SCMT, β1 1 4 
        INTRCPT4, γ1 1 4 0 0.014517 0.010328 1.406 178 0.160 
   For ARTIFACT, π1 2 
     For INTRCPT3, β1 2 0 
        INTRCPT4, γ1 2 0 0 0.569328 0.133191 4.275 16 <0.001 

 

New teachers scored considerably lower on initial status than more experienced teachers ( 1010  =   

–0.520, t = –2.297, p-value = 0.022.) As hypothesized by the study, both prior professional 

development experience PDPART and commitment to school improvement SCMT were positively 
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related to differences among schools in initial expertise ratings ( p-values of  0.069 and 0.107 

respectively.) 

 

In terms of teachers' growth in expertise over the course of the study, OCCASION, the study 

hypothesized that this would be related to differential exposure to coaching, COACH.  

A highly significant relationship was found, (
1110  = 0.262, with associated t-value of 3.349 and 

a  p-value = 0.001). A significant measurement artifact also occurred, see results for 
1200 . 

 

Final estimation of level-1 and level-2 variance components 
 

Random Effect 
   Standard 
   Deviation 

         Variance 
     Component 

  d.f. χ
2
 p-value 

INVSTDER,  e1  0.56381 0.31788 1078 4729.76970 <0.001 

 
Note: The chi-square statistics reported above are based on only 1312 of 1317 units that had sufficient 
data for computation. Fixed effects and variance components are based on all the data. 

 
Final estimation of level-3 variance components 

 

Random Effect 
Standard 
 Deviation 

     Variance 
 Component 

  d.f. χ
2
 p-value 

INVSTDER/INTRCPT2,r10  0.96826 0.93753 193 734.15590 <0.001 
INVSTDER/OCCASION,r11  0.03365 0.00113 192 267.53588 <0.001 

 
Note: The chi-square statistics reported above are based on only 214 of 219 units that had sufficient 
data for computation. Fixed effects and variance components are based on all the data. 

 

The variation on among teachers within schools on expertise ratings at the study onset, var( r10),  

is 0.937 and the variation within schools on teachers' rate of growth in expertise, var (r11),  is 

0.001. Both variance components are statistically significant. 

 
Final estimation of level-4 variance components 
 

Random Effect 
Standard 
 Deviation 

Variance 
 Component 

d.f. χ
2
 p-value 

INVSTDER/ INTRCPT2/INTRCPT3, u100 0.53703 0.28840 16 65.90635 <0.001 
INVSTDER/ OCCASION/INTRCPT3, u110 0.19489 0.03798 16 599.59968 <0.001 
INVSTDER/ ARTIFACT/INTRCPT3, u120 0.47622 0.22678 16 71.51494 <0.001 

 

We see evidence of considerable variability among schools in teachers' initial expertise ratings,  

u110,  2 65.906, 0.001p value    . Significant variation was also found in school growth 

rates, u110 ,  and in the magnitude of the measurement artifact at each school, u120.  
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Statistics for the current model 
 
Deviance = 6895.349602 
Number of estimated parameters = 20 

6.4 Other program features 

Multivariate hypothesis testing and residual files at all four levels are available in HLM4. Other 

options found in HLM2 and HLM3 are not currently operational. For a list of all options currently 

available in HLM4, please see the table in Appendix J. 
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7 Conceptual and Statistical Background for Hierarchical 
Generalized Linear Models (HGLM) 

 

 

 

The hierarchical linear model (HLM) as described in the previous six chapters is appropriate for 

two- and three-level data where the random effects at each level are normally distributed. The 

assumption of normality at level-1 is quite widely applicable when the outcome variable is 

continuous. Even when a continuous outcome is highly skewed, a transformation can often be 

found that will make the distribution of level-1 random effects (residuals) at least roughly 

normal. Methods for assessing the normality of random effects at higher levels are discussed on 

page 38 and on page 274 of Hierarchical Linear Models.  

 

There are important cases, however, where the assumption of normality at level-1 is clearly not 

realistic and no transformation can make it so. Examples of a binary outcome, Y, are: the 

presence of a disease (Y = 1 if the disease is present, Y = 0 if the disease is absent), graduation 

from high school (Y = 1 if a student graduates on time, Y = 0 if not), or the commission of a 

crime (Y = 1 if a person commits a crime during a given time interval, Y = 0 if not). The use of 

the standard level-1 model in this case would be inappropriate for three reasons:  

 

 Given the predicted value of the outcome, the level-1 random effect can take on only one 

of two values, and therefore cannot be normally distributed. 

 The level-1 random effect cannot have homogeneous variance. Instead, the variance of 

this random effect depends on the predicted value as specified below.  

 Finally, there are no restrictions on the predicted values of the level-1 outcome in the 

standard model: they can legitimately take on any real value. In contrast, the predicted 

value of a binary outcome Y, if viewed as the predicted probability that Y = 1, cannot 

meaningfully be less than zero or greater than unity. Thus, an appropriate model for 

predicting Y ought to constrain the predicted values to lie in the interval (0, 1). Without 

this constraint the effect sizes estimated by the model are, in general, uninterpretable. 

 

Another example involves count data, where Y is the number of crimes a person commits during 

a year or Y is the number of questions a child asks during the course of a one-hour class period. 

In these cases, the possible values of Y are non-negative integers 0, 1, 2, .... Such data will 

typically be positively skewed. If there are very few zeros in the data, a transformation, e.g., 
* log(1 )Y Y  , may solve this problem and allow sensible use of the standard HLM. However, in 

the cases mentioned above, there will typically be many zeros (many persons will not commit a 

crime during a given year and many children will not raise a question during a one-hour class). 

When there are many zeros, the normality assumption cannot be approximated by a 

transformation. Also, as in the case of the binary outcome, the variance of the level-1 random 

effects will depend on the predicted value (higher predicted values will have larger variance). 

Similarly, the predicted values ought to be constrained to be positive.  
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Another example involves multi-category ( 2) data, where the outcome consists of responses 

tapping teachers' commitment to their career choice. Teachers are asked if they would choose the 

teaching profession if they could go back to college and start over again. The three response 

categories are:  

 

1. yes, I would choose teaching again 

2. not sure 

3. no, I would not choose teaching again.  

 

Such outcomes can be studied using a multinomial model. Thus, as discussed previously for 

models with binary outcomes, the use of the standard level-1 model would be inappropriate. 

Another model one may use is an ordinal model, which treats the categories as ordered.  

 

Within HLM, the user can specify a non-linear analysis appropriate for counts and binary, 

multinomial, or ordinal data. The approach is a direct extension of the generalized linear model 

of McCullagh & Nelder (1989) to the case of hierarchical data. We therefore refer to this 

approach as a “hierarchical generalized linear model” (HGLM). The execution of these analyses is 

in many ways similar to that in HLM, but there are also important differences. 

7.1 The two-level HLM as a special case of HGLM 

The level-1 model in the HGLM may be viewed as consisting of three parts: a sampling model, a 

link function, and a structural model. In fact, the standard HLM can be viewed as a special case of 

the HGLM where the sampling model is normal and the link function is the identity link.  

7.1.1 Level-1 sampling model 

The sampling model for a two-level HLM might be written as  

Equation Section 7 

| ~ ( )2
i j i j i j

  NID ,Y              (0.033) 

 

meaning that the level-one outcome i jY , given the predicted value, 
i j , is normally and 

independently distributed with an expected value of 
i j  and a constant variance, 2 . The level-1 

expected value and variance may alternatively be written as  

 

( | ) ( | ) 2
i j i j i j i j i jE Y  =     Var Y  =  .            (0.034) 

7.1.2 Level-1 link function 

In general it is possible to transform the level-1 predicted value, 
i j , to 

i j  to insure that the 

predictions are constrained to lie within a given interval. Such a transformation is called a link 

function. In the normal case, no transformation is necessary. However, this decision not to 

transform may be made explicit by writing  

i j i j
 =  .              (0.035) 
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The link function in this case is viewed as the “identity link function.”  

7.1.3 Level-1 structural model    

The transformed predicted value is now related to the predictors through the linear model or 

“structural model“  

i j 0 j 1j 2 j Qj1i j 2i j Qi j
 =  +  +  +  +  .X X X            (0.036) 

 

It is clear that combining the level-1 sampling model (7.1), the level-1 link function (7.3), and 

the level-1 structural model (7.4) reproduces the level-1 model of HLM (1.1). In the context of a 

standard HLM, it seems silly to write three equations where only one is needed, but the value of 

the extra equations becomes apparent in the case of binary, count, and multi-categorical data.  

7.2 Two-, three-, and four- level models for binary outcomes 

While the standard HLM uses a normal sampling model and an identity link function, the binary 

outcome model uses a binomial sampling model and a logit link. Only the level-1 models differ 

from the linear case.    

7.2.1 Level-1 sampling model  

Let 
i jY  be the number of “successes” in 

i jm  trials. Then we write that  

 

 | ~ , ,i j i j i j i jY B m            (0.037) 

 

to denote that i jY  has a binomial distribution with i jm  trials and probability of success i j . 

According to the binomial distribution, the expected value and variance of i jY  are then  

 

   ( | ) ( | ) 1 .i j i j i j i j i j i j i j i j i jE Y m Var Y m             (0.038) 

 

When i jm  = 1, i jY  may take on values of either zero or unity. This is a special case of the 

binomial distribution known as the Bernoulli distribution. HGLM allows estimation of models in 

which i jm  = 1 (Bernoulli case) or i jm   1 (other binomial cases). The case with i jm  1 will be 

treated later.  

 

For the Bernoulli case, the predicted value of the binary i jY is equal to the probability of a 

success, i j . 
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7.2.2 Level-1 link function 

When the level-1 sampling model is binomial, HGLM uses the logit link function 

 

log .
1

i j

i j

i j






 
    

            (0.039) 

 

In words, 
i j  is the log of the odds of success. Thus if the probability of success, 

i j  , is 0.5, the 

odds of success is 1.0 and the log-odds or “logit” is zero. When the probability of success is less 

than 0.5, the odds are less than one and the logit is negative; when the probability is greater than 

0.5, the odds are greater than unity and the logit is positive. Thus, while 
i j  is constrained to be 

in the interval (0,1) , 
i j  can take on any real value.  

7.2.3 Level-1 structural model 

This will have exactly the same form as (7.4). Note that estimates of the  s in (7.4) make it 

possible to generate a predicted log-odds (
i j ) for any case. Such a predicted log-odds can be 

converted to an odds by computing odds = exponential (
i j ). Similarly, predicted log-odds can 

be converted to a predicted probability by computing 

 
1

.
1 exp

i j

i j





 

            (0.040) 

 

Clearly, whatever the value of 
i j , applying (7.8) will produce a 

i j  between zero and unity.  

7.2.4 Level-2 and Level-3 and Level-4 models  

In the case of a two-level analysis, the level-2 model has the same form as used in a standard 2-

level HLM (equations 1.2, 1.3, and 1.4). In the case of a three-level analysis, the level-2 and level-

3 models are also the same as in a standard 3-level HLM. The same applies for 4-level HLM. 

7.3 The model for count data 

For count data, we use a Poisson sampling model and a log link function.  

7.3.1 Level-1 sampling model 

Let i jY be the number of events occurring during an interval of time having length i jm . For 

example, i jY  could be the number of crimes a person i from group j commits during five years, 

so that i jm  = 5. The time-interval of i jm  units may be termed the “exposure.” Then we write that  

 

~ ( , )i j i j i j i jY |   P m              (0.041) 
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to denote that 
i jY  has a Poisson distribution with exposure 

i jm  and event rate 
i j . According to 

the Poisson distribution, the expected value and variance of 
i jY  are then  

 

( | ) ( | ) .i j i j i j i j i j i j i j i jE Y m Var Y m             (0.042) 

 

The exposure 
i jm  need not be a measure of time. For example, if 

i jY  is the number of bombs 

dropping on neighborhood i of city j during a war, 
i jm  could be the area of that neighborhood. A 

common case arises when, for each i and j, the exposure is the same (e.g., 
i jY  is the number of 

crimes committed during one year for each person i within each neighborhood j). In this case, we 

set 
i jm  = 1 for simplicity. HGLM allows estimation of models in which 

i jm  = 1 or 
i jm   1. (The 

case with 
i jm   1 will be treated later.)  

 

According to our level-1 model, the predicted value of 
i jY  when 

i jm  = 1 will be the event rate 

i j . 

7.3.2 Level-1 link function  

HGLM uses the log link function when the level-1 sampling model is Poisson, that is  

 

   log( ).i j i j              (0.043) 

 

In words, i j  is the log of the event rate. Thus, if the event rate, i j , is one, the log is zero. When 

the event rate is less than one, the log is negative; when the event rate is greater than one, the log 

is positive. Thus, while i j  is constrained to be non-negative, i j  can take on any real value.  

7.3.3 Level-1 structural model  

This will have exactly the same form as (7.4). Note that estimates of the  s in (7.4) make it 

possible to generate a predicted log-event rate ( i j ) for any case. Such a predicted log-event rate 

can be converted to an event rate by computing  

exp( )event ratei j i j               

                                       

Clearly, whatever the value of i j , i j  will be non-negative.  

7.3.4 Level-2 model    

The level-2 model has the same form as the level-2 model for HLM2 (equations 1.2, 1.3, and 1.4), 

and the level-2 and level-3 models have the same form in the three- and four-level case as in 

HLM3 and HLM4, respectively. 
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7.4 The model for multinomial data 

For multi-category nominal data, we use a multinomial model and a logit link function. This is 

an extension of the Bernoulli model with more than two possible outcomes. This feature is not 

available in HLM4. 

7.4.1 Level-1 sampling model 

Let  

 Prob i j i jR m   ,              

 

that is, the probability that person i in group j lands in category m is 
i j , for categories m = 1, ..., 

M, there being M possible categories.   

 

For example, 
i jR  = 1 if high school student i in school j goes on to college; 

i jR  = 2 if that student 

goes on to a job; 
i jR  = 3 if that student becomes unemployed. Here M = 3. The analysis is 

facilitated by constructing dummy variables 1 2, , , MY Y Y , where 
mi jY  = 1 if 

i jR  = m, 0 otherwise. 

For example, if student ij goes to college, 
i jR  = 1, so 

1i jY  = 1, 
2i jY  = 0, 

3i jY  = 0; if student ij goes 

to work, 
i jR  = 2, so 

1i jY  = 0, 
2i jY  = 1, 

3i jY  = 0; if that student becomes unemployed, 
i jR  = 3, so 

1i jY  = 0, 
2i jY  = 0, 

3i jY  = 1. This leads to a definition of the probabilities as  Prob 1mi j mi jY   . 

For example, for M = 3, 

 

 

 

 

1 1

2 2

3 3 1 2

Prob 1

Prob 1

Prob 1 1

i j i j

i j i j

i j i j i j i j

Y

Y

Y





  

 

 

    

        (0.044) 

 

Note that because 3 1 21i j i j i jY Y Y   , 3i jY  is redundant. 

 

According to the multinomial distribution, the expected value and variance of mi jY  given mi j , 

are then  

     | | 1 .mi j mi j mi j mi j mi j mi j mi jE Y Var Y            (0.045) 

 

The covariance between outcomes mi jY  and m i jY   is  

    , .mi j m i j mi j m i jCov Y Y              (0.046) 
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7.4.2 Level-1 link function   

HGLM uses the logit link function when the level-1 sampling model is multinomial. Define 
mi j  

as the log-odds of falling into category m relative to that of falling into category M. Specifically 

 

log
mi j

mi j

M i j






 
  

 
 

           (0.047) 

where 

   
1

1

1 .
M

M i j mi j

m

 




              (0.048) 

 

In words, 
mi j  is the log odds of being in m-th category relative to the M-th category, which is 

known as the “reference category.” 

7.4.3 Level-1 structural model 

At level-1, we have  

0 ( ) ( )

1

,
Q

mi j j m q j m qi j

q

X  


           (0.049) 

 

for m = 1, ..., (M – 1). For example, with M = 3, there would be two level-1 equations, for 1i j  

and 
2i j . 

7.4.4 Level-2 model 

The level-2 model has a parallel form 

( ) 0( ) ( ) ( )

1

.
qS

q j m q m q s m s j q j m

s

W u  


           (0.050) 

 

Thus, for M = 3, there would be two sets of level-2 equations. 

7.5 The model for ordinal data      

7.5.1 Level-1 sampling model 

Again a person falls into category m and there are M possible categories, so m = 1, ..., M. But 

now the categories are ordered. Given the ordered nature of the data, we derive the M dummy 

variables ( 1), ,mi j M i jY Y   for case i in unit j as  

 

1 if , 0 otherwise.mi j i jY R m           (0.051) 
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For example, with M = 3, we have  

1

2

1 if 1

1 if 2

i j i j

i j i j

Y R

Y R

 

 
           (0.052) 

 

The probabilities  Prob 1mi jY   are thus cumulative probabilities. For example, with M = 3, 

 

   

     

       

1 1

2 2

3

Prob 1 Prob 1

Prob 1 Prob 1 Prob 2

Prob 1 Prob 1 Prob 2 Prob 3 1

i j i j i j

i j i j i j i j

i j i j i j i j

Y R

Y R R

Y R R R





   

     

       

     (0.053) 

 

Since 
3 21i j i jY Y  , 

3i jY  is redundant. We actually need only M – 1 dummy variables.  

 

Associated with the cumulative probabilities are the cumulative logits,  

 

 
 

Prob
= log =log .

1Prob

i j mi j

mi j

mi ji j

R m

R m






   
   

      

        (0.054) 

7.5.2 Level-1 structural model 

The level-1 structural model assumes “proportional odds”,  

 

0

1 2

.
Q M

mi j j q j qi j m

q m

X   
 

              (0.055) 

 

Under the proportional odds assumption, the relative odds that i jR m ,  associated with a unit 

increase in the predictor, does not depend on m. 

 

Here m  is a “threshold” that separates categories m – 1  and m. For example, when M = 4,  

 

1 0

1

2 0 2

1

3 0 2 3

1

Q

i j j q j qi j

q

Q

i j j q j qi j

q

Q

i j j q j qi j

q

X

X

X

  

   

    







 

  

   







           (0.056) 



115 
 

 

7.6 Parameter estimation 

HLM2 and HLM3 use three approaches to estimation for HGLM. The first method bases inference 

on the joint posterior modes of the level-1 and level-2 (and level-3) regression coefficients given 

the variance-covariance estimates. The variance-covariance estimates are based on a normal 

approximation to the restricted likelihood. Stiratelli, Laird, & Ware (1984) and Wong & Mason 

(1985) developed this approach for the binary case. Schall (1991) discusses the extension of this 

approach to the wider class of generalized linear models. Breslow & Clayton (1993) refer to this 

estimation approach as “penalized quasi-likelihood“ or PQL. Extending HLM to HGLM requires a 

doubly iterative algorithm, significantly increasing computational time. Related approaches are 

described by Goldstein (1991), Longford (1993), and Hedeker & Gibbons (1994).  

 

The second and third methods of estimation (“Laplace and “adaptive Gaussian quadrature”) involve 

somewhat more computationally intensive algorithms but provide accurate approximation to 

maximum likelihood (ML). These two approaches are currently available for two-level and three-

level Bernoulli models and for two-level Poisson models with 1ijm  . We consider PQL below in 

some detail followed by a brief discussion of Laplace and adaptive Gaussian quadrature. 

7.6.1 Estimation via PQL 

The approach can be presented heuristically by computing a “linearized dependent variable” as 

in the generalized linear model of McCullagh and Nelder (1989). Basically, the analysis involves 

use of a standard HLM model with the introduction of special weighting at level-1. However, 

after this standard HLM analysis has converged, the linearized dependent variable and the weights 

must be recomputed. Then, the standard HLM analysis is re-computed. This iterative process 

of  analyses and recomputing weights and linearized dependent variable continues until estimates 

converge.  

 

We term the standard HLM iterations “micro-iterations.” The recomputation of the linearized 

dependent variable and the weights constitute a “macro iteration.” The approach is outlined 

below for four cases: Bernoulli (binomial with 1i jm  ), Poisson with 1i jm  , binomial with 

1i jm  , and Poisson with 1i jm  . 

7.6.1.1 Bernoulli (binomial with 1i jm  )  

Consider the model  

i j i j i jY               (0.057) 

with i j  defined as in Equation 7.8 and  

( ) 0 ( ) (1 ).i j i j i j i j i jE Var w              (0.058) 

 

We now substitute for i j  its linear approximation with  
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 
( )

(0) (0)

( )

i

i j

i j i j i j i ji

i j


   




  


         (0.059) 

(0)

(0)

(0)
log ,

1

i j

i j

i j






 
  

  

          (0.060) 

where (0)

i j  is an initial estimate and  

(1 )
i j

i j i j i j

i j

 =  =  .w


 






          (0.061) 

 

If we evaluate i jw  at its initial estimates  

 

(1 - )
(0) (0)(0)

i j i j i j
 =   .w              (0.062) 

 

(7.25) can be written as  

 

 (0) (0) (0) .i j i j i j i j i j i jY w                (0.063) 

 

Algebraically rearranging the equation so that all observables are on the left-hand side yields  

 

(0)

(0)

0 1 1 2 2 ,

i j

i j i j

i j

j j i j j i j Q j Qi j i j

Z
w

X X X e




   

 

     

       (0.064) 

 

where  

 

(0)

(0) (0)

(0)

i j i j

i j i j

i j

Y
Z

w





            (0.065) 

 

is the linearized dependent variable and  

 

(0) (0)

1
( ) .

i j

i j

i j i j

Var e Var
w w

 
  

 
 

         (0.066) 
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Thus, (7.32) is a standard HLM level-1 model with outcome (0)

i jZ  and level-1 weighting variable 

(0)

i jw .  

The algorithm works as follows.  

1. Given initial estimates of the predicted value, 
i j , and therefore of the linearized 

dependent variable, 
i jZ , and the weight, 

i jw , compute a weighted HLM analysis with 

(7.32) as the level-1 model. 

2. The HLM analysis from step 1 will produce new predicted values and thus new 

linearized dependent variables and weights. HLM will now compute a new, re-

weighted MDM file with the appropriate linearized dependent variable and weights. 

3. Based on the new linearized dependent variable and weights, re-compute step 1.  

This process goes on until the linearized dependent variable, the weights, and therefore, the 

parameter estimates, converge to a pre-specified tolerance. The program then stops.  

7.6.1.2 Poisson with 1i jm    

The procedure is exactly the same as in the binomial case with 1ijm   except that  

( ) .
i j

i j i j i j

i j

Var w


 



  


         (0.067) 

7.6.1.3 Binomial with 1i jm   

In the previous example, 
i jY  was formally the number of successes in one trial and therefore 

could take on a value of 0 or 1. We now consider the case where i jY  is the number of successes 

in 
i jm  trials, where 

i jY  and 
i jm  are non-negative integers, 

i j i jY m .  

 

Suppose that a researcher is interested in examining the relationship between pre-school 

experience (yes or no) and grade retention and wonders whether this relationship is similar for 

males and females. The design involves students at level 1 nested within schools at level 2. In 

this case, each school would have four “cell counts” (boys with and without pre-school and girls 

with and without pre-school). Thus, the data could be organized so that every school had four 

observations (except possibly schools without variation on pre-school or sex), where each 

observation was a cell having a cell size i jm  and a cell count i jY  of students in that cell who 

were, in fact, retained. One could then re-conceptualize the study as having up to four level-1 

units (cells); the outcome i jY , given the cell probability i j , would be distributed as  ,i j i jB m  . 

There would be three level-1 predictors (a contrast for pre-school experience, a contrast for sex, 

and an interaction contrast). This problem then has the structure of a 2 2 J   contingency table 

(pre-school experience by sex  by school) with the last factor viewed as random.  
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The structure of a level-1 file for group 2 might appear as follows.  

 
 
Group 

 
ID 

 

i jn  
 

i jY  
 

1i jX  
 

2i jX  
 

3i jX  

 
Girls with pre-school 

 
2 

 

12n  
 

12Y  
 

0.50 
 

0.50 
 

0.25 

 
Girls without pre-school 

 
2 

 

22n  
 

22Y  
 

0.50 
 

-0.50 
 

-0.25 

 
Boys with pre-school 

 
2 

 

32n  
 

32Y  
 

-0.50 
 

0.50 
 

-0.25 

 
Boys without pre-school 

 
2 

 

42n  
 

42Y  
 

-0.50 
 

-0.50 
 

0.25 

 

For example, 
12n  is the number of girls in school 2 with pre-school and 

12Y  is the number of 

those girls who were retained. The predictor 
1i jX  is a contrast coefficient to assess the effect of 

sex (0.5 if female, –0.5 if male); 
2i jX  is a contrast for pre-school experience (0.5 if yes, –0.5 if 

no), and 
3 1 2i j i j i jX X X   is the interaction contrast.   

Estimation works the same in this case as in the binomial case except that  

 

i j i j i j

i j i j

i j

Y m
Z

w





            (0.068) 

 

with  

(1 ).i j i j i j i jw m              (0.069) 

7.6.1.4 Poisson with 1i jm    

Consider now a study of the number of homicides committed within each of  j neighborhoods in 

a large city. Many neighborhoods will have no homicides. The expected number of homicides in 

a neighborhood will depend not only on the homicide rate for that neighborhood, but also on the 

size of that neighborhood as indexed by its number of residents, i jm . Level-1 variables might 

include characteristics of the homicide (e.g., whether the homicide involved a domestic dispute, 

whether it involved use of a gun). Each cell (e.g., the four types of homicide as defined by the 

cross-classification of domestic – yes or no – and use of a gun – yes or no) would be a level-1 

unit.  

 

Estimation in this case is the same as in the Poisson case with 1i jm   except that  

 

i j i j i j

i j i j

i j

Y m
Z

w





            (0.070) 
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and  

.i j i j i jw m             (0.071) 

7.6.2 Properties of the estimators 

Using PQL, HGLM produces approximate empirical Bayes estimates of the randomly varying 

level-1 coefficients, generalized least squares estimators of the level-2 (and level-3 or level-4) 

coefficients, and approximate maximum-likelihood estimators of the variance and covariance 

parameters. Yang (1995) has conducted a simulation study of these estimators in comparison 

with an alternative approach used by some programs that sets the level-2 random coefficients to 

zero in computing the linearized dependent variables. Breslow & Clayton (1993) refer to this 

alternative approach as “marginalized quasi-likelihood” or MQL. Rodriquez & Goldman (1995) 

had found that MQL produced biased estimates of the level-2 variance and the level-2 regression 

coefficients. Yang's results showed a substantial improvement (reduction in bias and mean 

squared error) in using the approach of HGLM. In particular, the bias in estimation of the level-2 

coefficients was never more than 10 percent for HGLM, while the MQL approach commonly 

produced a bias between 10 and 20 percent. HGLM performed better than the alternative approach 

in estimating a level-2 variance component as well. However, a negative bias was found in 

estimating this variance component, ranging between two percent and 21 percent. The bias was 

most severe when the true variance was very large and the typical “probability of success” was 

very small (or, equivalently, very large). Initial simulation results under the Poisson model 

appear somewhat more favorable than this. Breslow & Clayton (1993) suggest that the 

estimation will be more efficient as the level-1 sample size increases.  

7.6.3 Parameter estimation: A high-order Laplace and adaptive Gaussian 
Quadrature approximation of maximum likelihood 

For two- and three-level models with binary and count outcomes, HGLM provides two 

alternatives to estimation via PQL: a high-order Laplace and an adaptive Gaussian Quadrature 

approximation. Figure 7.1 displays the dialog box for the estimation settings for two-level 

models. 
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Figure 7.1 Estimation settings for two-level hierarchical generalized linear models 

 

One alternative for two- and three-level Bernoulli and Poisson models with constant and variable 

exposure uses a high-order approximation to the likelihood based on a Laplace transform. The 

adaptive Gauss-Hermite quadrature (AGQ) technique (Pinheiro & Bates, 1995) is another 

approximation option available for two- and three-level binomial and Poisson models with 

constant and variable exposure. For AGQ, users have the options to specify the number of 

quadrature points and to choose the use of a first or a second derivative approximation. Both 

accuracy in approximation and computational demands increase as the number of nodes 

specified increases and when the second derivative option is used.  

 

For two-level Bernoulli models, Yang (1998), Raudenbush, Yang, and Yosef (2000) and Yosef 

(2001) found that both the Laplace and AGQ techniques yielded accurate estimates. Results of 

Yosef (2001) suggested AGQ performed better for models with small cluster size  (nij = 2) in 

terms of smaller means-squared errors and biases. The Laplace method, on the other hand, gave 

more accurate approximation in models with bivariate random effects. Johnson (2006) showed in 

his simulation study that for two-level Poisson models with equal exposure, the Laplace and 

AGQ estimates in general displayed less bias than those of PQL. However, AGQ gave more 

accurate approximation when the event rate was low and the level-2 variance was large (00 = 1). 

Based on his results, he recommended AGQ be used with small event rate and small cluster size 

(nij = 2).   
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7.7 Unit-specific and population-average models 

The models described above have been termed “unit-specific“ models. They model the expected 

outcome for a level-2 unit conditional on a given set of random effects. For example, in the 

Bernoulli case ( 1i jm  ), we might have a level-1 (within-school) model  

 

0 ,i j j q j i jX             (0.072) 

 

and a level-2 (between-school) model 

 

0 00 01 0

1 10

j j j

j

W u  

 

  


         (0.073)  

 

leading to the combined model  

 

00 01 10 0 .i j j i j jW X u               (0.074) 

 

Under this model, the predicted probability for case ij, given 
0 ju , would be  

 

 
  

0

00 01 10 0

1
| .

1 exp
i j j

j i j j

E Y u
W X u  


    

     (0.075) 

 

In this model 10  is the expected difference in the log-odds of “success” between two students 

who attend the same school but differ by one unit on X (holding 0 ju  constant); 01  is the 

expected difference in the log-odds of success between two students who have the same value on 

W  but attend schools differing by one unit on W (holding 0 ju  constant). These definitions 

parallel definitions used in a standard HLM for continuous outcomes.  

 

However, one might also want to know the average difference between log-odds of success of 

students having the same X but attending schools differing by one unit on W, that is, the 

difference of interest averaging over all possible values of 0 ju . In this case, the unit-specific 

model would not be appropriate. The model that would be appropriate would be a “population-

average“ model (Zeger, Liang, & Albert, 1988). The distinction is tricky in part because it does 

not arise in the standard HLM (with an identity link function). It arises only in the case of a non-

linear link function.  

 

Using the same example as above, the population average model would be  
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 
  * * *

00 01 10

1
.

1 exp
i j

j i j

E Y
W X  


   

       (0.076) 

 

Notice that (7.41) does not condition on (or “hold constant”) the random effect 
0 ju . Thus, *

01  

gives the expected difference in log-odds of success between two students with the same X who 

attend schools differing by one unit on W – without respect to the random effect, 
0 ju . If one had 

a nationally representative sample and could validly assign a causal inference to W, *

01  would be 

the change in the log-odds of success in the whole society associated with boosting W by one 

unit while 01  would be the change in log-odds associated with boosting W one unit for those 

schools sharing the same value of 
0 ju .  

 

HGLM produces estimates for both the unit-specific and population-average models. The 

population-average results are based on generalized least squares given the variance-covariance 

estimates from the unit-specific model. Moreover, HGLM produces robust standard error 

estimates for the population-average model (Zeger, et al., 1988). These standard errors are 

relatively insensitive to misspecification of the variances and covariances at the two levels and to 

the distributional assumptions at each level. The method of estimation used in HGLM for the 

population-average model is equivalent to the “generalized estimating equation” (GEE) approach 

popularized by Zeger, et al. (1988). 

  

The following differences between unit-specific and population-average results are to be 

expected:  

 

 If all predictors are held constant at their means, and if their means are zero, the 

population-average intercept can be used to estimate the average probability of success 

across the entire population, that is  

 

*

00

1
.

1 exp( )
i j




 
           (0.077) 

 

This will not be true of unit-specific intercepts unless the average probability of  

success is very close to .5. 

 Coefficient estimates (other than the intercept) based on the population-average model 

will often tend to be similar to those based on the unit-specific model but will tend to be 

smaller in absolute value.  

 

Users will need to take care in choosing unit-specific versus population-average results for their 

research. The choice will depend on the specific research questions that are of interest. In the 

previous example, if one were primarily interested in how a change in W can be expected to 

affect a particular individual school's mean, one would use the unit-specific model. If one were 

interested in how a change in W can be expected to affect the overall population mean, one 

would use the population-average model.  
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7.8 Over-dispersion and under-dispersion 

As mentioned earlier, if the data follow the assumed level-1 sampling model, the level-1 

variance of the 
i jY  will be 

i jw  where  

 

(1 ), Binomial case, or

, Poisson case.

i j i j i j i j

i j i j i j

w m

w m

 



 


       (0.078) 

 

However, if the level-1 data do not follow this model, the actual level-1 variance may be larger 

than that assumed (over-dispersion) or smaller than that assumed (under-dispersion). For 

example, if undetected clustering exists within level-1 units or if the level-1 model is under-

specified, extra-binomial or extra-Poisson dispersion may arise. This problem can be handled in 

a variety of ways; HGLM allows estimation of a scalar variance so that the level-1 variance will 

be 
2

i jw . 

7.9 Restricted versus full PQL versus full ML 

The default method of estimation for HGLM is restricted PQL, while full PQL is an option. For the 

three-and four-level HGLM, PQL estimation is by means of full PQL only. All estimates based on 

Laplace and adaptive Gauss-Hermite Quadratures are based on full ML. 

7.10 Hypothesis testing 

The logic of hypothesis testing with HGLM is quite similar to that used in the case of HLM. Thus, 

for the fixed effects (the  s), a table of approximate t-values is routinely printed for univariate 

tests; multivariate tests for the fixed effects are available using the approach described earlier in 

Chapter 2. Similarly, univariate tests for variance components (approximate chi-squares) are also 

routinely printed out. The one exception is that multivariate tests based on comparing model 

deviances ( 2 log likelihood at convergence ) are not available using PQL, because PQL is based 

on quasi-likelihood rather than maximum-likelihood estimation. These are available using 

Laplace or adaptive Gauss-Hermite quadrature. 
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8 Fitting HGLMs (Nonlinear Models) 

 

 

 

There is no difference between HGLM (“nonlinear analysis”) and HLM (“linear analysis”) in the 

construction of the MDM file. Thus, the same MDM file can be used for nonlinear and linear 

analysis.  

8.1 Executing nonlinear analyses based on the MDM file 

Model specification for nonlinear analyses, as in the case of linear analyses, can be achieved via 

Windows (PC implementation only), interactive execution, or batch execution. The mechanics of 

model specification are generally the same as in linear analyses with the following differences:  

 

 Six types of nonlinear analysis are available. With Windows execution, these options are 

displayed in the Basic Model Specifications – HLM2 dialog box (See Figure 8.1). This 

dialog box is accessed by clicking the Outcome button at the top of the variable list box 

to the left of the main HLM window. There are two choices for dichotomous outcomes, 

two for count outcomes, one for multinomial outcomes, and one for ordinal outcomes. 

 Highly accurate approximations to maximum likelihood based on either the Laplace 

approximation or adaptive Gauss-Hermite Quadrature are available for 2- and 3-level 

Bernoulli models and for 2-level Poisson models through the Estimation Settings – 

HLM2 dialog box shown in Figure 8.3. 

 If desired, an over-dispersion option is available for binomial and Poisson models. This 

option is not available with Laplace (see Figure 8.3). To specify over-dispersion, set the 
2  value to computed in the Estimation Settings – HLM2 dialog box (see Figure 8.3).  

 As mentioned, the nonlinear analysis is doubly iterative so the maximum number of 

macro iterations can be specified as well as the maximum number of micro iterations. 

Similarly, convergence criteria can be reset for macro iterations as well as micro 

iterations.
2
 The number of iterations and method of estimation is set through the Iteration 

Control – HLM2 dialog box shown in Figure 8.2. 

 

                                                
2
The overall accuracy of the parameter estimates is determined by the convergence criterion for 

macro iterations. The convergence criterion for micro iterations will influence the number of 

micro iterations per macro iteration. The default specifications stop macro iterations when the 

largest parameter estimate change is less than 10
-4

; micro iterations within macro iterations stop 

when the conditional log likelihood (conditional on the current weights and values of the 

linearized dependent variable) changes by less than 10
-6

.    
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Figure 8.1  Basic Model Specifications – HLM2 dialog box 

 

Figure 8.2  Iteration Control – HLM2 dialog box 
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Figure 8.3  Estimation Settings – HLM2 dialog box 

Below we provide two detailed examples of nonlinear analyses: the first uses the Bernoulli 

model, that is, a binomial model with the number of trials, 
i jm , equal to one. The second 

example uses a binomial model with 1i jm  . The analogs of these two analyses for count data 

are, respectively, the Poisson model with equal exposure and the Poisson case with variable 

exposure (some brief notes about these two applications are also included). Finally, we furnish 

two examples for multi-category outcomes, one for multinomial data and one for ordinal data. 

Windows mode specification is illustrated. See Appendix D for interactive and batch 

specification. 

8.2 Case 1: a Bernoulli model 

Data are from a national survey of primary education in Thailand (see Raudenbush & Bhumirat, 

1992, for details), conducted in 1988, and yielding, for our analysis, complete data on 7516 sixth 

graders nested within 356 primary schools. Of interest is the probability that a child will repeat a 

grade during the primary years (REP1 = 1 if yes, 0 if no). It is hypothesized that the sex of the 

child (MALE = 1 if male, 0 of female), the child's pre-primary experience (PPED = 1 if yes, 0 if 

no), and the school mean SES (MSESC) will be associated with the probability of repetition. 

Every level-1 record corresponds to a student, with a single binary outcome per student, so the 

model type is Bernoulli. These data (level-1 and level-2) data files are UTHAIL1.SAV and 

THAI2.SAV.  
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Below are the Windows commands for specifying a Bernoulli model. 

 

To specify a Bernoulli model 

 

1. After specifying the outcome in the model specification window (REP1 in our example), 

click the Outcome button at the top of the variable list box to the left of the main HLM 

window to open the Basic Model Specifications – HLM2 dialog box (See Figure 8.1).  

2. Select Bernoulli (0 or 1) as there is one binary outcome per level-1 unit. 

3. (Optional) Specify the maximum number of macro and micro iterations by selecting the 

Iteration Settings option from the Other Settings menu. 

4. (Optional) Select Laplace approximation or Adaptive Gaussian iteration control from 

the options on the Estimation Settings – HLM2 dialog box, which is accessed by selecting 

the Estimation Settings options from the Other Settings menu (See sections 8.8 and 7.6.3). 

 

The model described above is displayed in Figure 8.4 in both standard and mixed model 

notation. The command file for the model is THAIU1.HLM.   

 

 

Figure 8.4  Model specification window for the Bernoulli model 

Below we provide a transcript of the messages that HLM2 sent to the iteration window during 

computation of the results. 
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                         MACRO ITERATION 1 
 
Starting values computed.  Iterations begun. 
Should you wish to terminate the iterations prior to convergence, enter cntl-c 
The value of the likelihood function at iteration 1 = -2.400265E+003 
The value of the likelihood function at iteration 2 = -2.399651E+003 
The value of the likelihood function at iteration 3 = -2.399620E+003 
The value of the likelihood function at iteration 4 = -2.399614E+003 
The value of the likelihood function at iteration 5 = -2.399612E+003 
The value of the likelihood function at iteration 6 = -2.399612E+003 
The value of the likelihood function at iteration 7 = -2.399612E+003 
 

Macro iteration number 1 has converged after seven micro iterations. This macro iteration 

actually computes the linear-model estimates (using the identity link function as if the level-1 

errors were assumed normal). These results are then transformed and input to start macro 

iteration 2, which is, in fact, the first nonlinear iteration.  

 

                         MACRO ITERATION 2 
 
Starting values computed.  Iterations begun. 
Should you wish to terminate the iterations prior to convergence, enter cntl-c 
The value of the likelihood function at iteration 1 = -1.067218E+004 
The value of the likelihood function at iteration 2 = -1.013726E+004 
The value of the likelihood function at iteration 3 = -1.011008E+004 
The value of the likelihood function at iteration 4 = -1.010428E+004 
The value of the likelihood function at iteration 5 = -1.010265E+004 
The value of the likelihood function at iteration 6 = -1.010193E+004 
The value of the likelihood function at iteration 7 = -1.010188E+004 
The value of the likelihood function at iteration 8 = -1.010188E+004 
The value of the likelihood function at iteration 9 = -1.010187E+004 
The value of the likelihood function at iteration 10 = -1.010187E+004 
The value of the likelihood function at iteration 11 = -1.010187E+004 
The value of the likelihood function at iteration 12 = -1.010187E+004 
 

Macro iteration 2, the first nonlinear macro iteration, converged after twelve micro iterations. 

. 

. 

 
                         MACRO ITERATION 8 
 
Starting values computed.  Iterations begun. 
Should you wish to terminate the iterations prior to convergence, enter cntl-c 
The value of the likelihood function at iteration 1 = -1.000374E+004 
The value of the likelihood function at iteration 2 = -1.000374E+004 
 

Note that macro iteration 8 converged with just 2 micro iterations. Macro iteration 8 was the 

final “unit-specific“ macro iteration. One final “population-average“ iteration is computed. Its 

output is given below. 

 

MACRO ITERATION 9 
 
Starting values computed.  Iterations begun. 
Should you wish to terminate the iterations prior to convergence, enter cntl-c 
The value of the likelihood function at iteration 1 = -1.011638E+004 
The value of the likelihood function at iteration 2 = -1.010710E+004 
The value of the likelihood function at iteration 3 = -1.010710E+004 

 

Next, we examine the output file THAIBERN.OUT. 
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  SPECIFICATIONS FOR THIS NONLINEAR HLM RUN           
 
  Problem Title: Bernoulli output, Thailand data 
   
  The data source for this run  = THAIUGRP.MDM 
  The command file for this run = THAIBERN.HLM 
  Output file name              = THAIBERN.HTML 
  The maximum number of level-1 units = 7516 
  The maximum number of level-2 units = 356 
  The maximum number of micro iterations = 20 
  Method of estimation: restricted PQL 
  Maximum number of macro iterations = 25 
 
  Distribution at Level-1: Bernoulli 
 
  The outcome variable is     REP1     
 

 Summary of the model specified 
 
Level-1 Model 

     

    Prob(REP1ij=1|βj) = 
ij  

    log[
ij /(1 - 

ij )] = ηij 

    ηij = β0j + β1j*(MALEij) + β2j*(PPEDij)  
 

Thus, the level-1 structural model is 

 

   0 1 2log
1

i j

i j j j ji j i j
i j


   



 
    

  

MALE PPED  

 
Level-2 Model 

 
β0j = γ00 + γ01*(MSESCj) + u0j 

    β1j = γ10  
    β2j = γ20  
 

MSESC has been centered around the grand mean. 

 

And the level-2 structural model is 

 

 0 00 01 0

1 10

2 20.

j ji j

j

j

u  

 

 

  





MSESC

 

 

Level-1 variance = 1/[ ij  (1- ij )]  

 

In the metric of the linearized dependent variable, the level-1 variance is the reciprocal of the 

Bernoulli variance, (1 )i j i j  . 
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Mixed Model 

 

 ηij = γ00 + γ01*MSESCj  + γ10*MALEij  + γ20*PPEDij  + u0j 

 

Three sets of output results appear below: those for the normal linear model with identity link 

function, those for the unit-specific model with logit link function, and those for the population-

average model with logit link. Typically, only the latter 2 sets of results will be relevant for 

drawing conclusions. The linear model with identity link is estimated simply to obtain starting 

values for the estimation of the models with logit link.  

 

Final Results for Linear Model with the Identity Link Function 

 

σ
2
 = 0.12181 

 

τ  
INTRCPT1,β0      0.01897 

 
Random level-1 coefficient   Reliability estimate 

INTRCPT1,β0  0.749 

 
The value of the log-likelihood function at iteration 6 = -2.413825E+003 

 
Estimation of fixed effects: (linear model with identity link function) 
 

Fixed Effect  Coefficient 
 Standard 
error 

 t-ratio 
 Approx. 
d.f. 

 p-value 

For INTRCPT1, β0  
    INTRCPT2, γ00  0.153756 0.010812 14.221 354 <0.001 
     MSESC, γ01  -0.033414 0.022465 -1.487 354 0.138 

For MALE slope, β1  
    INTRCPT2, γ10  0.054131 0.008330 6.498 7158 <0.001 

For PPED slope, β2  
    INTRCPT2, γ20  -0.064613 0.010926 -5.914 7158 <0.001 

 
Results for Non-linear Model with the Logit Link Function 
Unit-Specific Model, PQL Estimation - (macro iteration 8) 

 

τ  
INTRCPT1,β0      1.29571 

 

Random level-1 coefficient   Reliability estimate 

INTRCPT1,β0  0.682 

 
The value of the log-likelihood function at iteration 2 = -1.001031E+004 
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Final estimation of fixed effects: (Unit-specific model) 
 

Fixed Effect  Coefficient 
 Standard 
error 

 t-ratio 
 Approx. 
d.f. 

 p-value 

For INTRCPT1, β0  
    INTRCPT2, γ00  -2.046961 0.093985 -21.780 354 <0.001 
     MSESC, γ01  -0.254412 0.193319 -1.316 354 0.189 

For MALE slope, β1  
    INTRCPT2, γ10  0.508561 0.073935 6.879 7158 <0.001 

For PPED slope, β2  
    INTRCPT2, γ20  -0.594375 0.095962 -6.194 7158 <0.001 

 

Fixed Effect  Coefficient 
 Odds 
Ratio 

 Confidence 
Interval 

For INTRCPT1, β0  

    INTRCPT2, γ00 -2.046961 0.129127 (0.107,0.155)   

     MSESC, γ01 -0.254412 0.775372 (0.530,1.134)   

For MALE slope, β1  

    INTRCPT2, γ10 0.508561 1.662897 (1.439,1.922)   

For PPED slope, β2  

    INTRCPT2, γ20 -0.594375 0.551908 (0.457,0.666)   

 
Final estimation of fixed effects 
(Unit-specific model with robust standard errors)  
 

Fixed Effect  Coefficient 
 Standard 
error 

 t-ratio 
 Approx. 
d.f. 

 p-value 

For INTRCPT1, β0  
    INTRCPT2, γ00  -2.046961 0.094872 -21.576 354 <0.001 
     MSESC, γ01  -0.254412 0.204048 -1.247 354 0.213 

For MALE slope, β1  
    INTRCPT2, γ10  0.508561 0.075994 6.692 7158 <0.001 

For PPED slope, β2  
    INTRCPT2, γ20  -0.594375 0.094840 -6.267 7158 <0.001 

 

 

Fixed Effect  Coefficient 
 Odds 
Ratio 

 Confidence 
Interval 

For INTRCPT1, β0  

    INTRCPT2, γ00 -2.046961 0.129127 (0.107,0.156)   

     MSESC, γ01 -0.254412 0.775372 (0.519,1.158)   

For MALE slope, β1  

    INTRCPT2, γ10 0.508561 1.662897 (1.433,1.930)   

For PPED slope, β2  

    INTRCPT2, γ20 -0.594375 0.551908 (0.458,0.665)   

 
Final estimation of variance components 
 

Random Effect 
Standard 
 Deviation 

Variance 
 Component 

  d.f. χ
2
 p-value 

INTRCPT1, u0 1.13829 1.29571 354 1431.43082 <0.001 
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Results for Population-Average Model 

 
The value of the log-likelihood function at iteration 2 = -1.010987E+004 

 
Final estimation of fixed effects: (Population-average model) 
 

Fixed Effect  Coefficient 
 Standard 
error 

 t-ratio 
 Approx. 
d.f. 

 p-value 

For INTRCPT1, β0  
    INTRCPT2, γ00  -1.748402 0.087969 -19.875 354 <0.001 
     MSESC, γ01  -0.283620 0.185179 -1.532 354 0.127 

For MALE slope, β1  
    INTRCPT2, γ10  0.446546 0.066993 6.666 7158 <0.001 

For PPED slope, β2  
    INTRCPT2, γ20  -0.536378 0.088479 -6.062 7158 <0.001 

 

Fixed Effect  Coefficient 
 Odds 
Ratio 

 Confidence 
Interval 

For INTRCPT1, β0  

    INTRCPT2, γ00 -1.748402 0.174052 (0.146,0.207)   

     MSESC, γ01 -0.283620 0.753053 (0.523,1.084)   

For MALE slope, β1  

    INTRCPT2, γ10 0.446546 1.562905 (1.371,1.782)   

For PPED slope, β2  

    INTRCPT2, γ20 -0.536378 0.584863 (0.492,0.696)   

 

Notice that the results for the population-average model are quite similar to the results for the 

unit-specific model except in the case of the intercept. The intercept in the population-average 

model in this case is the expected log-odds of repetition for a person with values of zero on the 

predictors (and therefore, for a female without pre-primary experience attending a school of 

average SES). In this case, this expected log-odds corresponds to a probability of 1/(1 + 

exp{1.748402}) = .148, which is  the “population-average” repetition rate for this group. In 

contrast, the unit-specific intercept is the expected log-odds of repetition rate for the same kind 

of student, but one who attends a school that not only has a mean SES of 0, but also has a 

random effect of zero (that is, a school with a “typical” repetition rate for the school of its type). 

This conditional expected log-odds is -2.046961, corresponding to a probability of 1/(1 + 

exp{2.046961}) = .114. Thus the probability of repetition is lower in a school with a random 

effect of zero than the average in the population of schools having mean SES of zero taken as a 

whole. This is a typical result. Population-average probabilities will be closer to .50 (than will 

the corresponding unit-specific probabilities).  

One final set of results is printed out: population-average results with robust standard errors 

(below). Note that the robust standard errors in this case are very similar to the model-based 

standard errors, with a slight increase for the level-2 predictor and slight decreases for level-1 

predictors. Results for other data may not follow this pattern.  
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Final estimation of fixed effects 
(Population-average model with robust standard errors)  
 

Fixed Effect  Coefficient 
 Standard 
error 

 t-ratio 
 Approx. 
d.f. 

 p-value 

For INTRCPT1, β0  
    INTRCPT2, γ00  -1.748402 0.082158 -21.281 354 <0.001 
     MSESC, γ01  -0.283620 0.196005 -1.447 354 0.149 

For MALE slope, β1  
    INTRCPT2, γ10  0.446546 0.062788 7.112 7158 <0.001 

For PPED slope, β2  
    INTRCPT2, γ20  -0.536378 0.082221 -6.524 7158 <0.001 

 

Fixed Effect  Coefficient 
 Odds 
Ratio 

 Confidence 
Interval 

For INTRCPT1, β0  

    INTRCPT2, γ00 -1.748402 0.174052 (0.148,0.205)   

     MSESC, γ01 -0.283620 0.753053 (0.512,1.107)   

For MALE slope, β1  

    INTRCPT2, γ10 0.446546 1.562905 (1.382,1.768)   

For PPED slope, β2  

    INTRCPT2, γ20 -0.536378 0.584863 (0.498,0.687)   

 

8.3 Case 2: a binomial model (number of trials, i jm   1)  

A familiar example of two-level binomial data is the number of hits, 
i jY , in game i for baseball 

player j based on 
i jm  at bats. In an experimental setting, a subject j under condition i might 

produce i jY  successes in i jm  trials.  

A common use of a binomial model is when analysts do not have access to the raw data at 

level 1. For example, one might know the proportion of children passing a criterion-referenced 

test within each of many schools. This proportion might be broken down within schools by sex 

and grade. A binomial model could be used to analyze such data. The cases would be sex-by-age 

“cells” within each school where i jY  is the number passing within cell i of school j and i jm  is the 

number of “trials,” that is, the number of children in that cell. Sex and grade would be level-1 

predictors.  

Indeed, in the previous example, although raw level-1 data were available, the two level-1 

predictors, MALE and pre-primary experience, were categorical. For illustration, we reorganized 

these data so that each school had, potentially, four cells defined by the cross-classification of 

sex and pre-primary experience:  

 

 females without pre-primary experience 

 females with pre-primary experience 

 males without pre-primary experience  

 males with pre-primary experience 
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Level-1 predictors were the same as before, with MALE = 1 if male, 0 if female; PPED = 1 if pre-

primary experience, 0 if not. The outcome is the number of children in a particular cell who 

repeated a grade, and we created a variable TRIAL, which is the number of children in each cell. 

In some schools there were no children of a certain type (e.g., no females with pre-primary 

experience). Such schools would have fewer than four cells. The necessary steps for executing 

the analysis via the Windows interface are given below. 

 

 To specify a Binomial model 

 

1. After specifying the outcome in the model specification window (REP1 in our example), 

click the Outcome button at the top of the variable list box to the left of the main HLM 

window to open the Basic Model Specifications – HLM2 dialog box (See Figure 8.1).  

2. Select Binomial (number of trials). 

3. Select the variable from the pull down menu in the dialog box, which indicates number of 

trials (TRIAL in our example) (See Figure 8.1).  

4. (Optional) Specify the maximum number of macro and micro iterations by selecting the 

Iteration Settings option from the Other Settings menu. 

5. (Optional) Select the Over-dispersion option if appropriate (See section on Additional 

Features at the end of the chapter). 

The model described above uses the same predictors at level-1 and level-2 as those in the 

Bernoulli example (see Figure 8.5). The command file for the example is THAIBNML.HLM.  

 

 

Figure 8.5  Model specification window for the Binomial model 

  Problem Title: BINOMIAL ANALYSIS, THAILAND DATA 
   
  The data source for this run  = THAIGRP.MDM 
  The command file for this run = thaibnml.hlm 
  Output file name              = thaibnml.out 
  The maximum number of level-1 units = 1097 
  The maximum number of level-2 units = 356 
  The maximum number of micro iterations = 50 
  Method of estimation: restricted PQL 
  Maximum number of macro iterations = 50 
   Distribution at Level-1: Binomial 
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Summary of the model specified 
 
Level-1 Model 

 

    E(REP1ij=1|βj) = 
ij * TRIAL ij 

    log[
ij /(1 - 

ij )] = ηij 

    ηij = β0j + β1j*(MALEij) + β2j*(PPEDij)  

 

This is the program's way of saying that the level-1 sampling model is binomial with “TRIAL” 

indicating the number of trials, so that the above equation, written with subscripts and Greek 

letters, is 

 

( | )

( | ) (1 ),

i j j i j i j

i j j i j i j i j

E Y m

Var Y m

 

  



 
 

where 
i jm  = TRIAL. 

 

Level-2 Model 

    

    β0j = γ00 + γ01*(MSESCj) + u0j 
    β1j = γ10  
    β2j = γ20  
 

MSESC has been centered around the grand mean. 

 

Notice that the level-1 and level-2 structural models are identical to those in Case 1. 

 

Level-1 variance = 1/[TRIAL*
ij  (1-

ij )] 

 

In the metric of the linearized dependent variable, the level-1 variance is the reciprocal of the 

binomial variance,  

(1 ).i j i j i jm    

 

Results for the unit-specific model, population-average model, and population-average model 

with robust standard errors, are not printed below. They are essentially identical to the results 

using the Bernoulli model.  

8.4 Case 3: Poisson model with equal exposure 

Suppose that the outcome variable in Case 1 had been the number of days absent during the 

previous year rather than grade repetition. This outcome would be a non-negative integer, that is, 

a count rather than a dichotomy. Thus, the Poisson model with a log link would be a reasonable 

choice for the model. Notice that the time interval during which the absences could accumulate, 

that is, one year, would be the same for each student. We call this a case of “equal exposure,” 

meaning that each level-1 case had an “equal opportunity” to accumulate absences. (Case 4 

describes an example where exposure varies across level-1 cases.)  



136 
 

 

 

This model has exactly the same logic as in Case 1 except that the type of model and therefore 

the corresponding link function will be different.  

 

To specify a Poisson model with equal exposure 

 

1. After specifying the outcome in the model specification window (REP1 in our example), 

click the Outcome button at the top of the variable list box to the left of the main HLM 

window to open the Basic Model Specifications – HLM2 dialog box (See Figure 8.1).  

2. Select Poisson (constant exposure) to tell HLM that the level-1 sampling model is Poisson 

with equal exposure per level-1 case. 

3.  (Optional) Specify the maximum number of macro and micro iterations by selecting the 

Iteration Settings option from the Other Settings menu. 

4.  (Optional) Select the Over-dispersion option if appropriate (See section on Additional 

Features  at the end of the chapter). 

 

The HLM output would describe the model as follows 

 

    Level-1 Model 
    

    E(REP1ij|βj) = λij 
    log[λij] = ηij 

 

The above equation, written with subscripts and Greek letters, is 

 

( | )

( | )

i j j i j

i j j i j

E Y

Var Y

 

 




 

 

where i j  is the “true” rate of absence for child ij. 

 

 ηij = β0j + β1j*(MALEij) + β2j*(PPEDij) 
 
Level-2 Model 

     

    β0j = γ00 + γ01*(MSESCj) + u0j 
    β1j = γ10  
    β2j = γ20  

 
MSESC has been centered around the grand mean. 

  

Notice that the log link replaces the logit link when we have count data. In the example above, 

2  is the expected difference in log-absenteeism between two children of the same sex attending 

the same school. To translate back to the rate of absenteeism, we would expect a child with pre-

primary experience to have exp { 2 } times the absenteeism rate of a child attending the same 

school who did not have pre-primary experience (holding sex constant). In this particular case, 
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the estimated effect for 
2  is most plausibly negative; exp {

2 } is less than 1.0 so that pre-

primary experience would reduce the rate of absenteeism. Notice that the level-2 structural 

models are identical to those in Case 1. 

 

Notice that the level-1 and level-2 structural models are identical to those in Case 1. 

 

Level-1 variance = 1/λij 

 

In the metric of the linearized dependent variable, the level-1 variance is the reciprocal of the 

Poisson variance, 
i j . 

8.5 Case 4: Poisson model with variable exposure 

Suppose that the frequency of a given kind of cancer were tabulated for each of many counties. 

For example, with five age-groups, the data could be organized so that each county had five 

counts, with 
i jY  being the number of cancers in age-group i of county j and 

i jm  being the 

population size of that age group in that county. A Poisson model with variable exposure would 

be appropriate, with 
i jm  the variable measuring exposure.  

 

To specify a Poisson model with variable exposure 

 

1. After specifying the outcome in the model specification window (REP1 in our example), 

click the Outcome button at the top of the variable list box to the left of the main HLM 

window to open the Basic Model Specifications – HLM2 dialog box (See Figure 8.1).  

2. Select Poisson (variable exposure) to tell HLM that the level-1 sampling model is Poisson 

with variable exposure per level-1 case. 

3. Select the variable that indicates variable exposure from the drop-down list box (See Figure 

8.1). (In the illustration below, we use TRIAL as the variable to indicate variable exposure).  

4.  (Optional) Specify the maximum number of macro and micro iterations by selecting the 

Iteration Settings option from the Other Settings menu. 

5.  (Optional) Select the Over-dispersion option if appropriate (See section on Additional 

Features  at the end of the chapter). 

 

The HLM output would describe the model as follows:  

 

Level-1 Model 

 

    E(REP1ij|βj) = λij* TRIAL ij 
    log[λij] = ηij 
    ηij = β0j + β1j*(MALEij) + β2j*(PPEDij) 

 

This is the program's way of saying that the level-1 sampling model is Poisson with variable 

exposure per level-1 case, so that the above equation, written with subscripts and Greek letters, is  
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( | )

( | ) ,

i j j i j i j

i j j i j i j

E Y m

Var Y m

 

 




 

 

Notice that the log link replaces the logit link when we have count data.  

 

Level-2 Model 
 
    β0j = γ00 + γ01*(MSESCj) + u0j 
    β1j = γ10  
    β2j = γ20 

 

Notice that the level-1 and level-2 structural models are identical to those in Case 1. 

 

Level-1 variance = 1/(TRIAL*λij) 

 

In the metric of the linearized dependent variable, the level-1 variance is the reciprocal of the 

Poisson variance, 
i j i jm  . 

8.6 Case 5: Multinomial model 

Data are from a 1990 survey of teachers in 16 high schools in California and Michigan. In the 

MDM file, not included with the software, there are a total of 650 teachers. The level-1 SPSS 

input file is TCHR1.SAV, and the level-2 file is TCHR2.SAV. 

 

An outcome with three response categories tapping teachers' commitment to their career choice 

is derived from teachers' responses to the hypothetical question of whether they would become a 

teacher if they could go back to college and start over again. The possible responses are:  

 

 yes, I would choose teaching again 

 not sure 

 no, I would not choose teaching again. 

 

At the teacher level, it is hypothesized that teachers' perception of task variety is positively 

associated with greater odds of a teacher choosing the first category relative to the third category, 

and with greater odds of a teacher choosing the second category relative to the third category. 

The perception is measured by a task variety scale that assessed the extent to which teachers 

followed the same teaching routines each day, performed the same tasks each day, had 

something new happening in their job each day, and liked the variety present in their work 

(Rowan, Raudenbush & Cheong, 1993).  

 

At the school level, it is postulated that the extent of teacher control has the same relationship to 

the two log odds as perception of task variety does. The teacher control scale is constructed by 

aggregating nine-item scale scores of teachers within a school. This scale indicates teacher 

control over school policy issues such as student behavior codes, content of in-service programs, 

student grouping, school curriculum, and text selection; and control over classroom issues such 
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as teaching content and techniques, and amount of homework assigned (Rowan, Raudenbush & 

Kang, 1991).  

 

As a previous analysis showed that there is little between-teacher variability in their log-odds of  

choosing the second category relative to the third category, the level-1 coefficient associated 

with it is fixed. Furthermore, the effects associated with perception of task variety are 

constrained to be the same across teachers for the sake of parsimony. 

 

The general procedure to specify a multinomial logit model is given below. Note that the 

multinomial and ordinal analyses provide unit-specific estimates only. They do not currently 

produce population-average estimates. 

 

To specify a multinomial model 

 

1. After specifying the outcome in the model specification window, click the Outcome button 

at the top of the variable list box to the left of the main HLM window to open the Basic 

Model Specifications – HLM2 dialog box (See Figure 8.1).  

2. Select Multinomial to tell HLM that the level-1 sampling model is multinomial. 

3. Enter the number of categories into the Number of Categories box.  

4.  (Optional) Specify the maximum number of macro and micro iterations by selecting the 

Iteration Settings option from the Other Settings menu. 

 

Figure 8.6 displays the model discussed above. 

 

The output obtained for this model follows. 

 

  Specifications for this multinomial HLM run       
 
  Problem Title: Multinomial Output, High School Context Data 
 
  The data source for this run  = tchr.MDM 
  The command file for this run = tchr1.hlm 
  Output file name              = tchr1.html 
  The maximum number of level-1 units = 650 
  The maximum number of level-2 units = 16 
  The maximum number of micro iterations = 14 
  Number of categories = 3 
  Distribution at Level-1: Multinomial 
 
The outcome variable is TCOMMIT  

 
Summary of the model specified 
 
Level-1 Model 

   

Prob[TCOMMIT(1) = 1|βj] = 1ij
  

Prob[TCOMMIT(2) = 1|βj] = 1ij
  

Prob[TCOMMIT(3) = 1|βj] = 1ij
  = 1 - 1ij

  - 1ij
  
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log[ 1ij
 / 1ij

 ] = β0j(1) + β1j(1)*(TASKVARij)  

 log[ 1ij
 / 1ij

 ] = β0j(2) + β1j(2)*(TASKVARij) 

 

 

Figure 8.6  Model specification window for the multinomial example 

 

Thus, the level-1 structural models are 

 

(1)

(1) 0 (1) 1 (1)

(3)

(2)

(2) 0 (2) 1 (2)

(3)

log ( )

log ( )

i j

i j j j i j

i j

i j

i j j j i j

i j


  




  



 
   

  

 
   

  

TASKVAR

TASKVAR

 

 
Level-2 Model 
   

  β0(1) = γ00(1) + γ01(1)*(TCONTROLj) + u0j(1) 
   β1(1) = γ10(1)  
   β0(2) = γ00(2) + γ01(2)*(TCONTROLj)  
   β1(2) = γ10(2)  
 

TASKVAR has been centered around the grand mean. 
TCONTROL has been centered around the grand mean. 
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The level-2 structural models are 

 

0 (1) 00(1) 01(1) 0 (1)

1 (1) 10(1)

0 (2) 00(2) 01(2)

1 (2) 10(2)

( )

( )

j i j j

j

j i j

j

u  

 

  

 

  



 



TCONTROL

TCONTROL
 

 

τ  
INTRCPT1(1)      0.00986 

 

Random level-1 coefficient   Reliability estimate 

INTRCPT1(1), β0(1) 0.083 

 
The value of the log-likelihood function at iteration 2 = -1.246191E+003 

 
Final estimation of fixed effects: 
 

Fixed Effect  Coefficient 
 Standard 
error 

 t-ratio 
 Approx. 
d.f. 

 p-value 

For Category 1 
For INTRCPT1, β0(1)  

    INTRCPT2, γ00(1)  1.079269 0.123439 8.743 14 <0.001 
    TCONTROL, γ01(1)  2.090207 0.508369 4.112 14 0.001 

For TASKVAR slope, β1(1)  

    INTRCPT2, γ10(1)  0.398355 0.113650 3.505 630 
<0.001 
 

For Category 2 
For INTRCPT1, β0(2)  

    INTRCPT2, γ00(2)  0.091930 0.141643 0.649 630 0.517 
    TCONTROL, γ01(2)  1.057285 0.577673 1.830 630 0.068 

For TASKVAR slope, β1(2)  
    INTRCPT2, γ10(2)  0.030693 0.130029 0.236 630 0.813 

 

γ00(1), the unit-specific intercept, is the expected log-odds of an affirmative response relative to a 

negative response for a teacher with mean perception of task variety and working in a school with 

average teacher control and a random effect of zero. It is adjusted for the between-school 

heterogeneity in the likelihood of an affirmative response relative to a negative response, which is 

independent of the effect of task variety and teacher control. The estimated conditional expected log-

odds is 1.079269. 

 

The predicted probability that the same teacher responds affirmatively (Category 1) is 

exp{1.079269}/ (1 + exp{1.079269} + exp{0.091930}) = .584. The predicted probability of 

responding “not sure” (category 2) is exp{0.091930}/(1 + exp{1.079269} + exp{0.091930}) = 1 - 

.584 - .218 = .198. 
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Fixed Effect  Coefficient 
 Odds 
Ratio 

 Confidence 
Interval 

For Category 1 
For INTRCPT1, β0(1)  

    INTRCPT2, γ00(1) 1.079269 2.942528 (2.258,3.835)   

    TCONTROL, γ01(1) 2.090207 8.086586 (2.718,24.063)   

For TASKVAR slope, β1(1)  

    INTRCPT2, γ10(1) 0.398355 1.489373 
(1.191,1.862) 
 

  

For Category 2 
For INTRCPT1, β0(2)  

    INTRCPT2, γ00(2) 0.091930 1.096288 (0.830,1.448)   

    TCONTROL, γ01(2) 1.057285 2.878545 (0.926,8.952)   

For TASKVAR slope, β1(2)  

    INTRCPT2, γ10(2) 0.030693 1.031169 (0.799,1.331)   

 

The sets of 
01  and 

10  give the estimates of the change in the respective log-odds given one-unit 

change in the predictors, holding all other variables constant. For instance, all else being equal, a 

standard deviation increase in TCONTROL (.32) will nearly double the odds of an affirmative 

response to a negative response (exp{2.090207 * .32} = 1.952). Note that the partial effect 

associated with perception of task variety is statistically significant for the logit of affirmative 

versus negative responses but not for the logit of undecided versus negative responses.  

 

Below is a table for the results for the fixed effects with robust standard errors.  

Final estimation of fixed effects 
(with robust standard errors)  
 

Fixed Effect  Coefficient 
 Standard 
error 

 t-ratio 
 Approx. 
d.f. 

 p-value 

For Category 1 
For INTRCPT1, β0(1)  

    INTRCPT2, γ00(1)  1.079269 0.128263 8.415 14 <0.001 
    TCONTROL, γ01(1)  2.090207 0.409607 5.103 14 <0.001 

For TASKVAR slope, β1(1)  

    INTRCPT2, γ10(1)  0.398355 0.127511 3.124 630 
0.002 
 

For Category 2 
For INTRCPT1, β0(2)  

    INTRCPT2, γ00(2)  0.091930 0.139637 0.658 630 0.511 
    TCONTROL, γ01(2)  1.057285 0.529606 1.996 630 0.046 

For TASKVAR slope, β1(2)  
    INTRCPT2, γ10(2)  0.030693 0.126446 0.243 630 0.808 
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Fixed Effect  Coefficient 
 Odds 
Ratio 

 Confidence 
Interval 

For Category 1 
For INTRCPT1, β0(1)  

    INTRCPT2, γ00(1) 1.079269 2.942528 (2.235,3.874)   

    TCONTROL, γ01(1) 2.090207 8.086586 (3.359,19.469)   

For TASKVAR slope, β1(1)  

    INTRCPT2, γ10(1) 0.398355 1.489373 
(1.159,1.913) 
 

  

For Category 2 
For INTRCPT1, β0(2)  

    INTRCPT2, γ00(2) 0.091930 1.096288 (0.833,1.442)   

    TCONTROL, γ01(2) 1.057285 2.878545 (1.017,8.145)   

For TASKVAR slope, β1(2)  

    INTRCPT2, γ10(2) 0.030693 1.031169 (0.804,1.322)   

 
The robust standard errors are appropriate for datasets having a moderate to 
large number of level 2 units. These data do not meet this criterion. 

 
Final estimation of variance components 
 

Random Effect 
Standard 
 Deviation 

Variance 
 Component 

  d.f. χ
2
 p-value 

INTRCPT1(1), u0(1) 0.09931 0.00986 14 16.16473 0.303 

 

Note that the residual variance of 
00(1)  is not statistically different from zero. The model may be 

re-run with the coefficient set to be non-random. 

8.7 Case 6: Ordinal model 

The same data set, the multi-category outcome, and the same predictors in Case 5 are used here. 

The procedure for specifying an ordinal model is very similar to that of a multinomial model. 

Select the  Ordinal instead of Multinomial option in the  Basic Model Specifications – HLM2 

dialog box (See Figure 8.1). Figure 8.7 displays the model specified for the example 

(TCHR2.HLM). 

 

Note: The multinomial and ordinal analyses currently produce unit-specific results only. They 

do not provide population-average results. 
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Figure 8.7  Model specification window for the ordinal model 

The output obtained for this model follows. 

  Specifications for this ordinal HLM run           
   
  Problem Title: Ordinal Output, HIGH SCHOOL CONTEXT DATA 
   
  The data source for this run  = TCHR.MDM 
  The command file for this run = TCHR2.HLM 
  Output file name              = TCHR2.HTML 
  The maximum number of level-1 units = 650 
  The maximum number of level-2 units = 16 
  The maximum number of micro iterations = 14 
  Number of categories = 3 
  Method of estimation: restricted PQL 
 
 Distribution at Level-1: Ordinal 
 
The outcome variable is TCOMMIT  

 
Summary of the model specified 
 
Level-1 Model 

     

 Prob[Rij <= 1|βj] = 
1ij

*

1ij    

 Prob[Rij <= 2|βj] =  
2ij

*

1ij 2ij    

 Prob[Rij <= 3|βj] = 1.0 

     1ij  = Prob[TCOMMIT(1) = 1|βj] 
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2ij  = Prob[TCOMMIT(2) = 1|βj] 

     log[
1ij /(1 - 

1ij )] = β0j + β1j*(TASKVARij)  

     log[
2ij /(1 - 

2ij )] = β0j + β1j*(TASKVARij) + δ2     

 

Thus, the level-1 structural models are 
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'
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TASKVAR

TASKVAR

 

 
Level-2 Model 

 

 β0j = γ00 + γ01*(TCONTROLj) + u0j 
    β1j = γ10  
     δ2 
 
TASKVAR has been centered around the grand mean. 
TCONTROL has been centered around the grand mean. 

 

The level-2 structural model is 

 

0 00 01 0

1 10

( )j i j j

j

u  

 

  



TCONTROL
 

 

 
Final Results for Ordinal Iteration 9173 

 

The extremely large number of iterations reflects the fact that the final estimate of the between-

school variance, 00 , is near zero, after adjusting for TCONTROL. 

 

τ  
INTRCPT1,β0      0.00010 

 

Random level-1 coefficient   Reliability estimate 

INTRCPT1,β0  0.001 

 
The value of the log-likelihood function at iteration 2 = -1.249070E+003 
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Final estimation of fixed effects: 
 

Fixed Effect  Coefficient 
 Standard 
error 

 t-ratio 
 Approx. 
d.f. 

 p-value 

For INTRCPT1 slope, β0 
    INTRCPT2, γ00  0.333918 0.089735 3.721 14 0.002 
    TCONTROL, γ01  1.541051 0.365624 4.215 14 <0.001 

For TASKVAR slope, β1  
    INTRCPT2, γ10  0.348801 0.087280 3.996 633 <0.001 

For THOLD2,  
    δ2  1.054888 0.080868 13.045 633 <0.001 

 

Fixed Effect  Coefficient 
 Odds 
Ratio 

 Confidence 
Interval 

For INTRCPT1 slope, β0 

    INTRCPT2, γ00 0.333918 1.396429 (1.152,1.693)   

    TCONTROL, γ01 1.541051 4.669496 (2.131,10.230)   

For TASKVAR slope, β1  

    INTRCPT2, γ10 0.348801 1.417367 (1.194,1.682)   

For THOLD2,  

    δ2 1.054888 2.871653 (2.450,3.366)   

 

00 , the unit-specific intercept, is the expected log-odds of an affirmative response relative to an 

undecided or negative response for a teacher with mean perception of task variety and working 

in a school with average teacher control and a random effect of zero. It is adjusted for the 

between-school heterogeneity in the likelihood of an affirmative response relative to a negative 

response, which is independent of the effect of task variety and teacher control. This conditional 

expected log-odds, is 0.333918. The expected log-odds for a teacher to give an affirmative or 

undecided response relative to a negative response is 0.333918 + 1.054888 = 1.388806. 01  and 

10  give the estimates of the change in the respective cumulative logits, holding all other 

variables constant. For instance, all else being equal, a standard deviation increase in TCONTROL 

(.32) will increase the odds of an affirmative response to an undecided or negative response as 

well as the odds of an affirmative or undecided response to a negative response by a factor of 

1.637 (exp{1.541051 * .32} = 1.637). 

 

Below is a table for the results for the fixed effects with robust standard errors.  

 

Final estimation of fixed effects (with robust standard errors)  
 

Fixed Effect  Coefficient 
 Standard 
error 

 t-ratio 
 Approx. 
d.f. 

 p-value 

For INTRCPT1 slope, β0 
    INTRCPT2, γ00  0.333918 0.092707 3.602 14 0.003 
    TCONTROL, γ01  1.541051 0.340944 4.520 14 <0.001 

For TASKVAR slope, β1  
    INTRCPT2, γ10  0.348801 0.092285 3.780 633 <0.001 

For THOLD2,  
    δ2  1.054888 0.080353 13.128 633 <0.001 
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Fixed Effect  Coefficient 
 Odds 
Ratio 

 Confidence 
Interval 

For INTRCPT1 slope, β0 

    INTRCPT2, γ00 0.333918 1.396429 (1.145,1.704)   

    TCONTROL, γ01 1.541051 4.669496 (2.247,9.702)   

For TASKVAR slope, β1  

    INTRCPT2, γ10 0.348801 1.417367 (1.182,1.699)   

For THOLD2,  

    δ2 1.054888 2.871653 (2.452,3.363)   

 
The robust standard errors are appropriate for datasets having a moderate to 
large number of level 2 units. These data do not meet this criterion. 

 
Final estimation of variance components 
 

Random Effect 
Standard 
 Deviation 

Variance 
 Component 

  d.f. χ
2
 p-value 

INTRCPT1, u0 0.01016 0.00010 14 14.57034 0.408 
 

Note that the residual variance of 
00(1)  is not statistically different from zero. In fact, it is very 

close to zero, which accounts for the large number of iterations required to achieve convergence. 

The model may be re-run with the coefficient set to be non-random. 

8.8 Additional features 

8.8.1 Over-dispersion  

For binomial models with 1i jm   and for all Poisson models, there is an option to estimate a 

level-1 dispersion parameter 2  (See Figure 8.1). If the assumption of no dispersion holds, 
2 1.0  . If the data are over-dispersed, 2 1.0  ; if the data are under-dispersed, 2 1.0  .  

8.8.2 Adaptive Gauss-Hermite Quadrature and Laplace approximations 
for binary models 

For two- and three-level binary outcome models, the highly accurate approximations to 

maximum likelihood based on adaptive Gauss-Hermite Quadrature and Laplace approximation 

(See Figure 8.1) can be selected. When estimating the model parameters, the program will send 

messages, similar to the following, to the iteration window during computation of the results.  

  

The following is an example of an output for Laplace6 iterations. 

 
Results for Unit-Specific Model, EM Laplace-2 Estimation 
Iteration 33 

 

τ  
INTRCPT1,β0   1.61733 

 

Random level-1 coefficient   Reliability estimate 

INTRCPT1,β0  0.724 
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The log-likelihood at EM Laplace-2 iteration 10 is -9.627480E+003  
 
Final estimation of fixed effects (Unit-specific model)  
 

Fixed Effect  Coefficient 
 Standard 
error 

 t-ratio 
 Approx. 
d.f. 

 p-value 

For INTRCPT1, β0  
    INTRCPT2, γ00  -2.239223 0.100384 -22.307 354 <0.001 
     MSESC, γ01  -0.297322 0.200573 -1.482 354 0.139 

For MALE slope, β1  
    INTRCPT2, γ10  0.533635 0.072623 7.348 7158 <0.001 

For PPED slope, β2  
    INTRCPT2, γ20  -0.626218 0.099789 -6.275 7158 <0.001 

 

Fixed Effect  Coefficient 
 Odds 
Ratio 

 Confidence 
Interval 

For INTRCPT1, β0  

    INTRCPT2, γ00 -2.239223 0.106541 (0.087,0.130)   

     MSESC, γ01 -0.297322 0.742805 (0.501,1.102)   

For MALE slope, β1  

    INTRCPT2, γ10 0.533635 1.705119 (1.479,1.966)   

For PPED slope, β2  

    INTRCPT2, γ20 -0.626218 0.534610 (0.440,0.650)   

 
Statistics for the current model 
 
Deviance = 19254.960974 
Number of estimated parameters = 5  
 

Results for Unit-Specific Model, Adaptive Gaussian Quadrature 
Iteration 3 

 

τ  
INTRCPT1,β0   1.68320 

 

Standard error of τ  
INTRCPT1,β0   0.20904 

 
Final estimation of fixed effects (Unit-specific model)  
 

Fixed Effect  Coefficient 
 Standard 
error 

 t-ratio 
 Approx. 
d.f. 

 p-value 

For INTRCPT1, β0  
    INTRCPT2, γ00  -2.242961 0.106249 -21.110 354 <0.001 
     MSESC, γ01  -0.295119 0.215888 -1.367 354 0.172 

For MALE slope, β1  
    INTRCPT2, γ10  0.535156 0.075975 7.044 7158 <0.001 

For PPED slope, β2  
    INTRCPT2, γ20  -0.626872 0.100135 -6.260 7158 <0.001 
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Statistics for the current model 
 
Deviance = 19255.057516 
Number of estimated parameters = 5  
 

8.8.3 Printing variance-covariance matrices for fixed effects 

Files containing variance-covariances for the fixed effects for the unit-specific, population-

averaged and Laplace and adaptive Gaussian quadrature estimates can be requested. See Appendix 

A for more details, or Appendix J for a complete list of options available in each of the modules. 

8.9 Fitting HGLMs with three and four levels 

For simplicity of exposition, all of the examples above have used the two-level HGLM. These 

procedures generalize directly to three-and four-level applications. Again the type of nonlinear 

model desired at level-1 must be specified. There are now, however, structural models at both 

levels 2 and 3 as in the case of HLM3. The same idea applies to HLM4. 
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9 Conceptual and Statistical Background for Hierarchical 
Multivariate Linear Models (HMLM) 

 

 

 

One of the most frequent applications of hierarchical models involves repeated observations 

(level 1) nested within persons (level 2). These are described in Chapter 6 of Hierarchical Linear 

Models. In these models, the outcome 
i jY  for occasion i within person j is conceived as a 

univariate outcome, observed under different conditions or at different times. An advantage of 

viewing the repeated observations as nested within the person is that it allows each person to 

have a different repeated measures design. For example, in a longitudinal study, the number of 

time points may vary across persons, and the spacing between time points may be different for 

different persons. Such unbalanced designs would pose problems for standard methods of 

analysis such as the analysis of variance.  

 

Suppose, however, that the aim of the study is to observe every participant according to a fixed 

design with, say, T observations per person. The design might involve T observation times or T 

different outcome variables or even T different experimental conditions. Given the fixed design, 

the analysis can be reconceived as a multivariate repeated measures analysis. The multivariate 

model is flexible in allowing a wide variety of assumptions about the variation and covariation 

of the T repeated measures (Bock, 1985). In the standard application of multivariate repeated 

measures, there can be no missing outcomes: every participant must have a full complement of T 

repeated observations. 

 

Advances in statistical computation, beginning with the EM algorithm (Dempster, Laird, & 

Rubin, 1977; see also Jennrich & Schluchter, 1986), allow the estimation of multivariate normal 

models from incomplete data. In this case, the aim of the study was to collect T observations per 

person, but only 
jn  observations were collected (

jn T ). These 
jn  observations are indeed 

collected according to a fixed design, but jT n  data points are missing at random. 

 

HMLM allows estimation of multivariate normal models from incomplete data; HMLM2 allows for 

study of multivariate outcomes for persons who are, in turn, nested within higher-level units. 

Within the framework of HMLM, it is possible to estimate models having  

 

0.  An unrestricted covariance structure, that is a full T T  covariance matrix. 

1. A model with homogenous level-1 variance and random intercepts and/or slopes at level 2. 

2. A model with heterogeneous variances at level 1 (a different variance for each occasion) and 

random intercepts and/or slopes at level 2. 

3. A model that includes a log-linear structure for the level-1 variance and random intercepts 

and/or slopes at level 2. 

4.  A model with first-order auto-regressive level-1 random errors and random intercepts and/or 

slopes at level 2. 

 

We note that applications 2 - 4 are available within the standard HLM2. However, within HMLM, 

models 2 - 4 can be compared to the unrestricted model (model 1), using a likelihood ratio test. 

No “unrestricted model“ can be meaningfully defined within the standard HLM2; such a model is 

definable only within the confines of a fixed design with T measurements. 
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HMLM2 allows the five models listed above to be embedded within a nested structure, e.g., the 

persons who are repeatedly observed may be nested within schools. 

9.1 Unrestricted model  

This model is appropriate when the aim of the study is to collect T observations per participant 

according to a fixed design. However, one or more observations may be missing at random. We 

assume a constant but otherwise arbitrary T T  covariance matrix for each person's “complete 

data.” 

9.1.1 Level-1 model 

The level-1 model relates the observed data, Y, to the complete data, *Y : 

Equation Section 9 

*

1

T

hi thi ti

t

Y m Y


             (0.079) 

 

where hiY  is the r-th outcome for person i associated with time h. Here *

tiY  is the value that 

person i would have displayed if that person had been observed at time t, and thim  is an indicator 

variable taking on a value of 1 if the h-th measurement for person i did occur at time t, 0 if not. 

Thus, *

tiY , t = 1, ..., T, represent the complete data for person i while hiY , h = 1, ..., iT  are the 

observed data, and the indicators thim  tell us the pattern of missing data for person i. 

 

To make this clear, consider T = 5 and a person who has data at occasions 1,2, and 4, but not at 

occasions 3 and 5. Then Equation 9.1 expands to 

 
*

1

*
1 2

*
2 3

*
3 4

*

5

1 0 0 0 0

0 1 0 0 0

0 0 0 1 0

i

i i

i i

i i

i

Y

Y Y

Y Y

Y Y

Y

 
 

    
           
    

 
 

        (0.080) 

 

or, in matrix notation, 

 
*

i i iY M Y               

(0.081) 

 

This model says simply that the three observed data points for person i were observed at times 1, 

2, and 4, so that data were missing at times 3 and 5. Although these data were missing, they do 

exist, in principle. Thus, every participant has a full 5 1  vector of  “complete data” even though 

the 1iT   vector of observed data will vary in length across persons. 

 

We now pose a structural model for the within-person variation in 
*Y : 
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*

0

1

P

ti i pi pt ti

p

Y a


              (0.082) 

 

or, in matrix notation 
* ,i i iY Aπ ε                          

(0.083) 

  

where we assume that iε  is multivariate normal in distribution with a mean vector of 0 and an 

arbitrary T T  covariance matrix Δ . In fact, Δ  is not a “within-person” covariance. Rather, it 

captures all variation and covariation among the T repeated observations. 

9.1.2 Level-2 model    

The level-2 model includes covariates, iX , that vary between persons: 

 

      0

Q

pi p pq qi

q=1

 =  + X                 (0.084) 

or in matrix notation 

 

           i iπ = X β               

(0.085) 

 

Note there is no random variation between persons in the regression coefficients pi   because all 

random variation has been absorbed into Δ  (see the text below Equation 9.5). 

9.1.3 Combined model   

Substituting the level-2 model into the level-1 model gives the combined model for the complete 

data, in matrix form: 

 

    * , ~ (0, )i i i iY AX β ε ε N                  (0.086) 

 

Here the design matrix captures main effects of within-person covariates (the as), main effects of 

person-level covariates (Xs), and two-way interaction effects between them ( a X  terms).  

 

In sum, our reformulation poses a “multiple measures” model (Equation 9.3) that relates the 

observed data iY  to the “complete data” *

iY , that is, the data that would have been observed if the 

researcher had been successful in obtaining outcome data at every time point. Our combined 

model is a standard multivariate normal regression model for the complete data.  

 

Algebraically substituting the combined model expression for *

iY  into the model for the observed 

data (Equation 9.3) yields the combined model 
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.i i i i iY M AX β M ε                  (0.087) 

 

Under the unrestricted model, the number of parameters estimated is ( 1) / 2f T T  , where f is 

the number of fixed effects and T is the number of observations intended for each person. The 

models below impose constraints on the unrestricted model, and therefore include fewer 

parameters. The fit of these simpler models to the data can be compared to the fit of the 

unrestricted model using a likelihood ratio test. 

9.2 HLM with homogenous level-1 variance  

Under the special case in which the within-person design is fixed 1 ,3with T observations per 

person and randomly missing time points, the two-level HLM can be derived from the 

unrestricted model by imposing restrictions on the covariance matrix, Δ . (Note: regressors iA  

having varying designs may be included in the level-1 model, but coefficients associated with 

such 
iA  values must not have random effects at level 2). The most frequently used assumption in 

the standard HLM is that the within-person residuals are independent with a constant variance, 
2 .  

9.2.1 Level-1 model   

The level-1 model has a similar form to that in the case of the unrestricted model  

 

* , ~ (0, )i i i iY A N                       (0.088) 

with 2

TI  . 

9.2.2 Level-2 model   

 The level-2 model includes covariates, iX , that vary between persons. Degrees of freedom 

are now available to estimate randomly varying intercepts and slopes across people: 

 

          0

pQ

pi qi qip pq

q=1

 =  + X r                 (0.089) 

 

or in matrix notation 

 i i iX β r              (0.090) 

 

All of the usual forms are now available for the intercepts and slopes (fixed, randomly varying, 

non-randomly varying), provided T is large enough.  

9.2.3 Combined model   

Substituting the level-2 model into the level-1 model gives the combined model for the 

                                                

1 That is, for all .iA A i  
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complete data, in matrix form: 

  
*

,

i i i i i

i i

Y AX Ar e

AX



 

  

 
           (0.091) 

 

where 
i i iAr e    has variance-covariance matrix 

        
   

' 2 .

i i i

T

Var Var Ar e

AτA I

 

   




                (0.092) 

 

Under the HLM with homogenous level-1 variance, the number of parameters estimated is 

( 1) / 2 1f r r   , where r is the dimension of τ . Thus, r must be less than T.  

9.2 HLM with varying level-1 variance 

One can model heterogeneity of level-1 variance as a function of the occasion of measurement. 

Such a model is suitable when we suspect that the level-1 residual  variance varies across 

occasions. The models that can be estimated are a subset of the models that can be estimated 

within the standard HLM2 (see Section 2.8.8.2 on the option for heterogeneity of level-1 

variance).The level-1 model is the same as in the case of homogenous variances (equations 9.11 

and 9.12) except that now 

 

 2( ) ,i tVar e diag              (0.093) 

 

that is,   is now diagonal with elements 2

t , the variance associated with occasion t, t = 1, …, 

T. 

 

The number of parameters estimated is ( 1) / 2f r r T   . Now r must be no larger than 1T  . 

When 1r T  , the results will duplicate those based on the unrestricted model. 

9.3 HLM with a log-linear model for the level-1 variance 

The model with varying level-1 variance, described above, assumes a unique level-1 variance for 

every occasion. A more parsimonious model would specify a functional relationship between 

aspects of the occasion (e.g. time or age) and the variance. We would again have  2

tdiag   , 

but now 

 

       2

0

1

log .
L

t I I t

I

c  


                  (0.094) 

 

Thus, the natural log of the level-1 variance may be a linear or quadratic function of age. If the 

explanatory variables Ic  are 1T   dummy variables, each indicating the occasion of 

measurement, the results will duplicate those of the previous section. 
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The number of parameters estimated is now ( 1) / 2 1f r r L    . Again, r must be no larger 

than 1T   and L must be no larger than 1T  .  

9.4 First-order auto-regressive model for the level-1 residuals 

This model allows the level-1 residuals to be correlated under Markov assumptions (a level-1 

residual depends on previous level-1 residuals only through the immediately preceding level-1 

residuals). This leads to the level-1 covariance structure 

 
2 | |

'( , ) .
't t

ti t iCov e e             (0.095) 

 

Thus, the variance at each time point is 2  and each correlation diminishes with the distance 

between time points, so that the correlations are 2 3, , , ...    as the distance between occasions 

is 1, 2, 3,  .... The number of parameters estimated is now ( 1) / 2 2f r r   . Again, r must be no 

larger than 1T  . 

 

Note that level-1 predictors are assumed to have the same values for all level-2 units of the 

complete data. This assumption can be relaxed. However, if the design for 
pt ia  varies over i, its 

coefficient cannot vary randomly at level 2. In this regard, the standard 2-level model (See 

Chapters 2, 3) is more flexible than HMLM. 

9.5 HMLM2: A multilevel, multivariate model  

Suppose now that the persons yielding multiple outcomes are nested within higher-level units 

such as schools. We can embed the multivariate model for incomplete data within this multilevel 

structure. 

9.5.1 Level-1 model   

The level-1 model again relates the observed data, Y, to the complete data, 
*Y . We simply add a 

subscript to the HMLM model to create the HMLM equation for the observed data: 

 

*

1

.
T

hij thij tij

t

Y m Y


               (0.096) 

 

Here individual i is nested within group j (j = 1, …, J) and we have hijY , the h-th outcome 

observed for person i in group j. Here 
*

tijY  is the value that person i would have displayed if that 

person had been observed at time t, and thijm  is an indicator variable taking on a value of 1 if the 

h-th measurement for that person did occur at time t, 0 if not. Thus 
*

tijY , t = 1, …, T represent the 

complete data for person i in group j while hijY , h = 1, …, iT  are the observed data, and the 

indicators thijm  tell us the pattern of the missing data. Again, we pose a structural model for the 

within-person variation in 
*Y : 
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*

0

1

,
P

tij ij pij pt tij

p

Y a e


              (0.097) 

 

or, in matrix notation 

 
* ,tj ij ijY A e             (0.098) 

 

where we assume that 
ije  is multivariate normal in distribution with a mean vector of 0 and an 

arbitrary T T  covariance matrix  . 

9.5.2 The combined model   

The level-2 model includes covariates, 
ijX , that vary between persons within groups: 

 
pqQ

pij pqjp0j qij
q=1

X =  +           (0.099) 

 

or, in matrix notation 

 

     
ij ij jπ X β           (0.0100) 

9.5.3 Level-3 model   

Now the coefficients defined on persons (in the level-2 model) are specified as possibly varying 

at level-3 over groups: 

 

0

pqS

pq pq s sq j pq jpq j

s=1

 + W  +u .            (0.0101) 

 

Here the vector ju , composed of elements pqju  is multivariate normal in distribution with a zero 

mean vector and covariance matrix τ . 

9.5.4 Level-2 model   

The combined model can then be written in matrix notation as 

 
* ,ij ij j ij j ijY AX W AX u            (0.0102) 
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where  

 

ij ij ijAr e             (0.0103) 

 

where 
ij  has a variance-covariance matrix 

( )i jVar              (0.0104) 

 

and   is modeled just as in the case of HMLM, depending on which submodel is of interest. The 

next chapter provides an illustration. 

 

Note that level-1 predictors 
pta  are assumed to have the same values for all level-2 units of the 

complete data. This assumption can be relaxed. However, if the design for 
ptija  varies over i and 

j, the coefficient for 
ptija , that is 

ptij , must have no random effect at level 2. In this regard, the 

standard three-level model (see Chapters 3 and 4) is more flexible than is HMLM2. 
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10 Working with HMLM/HMLM2 

 

 

 

Like the other programs, HMLM and HMLM2 execute analyses using MDM (multivariate data 

matrix) files, which consist of the combined level-1 and level-2 data files. 

 

The procedures for constructing the MDM file are similar to the ones for HLM2 and HLM3 with 

one major difference: the user has to create and input indicator variables for the outcome(s) 

while constructing the MDM file. Model specification for HMLM and HMLM2 involves the same 

mechanics as in HLM2 and HLM3 with an extra step of model covariance structure selection. 

 

Below we provide two examples using data sets from the first cohort of the National Youth 

Survey (Elliot, Huizinga, & Menard, 1989, Raudenbush, 1999) and the time-series observations 

on 1,721 students nested within 60 public primary schools as described in Chapter 8. Windows 

mode execution is illustrated. See Appendix E for interactive and batch mode execution.   

10.1 An analysis using HMLM via Windows mode 

10.1.1  Constructing the MDM from raw data 

The range of options for data input are the same as for HLM2 and HLM3. We will use SPSS file 

input in our example.  

10.1.1.1 Level-1 file  

The level-1 file, NYS1.SAV, has 1,079 observations collected from interviewing annually 239 

eleven-year-old youths beginning at 1976 for five consecutive years. Therefore, T = 5. The 

variables and the T indicator variables are:  

 
ATTIT  a 9-item scale assessing attitudes favorable to deviant behavior.  

 

Subjects were asked how wrong (very wrong, wrong, a little bit wrong, not 

wrong at all) they believe it is for someone their age to, for example, damage 

and destroy property, use marijuana, use alcohol, sell hard drugs, or steal.  

 

The measure was positively skewed, so a logarithmic transformation was 

performed to reduce the skewness.    

 
EXPO Exposure to deviant peers.   

 

Subjects were asked how wrong their best friends thought the nine deviant 

behaviors surveyed in the ATTIT scale were. 

 
AGE  age of the participant 
AGE11  age of participant at a specific time minus 11 
AGE13  age of participant at a specific time minus 13 
AGE11s  AGE11* AGE11 
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AGE13s  AGE13* AGE13 
IND1  indicator for measure at time 1 
IND2  indicator for measure at time 2 
IND3  indicator for measure at time 3 
IND4  indicator for measure at time 4 
IND5  indicator for measure at time 5 

 

The five indicators were created to facilitate use of HMLM. Data for the first two children are 

shown in Fig. 10.1. 

 

Child 15 had data at all five years. Child 33, however, did not have data for the fourth year. 

 

Figure 10.1 Two children in the NYS1.SAV data set 

10.1.1.2 Level-2 file  

The level-2 data file, NYSB.SAV, consists of three variables on 239 youths. The file has the same 

structure as that for HLM2. The variables are: 

 
FEMALE  an indicator for gender (1 = female, 0 = male) 
MINORITY  an indicator for ethnicity (1 = minority, 0 = other) 
INCOME  income 

 

The construction of the MDM involves three major steps: 

 

1. Select type of input data. 

2. Supply the program with the appropriate data-defining information. 

3. Check whether the data have been properly read into the program. 

 

The steps are very similar to the ones described in Section 2.5.1. Select HMLM as the MDM type 

at the Select MDM type dialog box (see Figure 2.4) and inform WHLM the type of data input.  
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While the structure of HMLM input files is almost the same as in HLM2, there is one important 

difference: the indicator variables. In order to create these, one first needs to know the maximum 

number of level-1 records per level-2 group; this determines the number of indicators. We shall 

call them the number of “occasions.” (This is the number of time points in a repeated measures 

study or the number of outcome variables in a cross-sectional multivariate study. Also note that 

each person does not need to have this number of occasions.) Then create the indicator variables 

so that a given variable takes on the value of 1.0 if the given occasion is at this time point, 0.0 

otherwise. Looking at  Figure 10.1, we see that IND1 is 1 if AGE11 is 0, IND2 is 1 if AGE11 is 1, 

IND3 is 1 if AGE11 is 2, and so on. Fig 10.2 shows the Choose variables – HMLM dialog box 

where the indicator variables are checked before the MDM file is created. This dialog box can be 

opened from the Level-1 specification section in the Make MDM – HMLM dialog box. 

 

 

Figure 10.2 Choose variables – HMLM dialog box 

10.2 Executing analyses based on the MDM file 

The steps involved are similar to the ones for HLM2 as described on Section 2.5.2. It is necessary 

to specify  

 
1. the level-1 model, 

2. the level-2 structural model, and  

3. the level-1 coefficients as random or non-random.  

 
Under HMLM, level-1 predictors having random effects must have the same value for all 

participants at a given occasion. If the user specifies a predictor not fulfilling this condition to 

have a random effect, such coefficients will be automatically set as non-random by the program. 

Furthermore, an extra step for selecting the covariance structure for the models to be estimated is 

needed. Figure 10.3 displays the model specified for our example. Figure 10.4 shows the dialog 

box where the covariance structure is selected.  



161 
 

 

10.3 An annotated example of HMLM 

In the example below (see NYS1.MLM) we specify AGE13 and AGE13S as predictors at level 1. At 

level 2, the model is unconditional. This is displayed in Fig. 10.3. We shall compare three 

alternative covariance structures: 

 

 an unrestricted model, 

 the homogeneous model, 2 2

t   for all t, and 

 the heterogeneous model, which allows 2

t  to vary over time. 

 

 

Figure 10.3 Model specification window for the NYS example 

These three models are requested simply by checking the Heterogeneous option in the Basic 

Model Specifications – HMLM dialog box, as shown in Fig. 10.4. 
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Figure 10.4 Basic Model Specifications - HMLM dialog box 

 

Similarly, checking the Log-linear button will produce output on: 

 

 the unrestricted model, 

 the homogeneous model, and 

 the log-linear model for 2

t . 

 

In this case a modified model will be displayed, as shown in Fig. 10.5. To obtain this model, the 

Predictors of level-1 variance dialog box was used to select the variable EXPO. 
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Figure 10.5 Model specification window for the NYS example: loglinear model selection  

And, again similarly, choosing the 1st order auto-regressive option will produce unrestricted 

and homogeneous results in addition to first-order auto-regressive results. 

 

The data source for this run = NYS.MDM 
The command file for this run = nys1.hlm 
Output file name = nys1.html 
The maximum number of level-1 units = 1079 
The maximum number of level-2 units = 239 
The maximum number of iterations = 100 
 
The outcome variable is ATTIT  
 
The model specified for the fixed effects was: 
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Level-1 
Coefficients 

Level-2 
Predictors 

INTRCPT1, π0 INTRCPT2, β00 
# AGE13 slope, π1 INTRCPT2, β10 
# AGE13S slope, π2 INTRCPT2, β20 
 
'#' - The residual parameter variance for this level-1 coefficient has been set 
    to zero. 
 

Output for the Unrestricted Model 
 
Summary of the model specified 
 
Level-1 Model 
 

ATTITmi = (IND1mi)*ATTIT1i
*
 + (IND2mi)*ATTIT2i

*
 + (IND3mi)*ATTIT3i

*
 + (IND4mi)*ATTIT4i

*
 +   

       (IND5mi)*ATTIT5i
*
 

  
  

The level-1 model relates the observed data, Y, to the complete data, 
*Y . 

 
 

  ATTITt i
*
 = π0i + π1i*(AGE13t i) + π2i*(AGE13St i) + εt i 

 
Level-2 Model 
 

     π0i = β00 
     π1i = β10 
    π2i = β20 
 

For the restricted model, there is no random variation between persons in regression coefficient 

0 , 1 , and 2  because all random variation has been absorbed into Δ. 

 

Var(εi) = Δ 
 

Δ(0) 
IND1     0.03507    0.01671    0.01889    0.02149    0.02486 
IND2     0.01671    0.04458    0.02779    0.02468    0.02714 
IND3     0.01889    0.02779    0.07272    0.05303    0.04801 
IND4     0.02149    0.02468    0.05303    0.08574    0.06636 
IND5     0.02486    0.02714    0.04801    0.06636    0.08985 

 

The 5 5  matrix Δ contains the maximum likelihood estimates of the five variances (one for 

each time point) and ten covariances (one for each pair of time points). The associated 

correlation matrix is printed below. 

 

Standard errors of Δ 
IND1     0.00347    0.00304    0.00375    0.00413    0.00429 
IND2     0.00304    0.00434    0.00430    0.00457    0.00473 
IND3     0.00375    0.00430    0.00678    0.00631    0.00625 
IND4     0.00413    0.00457    0.00631    0.00811    0.00736 
IND5     0.00429    0.00473    0.00625    0.00736    0.00853 
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Δ (as correlations)  
IND1    1.000   0.423   0.374   0.392   0.443 
IND2    0.423   1.000   0.488   0.399   0.429 
IND3    0.374   0.488   1.000   0.672   0.594 
IND4    0.392   0.399   0.672   1.000   0.756 
IND5    0.443   0.429   0.594   0.756   1.000 
 

The 5 5  matrix above contains estimated standard errors for each element of Δ. 

 

The value of the log-likelihood function at iteration 8 = 1.891335E+002 

 
Final estimation of fixed effects:  
 

Fixed Effect  Coefficient 
 Standard 
      error 

 t-
ratio 

 Approx. 
d.f. 

 p-
value 

For INTRCPT1, π0 
    INTRCPT2, β00 0.320244 0.014981 21.377 238 <0.001 
For AGE13 slope, π1 
    INTRCPT2, β10 0.059335 0.004710 12.598 238 <0.001 
For AGE13S slope, π2 
    INTRCPT2, β20 0.000330 0.003146 0.105 238 0.917 

 

The expected log attitude at age 13 is 0.320244. The mean linear growth rate of increase is 

estimated to be 0.059335, t = 12.598, indicating a highly significantly positive average rate of 

increase in deviant attitude at age 13. The quadratic rate is not statistically significant.  

 
Statistics for the current model 
 
Deviance = -378.266936 
Number of estimated parameters = 18 

 

There are 3 fixed effects (f  = 3) and five observations in the “complete data”  for each person (T 

= 5). Thus, there are a total of ( 1) / 2 3 5(5 1) / 2 18f T T       parameters. This is the end of 

the unrestricted model output. 

 

Next follows the results for the homogeneous level-1 variance. 

 

 Output for Random Effects Model with Homogeneous Level-1 Variance 
 
Summary of the model specified 
 
Level-1 Model 

 

     ATTITmi = (IND1mi)*ATTIT1i
*
 + (IND2mi)*ATTIT2i

*
 + (IND3mi)*ATTIT3i

*
 + (IND4mi)*ATTIT4i

*
 +  

 (IND5mi)*ATTIT5i
*
 

 

     ATTITt i
*
 = π0i + π1i*(AGE13t i) + π2i*(AGE13St i) + εt i 
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Level-2 Model 

 
    π0i = β00 + r0i 
    π1i = β10 + r1i 
    π2i = β20 + r2i 
 
Var(εi) = Var(Ari + ei) = Δ = AτA' + σ

2
I 

 

The above equation, written with subscripts and Greek letters, is  

 
* '( )Var Y ATA     

where 2

TI  . 

 

A 

IND1     1.00000    -2.00000    4.00000 
IND2     1.00000    -1.00000    1.00000 
IND3     1.00000    0.00000    0.00000 
IND4     1.00000    1.00000    1.00000 
IND5     1.00000    2.00000    4.00000 
 

The above matrix describes the design matrix on occasions one through five. 

 

Iterations stopped due to small change in likelihood function 
 

Note: The results below duplicate exactly the results produced by a standard HLM2 run using 

homogeneous level-1 variance. 

 

Final Results - Iteration 5 
 

               Parameter Standard Error 
σ

2 0.02421 0.001672 

 

τ 
INTRCPT1,r0    0.04200    0.00808    -0.00242 
AGE13,r1    0.00808    0.00277    -0.00012 
AGE13S,r2    -0.00242    -0.00012    0.00049 

 

Standard errors of τ 
INTRCPT1,r0    0.00513    0.00127    0.00089 
AGE13,r1    0.00127    0.00054    0.00024 
AGE13S,r2    0.00089    0.00024    0.00025 

 

τ (as correlations)  
INTRCPT1,r0   1.000   0.749  -0.532 

AGE13,r1   0.749   1.000  -0.101 

AGE13S,r2  -0.532  -0.101   1.000 
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Δ 
IND1     0.03536    0.01388    0.01616    0.01801    0.01943 

IND2     0.01388    0.04870    0.03150    0.03488    0.03464 

IND3     0.01616    0.03150    0.06620    0.04766    0.04849 

IND4     0.01801    0.03488    0.04766    0.08056    0.06095 

IND5     0.01943    0.03464    0.04849    0.06095    0.09625 
 

The 5 5  matrix above contains the five variance and ten covariance estimates implied by the 

“homogeneous level-1 variance“ model. 

 

 Δ (as correlations)  
IND1    1.000   0.334   0.334   0.338   0.333 
IND2    0.334   1.000   0.555   0.557   0.506 
IND3    0.334   0.555   1.000   0.653   0.607 
IND4    0.338   0.557   0.653   1.000   0.692 
IND5    0.333   0.506   0.607   0.692   1.000 
 
The value of the log-likelihood function at iteration 5 = 1.741132E+002 
 

 Final estimation of fixed effects:  
 

Fixed Effect  Coefficient 
 Standard 
error 

 t-ratio  Approx. 
d.f. 

 p-value 

For INTRCPT1, π0 
    INTRCPT2, β00 0.327231 0.015306 21.379 238 <0.001 
For AGE13 slope, π1 
    INTRCPT2, β10 0.064704 0.004926 13.135 238 <0.001 
For AGE13S slope, π2 
    INTRCPT2, β20 0.000171 0.003218 0.053 238 0.958 

 
Statistics for the current model 
 
Deviance = -348.226421 
Number of estimated parameters = 10 
 

There are 3 fixed effects (f  = 3); the dimension of   is 3, and a common 2  is estimated at 

level-1. Thus, there are a total of ( 1) / 2 1 3 3(3 1) / 2 1 10f r r         parameters. 

 

This is the end of the output for the “homogeneous level-1 variance“ model. Finally, the 

heterogeneous level-1 variance solution is listed. 

  
Output for Random Effects Model with Heterogeneous Level-1 Variance 
 
Summary of the model specified 
 
Level-1 Model 
 

ATTITmi = (IND1mi)*ATTIT1i
*
 + (IND2mi)*ATTIT2i

*
 + (IND3mi)*ATTIT3i

*
 + (IND4mi)*ATTIT4i

*
 +   

       (IND5mi)*ATTIT5i
*
 

 
     ATTITt i

*
 = π0i + π1i*(AGE13t i) + π2i*(AGE13St i) + εt i 

 
Level-2 Model 

 

    π0i = β00 + r0i 
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    π1i = β10 + r1i 
    π2i = β20 + r2i 
 
 

Var(εi) = Var(Ari + ei) = Δ = A*τ*A' + diag(σ
2
1,...,σ

2
5) 

 

The above equation, written with subscripts and Greek letters, is  

 
* '( )Var Y ATA   

 

where  2

tdiag   , i.e. that is,   is now a diagonal matrix with diagonal elements 2

t , the 

variance associated with occasion t,  t = 1, 2, …, T. 

 

A 
IND1     1.00000    -2.00000    4.00000 
IND2     1.00000    -1.00000    1.00000 
IND3     1.00000    0.00000    0.00000 
IND4     1.00000    1.00000    1.00000 
IND5     1.00000    2.00000    4.00000 
 
 

Iterations stopped due to small change in likelihood function 
 
Final Results - Iteration 8 
 

               σ
2 

Standard 
Error 

IND1  0.01373 0.005672 
IND2  0.02600 0.003296 
IND3  0.02685 0.003658 
IND4  0.02602 0.003633 
IND5  0.00275 0.007377 
 

The five estimates above are the estimates of the level-1 variance for each time point. 

 

τ 
INTRCPT1,r0    0.04079    0.00736    -0.00241 
AGE13,r1    0.00736    0.00382    0.00025 
AGE13S,r2    -0.00241    0.00025    0.00106 

 

Standard errors of τ 
INTRCPT1,r0    0.00512    0.00124    0.00088 
AGE13,r1    0.00124    0.00066    0.00042 
AGE13S,r2    0.00088    0.00042    0.00030 

 

τ (as correlations)  
INTRCPT1,r0   1.000   0.590  -0.366 
AGE13,r1   0.590   1.000   0.124 
AGE13S,r2  -0.366   0.124   1.000 
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Δ 
IND1     0.03410    0.01707    0.01646    0.01851    0.02325 
IND2     0.01707    0.05165    0.03103    0.03322    0.03223 
IND3     0.01646    0.03103    0.06764    0.04574    0.04588 
IND4     0.01851    0.03322    0.04574    0.08208    0.06421 
IND5     0.02325    0.03223    0.04588    0.06421    0.08996 
 

The 5 5  matrix above contains the estimates of five variances and ten covariances implied by 

the “heterogeneous level-1 variance“ model. 

 

Δ (as correlations)  
IND1    1.000   0.407   0.343   0.350   0.420 
IND2    0.407   1.000   0.525   0.510   0.473 
IND3    0.343   0.525   1.000   0.614   0.588 
IND4    0.350   0.510   0.614   1.000   0.747 
IND5    0.420   0.473   0.588   0.747   1.000 
 
The value of the log-likelihood function at iteration 8 = 1.816074E+002 
 

Final estimation of fixed effects:  
 

Fixed Effect  Coefficient 
 Standard 
error 

 t-ratio  Approx. 
d.f. 

 p-value 

For INTRCPT1, π0 
    INTRCPT2, β00 0.327646 0.015252 21.482 238 <0.001 

For AGE13 slope, π1 
    INTRCPT2, β10 0.060864 0.004737 12.849 238 <0.001 

For AGE13S slope, π2 
    INTRCPT2, β20 -0.000541 0.003178 -0.170 238 0.865 
 
  

Statistics for the current model 
 
Deviance = -363.214879 
Number of estimated parameters = 14 

 

There are 3 fixed effects (f  = 3), the dimension of   is 3, and there are five observations 

intended for each person, each associated with a unique level-1 variance. Thus, there are a total 

of ( 1) / 2 3 3(4) / 2 5 14f r r T        parameters. 

 
Summary of Model Fit 
 

Model 
Number of 
Parameters 

Deviance 

1. Unrestricted 18 -378.26694 
2. Homogeneous σ

2 10 -348.22642 
3. Heterogeneous σ

2 14 -363.21488 

 

Model Comparison χ
2   d.f. p-value 

Model 1 vs Model 2 30.04052 8 <0.001 
Model 1 vs Model 3 15.05206 4 0.005 
Model 2 vs Model 3 14.98846 4 0.005 

 

The model deviances are employed to evaluate the fits of the three models (unrestricted, 

homogeneous 2 , and heterogeneous 2 ). Differences between deviances are distributed 
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asymptotically  as chi-square variates under the null hypothesis that the simpler model fits the 

data as well as the more complex model does. The results show that Model 1 fits better than does 

the homogeneous sigma squared model 2  = 30.04052, df = 8; it also fits better than does the 

heterogeneous sigma squared model 2  = 15.05206, df = 4. 

 

In addition to the evaluation of models based on their fit to the data, the above results can be 

used to check the sensitivity of key inferences to alternative specifications of the variance-

covariance structure. For instance, one could compare the mean and variance in the rate of 

change at age 13 obtained in Model 2 and Model 3 to assess how robust the results are to 

alternative plausible covariance specifications. The mean rate, 
10 , for Model 2 is 0.064704 (s.e. 

= 0.004926), and the variance, 
22 , is 0.00277 (s.e. = 0.00054). The mean rate, G10, for Model 3 

is 0.060864 (s.e. = 0.004737), and the variance, 22 , is 0.00382 (s.e. = 0.00066). The results are 

basically similar. See Raudenbush (2001) for a more detailed analysis of alternative covariance 

structures for polynomial models of individual growth and change using the same NYS data sets 

employed here for the illustrations. 

 

Below are partial outputs for two random effect models. 

 

Output for Random Effects Model for Log-linear model for Level-1 Variance 
 
Summary of the model specified 
 
Level-1 Model 
 

ATTITmi = (IND1mi)*ATTIT1i
*
 + (IND2mi)*ATTIT2i

*
 + (IND3mi)*ATTIT3i

*
 + (IND4mi)*ATTIT4i

*
 +   

       (IND5mi)*ATTIT5i
*
 

 
     ATTITt i

*
 = π0i + π1i*(AGE13t i) + π2i*(AGE13St i) + εt i 

 
 
Level-2 Model 

 
    π0i = β00 + r0i 
    π1i = β10 + r1i 
    π2i = β20 + r2i 
 
 
 Var(εi) = Var(Ari + ei) = Δ = AτA' + diag(σ

2
1,...,σ

2
5) 

 

The above equation, written with subscripts and Greek letters, is  

 
* '( )Var Y ATA   

where 2( )tdiag   , and 

2

0 1log( ) ( )t t =  + EXPO .    
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A  
IND1     1.00000    -2.00000    4.00000 
IND2     1.00000    -1.00000    1.00000 
IND3     1.00000    0.00000    0.00000 
IND4     1.00000    1.00000    1.00000 
IND5     1.00000    2.00000    4.00000 

  
 

Iterations stopped due to small change in likelihood function 

 

Final results – Iteration 7 
 

               Parameter Standard Error 

α0 -3.72883 0.069238 
α1 -1.43639 1.053241 

  

               σ
2 

IND1  0.02690 
IND2  0.02677 
IND3  0.02419 
IND4  0.02188 
IND5  0.02136 

 

τ 
INTRCPT1,r0    0.04255    0.00831    -0.00257 
AGE13,r1    0.00831    0.00277    -0.00005 
AGE13S,r2    -0.00257    -0.00005    0.00051 

 

Standard errors of τ 
INTRCPT1,r0    0.00517    0.00128    0.00089 
AGE13,r1    0.00128    0.00054    0.00025 
AGE13S,r2    0.00089    0.00025    0.00025 

 

τ (as correlations)  
INTRCPT1,r0   1.000   0.766  -0.549 
AGE13,r1   0.766   1.000  -0.042 
AGE13S,r2  -0.549  -0.042   1.000 

 

Δ 
IND1     0.03576    0.01267    0.01566    0.01782    0.01917 
IND2     0.01267    0.05095    0.03168    0.03516    0.03464 
IND3     0.01566    0.03168    0.06674    0.04829    0.04889 
IND4     0.01782    0.03516    0.04829    0.07909    0.06192 
IND5     0.01917    0.03464    0.04889    0.06192    0.09510 
 

The 5 5  matrix above contains the variance and covariance estimates implied by the “log-

linear” model for the level-1 variance. 
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Δ (as correlations)  
IND1    1.000   0.297   0.320   0.335   0.329 
IND2    0.297   1.000   0.543   0.554   0.498 
IND3    0.320   0.543   1.000   0.665   0.614 
IND4    0.335   0.554   0.665   1.000   0.714 
IND5    0.329   0.498   0.614   0.714   1.000 
 
The value of the log-likelihood function at iteration 7 = 1.749582E+002 
 

Final estimation of fixed effects:  
 

Fixed Effect  Coefficient 
 Standard 
error 

 t-ratio  Approx. 
d.f. 

 p-value 

For INTRCPT1, π0 
    INTRCPT2, β00 0.328946 0.015379 21.390 238 <0.001 
For AGE13 slope, π1 
    INTRCPT2, β10 0.064661 0.004923 13.135 238 <0.001 
For AGE13S slope, π2 
    INTRCPT2, β20 -0.000535 0.003222 -0.166 238 0.869 

 
Statistics for the current model 
 
Deviance = -349.916489 
Number of estimated parameters = 11 

 

There are 3 fixed effects (f  = 3), the dimension of τ is 3 (r = 3), and there is 1 intercept and 1 

explanatory (H = 1) variable. Thus, there are a total of f + r(r+1)/2 + 1 + H = 3 + 3(3+1)/2 + 1 + 

1 = 11 parameters. 

 

Next are the results for the first-order auto-regressive model (Example: NYS4.MLM) 

 
Output for Random Effects Model First-order Autoregressive Model for Level-1 Variance 
 
Summary of the model specified 
 
Level-1 Model 

 
ATTITmi = (IND1mi)*ATTIT1i

*
 + (IND2mi)*ATTIT2i

*
 + (IND3mi)*ATTIT3i

*
 + (IND4mi)*ATTIT4i

*
 +  

 (IND5mi)*ATTIT5i
*
 

 
    ATTITt i

*
 = π0i + π1i*(AGE13t i) + π2i*(AGE13St i ) + εt i 

 
Level-2 Model 

 
    π0i = β00 + r0i 
    π1i = β10 
    π2i = β20 

 

Note that 1  and 2  are specified as non-random due to the fact that the time-series is relatively 

short and therefore the data do not allow the estimation of both random slopes and an 

autocorrelation parameter. 

 
Var(εi) = Var(Ari + ei) = Δ = AτA' + σ

2
ρ

|t - t'|
  

 

The above equation, written with subscripts and Greek letters, is  
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* '( )Var Y ATA   

where  

|t-t |2 = .


  

  

A 
IND1     1.00000 
IND2     1.00000 
IND3     1.00000 
IND4     1.00000 
IND5     1.00000 
  
 

Iterations stopped due to small change in likelihood function 
 
Final Results - Iteration 6 
 

               Parameter Standard Error 
ρ 0.39675 0.053849 
σ

2 0.04158 0.003582 
 

Note that the maximum-likelihood estimate of ̂   = 0.397 is much larger than its standard error 

(0.054), suggesting a significantly positive autocorrelation.  

 

τ 
INTRCPT1,r0    0.02427 

 

Standard error of τ 
INTRCPT1,r0    0.00450 

 

Δ 
IND1     0.06585    0.04077    0.03081    0.02686    0.02530 
IND2     0.04077    0.06585    0.04077    0.03081    0.02686 
IND3     0.03081    0.04077    0.06585    0.04077    0.03081 
IND4     0.02686    0.03081    0.04077    0.06585    0.04077 
IND5     0.02530    0.02686    0.03081    0.04077    0.06585 
 

The 5 5  matrix above contains the variance and covariance estimates implied by the “auto-

correlation” model for the level-1 variance. 

 

Δ (as correlations)  
IND1    1.000   0.619   0.468   0.408   0.384 
IND2    0.619   1.000   0.619   0.468   0.408 
IND3    0.468   0.619   1.000   0.619   0.468 
IND4    0.408   0.468   0.619   1.000   0.619 
IND5    0.384   0.408   0.468   0.619   1.000 
 
The value of the log-likelihood function at iteration 6 = 1.471600E+002 
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Final estimation of fixed effects: 
  

Fixed Effect  Coefficient 
 Standard 
error 

 t-ratio  Approx. 
d.f. 

 p-value 

For INTRCPT1, π0 
    INTRCPT2, β00 0.327579 0.015265 21.459 238 <0.001 
For AGE13 slope, π1 
    INTRCPT2, β10 0.061428 0.004836 12.703 1076 <0.001 
For AGE13S slope, π2 
    INTRCPT2, β20 0.000211 0.003373 0.062 1076 0.951 

 
Statistics for the current model 
 
Deviance = -294.319916 
Number of estimated parameters = 6 

 
Summary of Model Fit 
 

Model 
Number of 
Parameters 

Deviance 

1. Unrestricted 18 -378.26694 
2. Homogeneous σ

2 5 -229.01630 
3. First order Autoregressive 6 -294.31992 

10.4 An analysis using HMLM2 via Windows mode 

To illustrate how to use HMLM2, we use the data files from the public school example described 

in Section 4.1.1.1. We prepared six indicators for the measures of mathematics proficiency 

collected over the six years and put them in the level-1 file, EG1.SAV. The new level-1 file is 

called EG1HMLM2.SAV. The same level-2 and level-3 files, EG2.SAV and EG3.SAV are used. The 

MDM file created is EGHMLM2.MDM. Like in the case in HMLM, users need to tell the program 

what the indicator variables are while creating the MDM file (see Fig. 10.2). 

10.5 Executing analyses based on the MDM file 

The steps involved are similar to the ones for HMLM outlined previously and for HLM3 as 

described in Section 4.2. The user specifies  

1. the level-1 model, 

2. the level-2 structural model, and  

3. the level-1 coefficients as random or non-random.  

 
In addition, the user selects the covariance structure for the models to be estimated. Below is the 

output for the linear growth model specified in Section 4.2. As in the case for HMLM, the results 

allow us to compare model fit and assess sensitivity of inferences with alternative specification 

of variance-covariance structures. 

10.5.1 1Specifications for this HMLM2 run 

 
Problem Title: no title 
 
The data source for this run = EGHMLM2.MDM 
The command file for this run = EG.HLM 
Output file name = hmlm2.html 
The maximum number of level-1 units = 7230 
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The maximum number of level-2 units = 1721 
The maximum number of level-3 units = 60 
The maximum number of iterations = 100 
 
The outcome variable is MATH  
 
The model specified for the fixed effects was: 
 

The model specified for the fixed effects 
 

Level-1 Level-2 Level-3 
INTRCPT1, π0 INTRCPT2, β00 INTRCPT3 ,γ000 
YEAR slope, π1 INTRCPT2, β10 INTRCPT3 ,γ100 
 
Output for the Unrestricted Model 
 
Summary of the model specified 
 
Level-1 Model 

      
 MATHmij = (IND1mij)*MATH1ij

*
 + (IND2mij)*MATH2ij

*
 + (IND3mij)*MATH3ij

*
 + (IND4mij)*MATH4ij

*
 +   

     (IND5mij)*MATH5ij
*
 + (IND6mij)*MATH6ij

*
 

 
     MATHtij

*
 = π0ij + π1ij*(YEARtij) + εtij 

 
Level-2 Model 

 
     π0ij = β00j  
     π1ij = β10j  

 
Level-3 Model 

          
  β00j = γ000 + u00j 
         β10j = γ100 + u10j 
 
  Var(εij) = Δ 
 

Δ(0) 
IND1     0.04268    0.01233    0.01919    0.01968    0.01506    0.00898 
IND2     0.01233    0.60634    0.35457    0.42101    0.31132    0.24927 
IND3     0.01919    0.35457    0.76957    0.62363    0.42394    0.35205 
IND4     0.01968    0.42101    0.62363    1.15453    0.67302    0.52773 
IND5     0.01506    0.31132    0.42394    0.67302    0.81870    0.55086 
IND6     0.00898    0.24927    0.35205    0.52773    0.55086    0.65701 

  

τβ(0) 
INTRCPT1  YEAR  
INTRCPT2 ,β00 INTRCPT2 ,β10 
   0.20128    0.01542 
   0.01542    0.01608 

 

The value of the log-likelihood function at iteration 1 = -8.445655E+003 
The value of the log-likelihood function at iteration 2 = -8.228973E+003 
The value of the log-likelihood function at iteration 3 = -8.166659E+003 
The value of the log-likelihood function at iteration 4 = -8.126574E+003 
The value of the log-likelihood function at iteration 5 = -8.097070E+003 
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Iterations stopped due to small change in likelihood function 
 
Final Results - Iteration 32 

 

 Δ 
IND1     0.67340    0.31616    0.38755    0.52412    0.53030    0.38971 
IND2     0.31616    0.77832    0.47127    0.56726    0.54171    0.50187 
IND3     0.38755    0.47127    0.91072    0.76829    0.66199    0.64640 
IND4     0.52412    0.56726    0.76829    1.24542    0.88364    0.81782 
IND5     0.53030    0.54171    0.66199    0.88364    1.05646    0.84356 
IND6     0.38971    0.50187    0.64640    0.81782    0.84356    0.98722 

 

  

Standard errors of Δ 
IND1     0.08003    0.05328    0.07256    0.02999    0.02811    0.04341 
IND2     0.05328    0.05757    0.06998    0.02542    0.03289    0.03656 
IND3     0.07256    0.06998    0.07252    0.02966    0.03284    0.03565 
IND4     0.02999    0.02542    0.02966    0.02844    0.03044    0.03913 
IND5     0.02811    0.03289    0.03284    0.03044    0.03030    0.03518 
IND6     0.04341    0.03656    0.03565    0.03913    0.03518    0.03859 

 

Δ (as correlations)  
IND1 ,π0   1.000   0.437   0.495   0.572   0.629   0.478 
IND2 ,π1   0.437   1.000   0.560   0.576   0.597   0.573 
IND3 ,π2   0.495   0.560   1.000   0.721   0.675   0.682 
IND4 ,π3   0.572   0.576   0.721   1.000   0.770   0.738 
IND5 ,π4   0.629   0.597   0.675   0.770   1.000   0.826 
IND6 ,π5   0.478   0.573   0.682   0.738   0.826   1.000 

 

 τβ 

INTRCPT1  YEAR  
INTRCPT2 ,β00 INTRCPT2 ,β10 
   0.14824    0.01268 
   0.01268    0.00935 

  

Standard Errors of τβ 
INTRCPT1  YEAR  
INTRCPT2 ,β00 INTRCPT2 ,β10 
   0.03286    0.00626 
   0.00626    0.00218 

 

 τβ (as correlations)  
INTRCPT1/INTRCPT2,β00   1.000   0.341 
YEAR/INTRCPT2,β10   0.341   1.000 
 
The value of the log-likelihood function at iteration 32 = -7.980254E+003 
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Final estimation of fixed effects:  
 

Fixed Effect  Coefficient 
 Standard 
error 

 t-ratio  Approx. 
d.f. 

 p-value 

For INTRCPT1, π0 
   For INTRCPT2, β00 

    INTRCPT3 ,γ000 -0.824938 0.054960 -15.010 59 <0.001 
For YEAR slope, π1 
   For INTRCPT2, β10 

    INTRCPT3 ,γ100 0.755026 0.014229 53.062 59 <0.001 
 

Statistics for the current model 
 
Deviance = 15960.507331 
Number of estimated parameters = 26 
 

Output for Random Effects Model with Homogeneous Level-1 Variance 
 
Summary of the model specified 

 
Level-1 Model 

 
 MATHmij = (IND1mij)*MATH1ij

*
 + (IND2mij)*MATH2ij

*
 + (IND3mij)*MATH3ij

*
 + (IND4mij)*MATH4ij

*
 +   

     (IND5mij)*MATH5ij
*
 + (IND6mij)*MATH6ij

*
 

 
     MATHtij

*
 = π0ij + π1ij*(YEARtij) + εtij 

 
Level-2 Model 

        
 π0ij = β00j + r0ij 
      π1ij = β10j + r1ij 

 
Level-3 Model 

 
β00j = γ000 + u00j 
β10j = γ100 + u10j 
 
Var(εij) = Var(Arij + eij) = Δ = AτπA' + σ

2
I 

 

A 
IND1     1.00000    -2.50000 
IND2     1.00000    -1.50000 
IND3     1.00000    -0.50000 
IND4     1.00000    0.50000 
IND5     1.00000    1.50000 
IND6     1.00000    2.50000 

 

The value of the log-likelihood function at iteration 1 = -7.980254E+003 
The value of the log-likelihood function at iteration 2 = -8.271230E+003 
The value of the log-likelihood function at iteration 3 = -8.163134E+003 
The value of the log-likelihood function at iteration 4 = -8.163116E+003 

Iterations stopped due to small change in likelihood function 
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Final Results - Iteration 5 
 

               Parameter Standard Error 
σ

2 0.30144 0.006598 

 

 τπ 
INTRCPT1,r0    0.64046    0.04679 
YEAR,r1    0.04679    0.01126 

 

Standard errors of τπ 
INTRCPT1,r0    0.02515    0.00499 
YEAR,r1    0.00499    0.00197 

 

 τπ (as correlations)  
INTRCPT1,r0   1.000   0.551 
YEAR,r1   0.551   1.000 

 

  Δ 
IND1     0.77832    0.49553    0.51417    0.53282    0.55146    0.57011 
IND2     0.49553    0.82687    0.55533    0.58523    0.61513    0.64503 
IND3     0.51417    0.55533    0.89793    0.63765    0.67880    0.71996 
IND4     0.53282    0.58523    0.63765    0.99150    0.74247    0.79489 
IND5     0.55146    0.61513    0.67880    0.74247    1.10758    0.86981 
IND6     0.57011    0.64503    0.71996    0.79489    0.86981    1.24618 

 

 Δ (as correlations)  
IND1 ,π0   1.000   0.618   0.615   0.607   0.594   0.579 
IND2 ,π1   0.618   1.000   0.644   0.646   0.643   0.635 
IND3 ,π2   0.615   0.644   1.000   0.676   0.681   0.681 
IND4 ,π3   0.607   0.646   0.676   1.000   0.709   0.715 
IND5 ,π4   0.594   0.643   0.681   0.709   1.000   0.740 
IND6 ,π5   0.579   0.635   0.681   0.715   0.740   1.000 

 

τβ 

INTRCPT1  YEAR  
INTRCPT2 ,β00 INTRCPT2 ,β10 
   0.16532    0.01705 
   0.01705    0.01102 

 

Standard Errors of τβ 

INTRCPT1  YEAR  
INTRCPT2 ,β00 INTRCPT2 ,β10 
   0.03641    0.00720 
   0.00720    0.00252 

  

 τβ (as correlations)  
INTRCPT1/INTRCPT2,β00   1.000   0.399 
YEAR/INTRCPT2,β10   0.399   1.000 
 
The value of the log-likelihood function at iteration 5 = -8.163116E+003 
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Final estimation of fixed effects:  
 

Fixed Effect  Coefficient 
 Standard 
error 

 t-ratio  Approx. 
d.f. 

 p-value 

For INTRCPT1, π0 
   For INTRCPT2, β00 

    INTRCPT3 ,γ000 -0.779305 0.057829 -13.476 59 <0.001 
For YEAR slope, π1 
   For INTRCPT2, β10 

    INTRCPT3 ,γ100 0.763028 0.015262 49.996 59 <0.001 
 
Statistics for the current model 
 
Deviance = 16326.231108 
Number of estimated parameters = 9 
 

Output for Random Effects Model with Heterogeneous Level-1 Variance 
 
Summary of the model specified 
 
Level-1 Model 

 
 MATHmij = (IND1mij)*MATH1ij

*
 + (IND2mij)*MATH2ij

*
 + (IND3mij)*MATH3ij

*
 + (IND4mij)*MATH4ij

*
 +   

     (IND5mij)*MATH5ij
*
 + (IND6mij)*MATH6ij

*
 

 
     MATHtij

*
 = π0ij + π1ij*(YEARtij) + εtij 

 
Level-2 Model 

 
     π0ij = β00j + r0ij 
     π1ij = β10j + r1ij 

 
Level-3 Model 

 

      β00j = γ000 + u00j 

      β10j = γ100 + u10j 
 
 Var(εij) = Var(Arij + eij) = Δ = A*τπ*A' + diag(σ

2
1,...,σ

2
6) 

 

A 
IND1     1.00000    -2.50000 
IND2     1.00000    -1.50000 
IND3     1.00000    -0.50000 
IND4     1.00000    0.50000 
IND5     1.00000    1.50000 
IND6     1.00000    2.50000 

 

The value of the log-likelihood function at iteration 1 = -8.163116E+003 
The value of the log-likelihood function at iteration 2 = -8.072345E+003 
The value of the log-likelihood function at iteration 3 = -8.070198E+003 
The value of the log-likelihood function at iteration 4 = -8.070086E+003 
The value of the log-likelihood function at iteration 5 = -8.070080E+003 
 
Iterations stopped due to small change in likelihood function 
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Final Results - Iteration 7 

 

               σ
2 

Standard 
Error 

IND1  0.34891 0.059597 
IND2  0.38314 0.020556 
IND3  0.31846 0.014915 
IND4  0.37849 0.015840 
IND5  0.20344 0.011466 
IND6  0.15546 0.014216 

 

 τπ 
INTRCPT1,r0    0.62722    0.04769 
YEAR,r1    0.04769    0.01386 

 

 Standard errors of τπ 
INTRCPT1,r0    0.02499    0.00495 
YEAR,r1    0.00495    0.00205 

 

 τπ (as correlations)  
INTRCPT1,r0   1.000   0.511 
YEAR,r1   0.511   1.000 

 

Δ 
IND1     0.82432    0.48844    0.50148    0.51451    0.52755    0.54058 
IND2     0.48844    0.89848    0.54224    0.56913    0.59603    0.62293 
IND3     0.50148    0.54224    0.90146    0.62376    0.66452    0.70528 
IND4     0.51451    0.56913    0.62376    1.05687    0.73300    0.78762 
IND5     0.52755    0.59603    0.66452    0.73300    1.00493    0.86997 
IND6     0.54058    0.62293    0.70528    0.78762    0.86997    1.10778 

 

 Δ (as correlations)  

IND1 ,π0   1.000   0.568   0.582   0.551   0.580   0.566 
IND2 ,π1   0.568   1.000   0.603   0.584   0.627   0.624 
IND3 ,π2   0.582   0.603   1.000   0.639   0.698   0.706 
IND4 ,π3   0.551   0.584   0.639   1.000   0.711   0.728 
IND5 ,π4   0.580   0.627   0.698   0.711   1.000   0.825 
IND6 ,π5   0.566   0.624   0.706   0.728   0.825   1.000 

 

 τβ 

INTRCPT1  YEAR  
INTRCPT2 ,β00 INTRCPT2 ,β10 
   0.16531    0.01552 
   0.01552    0.00971 

  

Standard Errors of τβ 

INTRCPT1  YEAR  
INTRCPT2 ,β00 INTRCPT2 ,β10 
   0.03637    0.00677 
   0.00677    0.00225 
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 τβ (as correlations)  
INTRCPT1/INTRCPT2,β00   1.000   0.387 
YEAR/INTRCPT2,β10   0.387   1.000 
 
The value of the log-likelihood function at iteration 7 = -8.070079E+003 

 
Final estimation of fixed effects:  

 

Fixed Effect  Coefficient 
 Standard 
error 

 t-ratio  Approx. 
d.f. 

 p-value 

For INTRCPT1, π0 
   For INTRCPT2, β00 

    INTRCPT3 ,γ000 -0.781960 0.057792 -13.531 59 <0.001 
For YEAR slope, π1 
   For INTRCPT2, β10 

    INTRCPT3 ,γ100 0.751231 0.014452 51.983 59 <0.001 
 
Statistics for the current model 
 
Deviance = 16140.158919 
Number of estimated parameters = 14 

 
Summary of Model Fit 
 

Model 
Number of 
Parameter
s 

Deviance 

1. Unrestricted 26 15960.50733 
2. Homogeneous σ

2 9 16326.23111 
3. Heterogeneous σ

2 14 16140.15892 
 

Model Comparison χ
2   d.f. p-value 

Model 1 vs Model 2 365.72378 17 <0.001 
Model 1 vs Model 3 179.65159 12 <0.001 
Model 2 vs Model 3 186.07219 5 <0.001 
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11 Special Features 

 

 

 

11.1 Latent variable analysis 

Researchers may be interested in studying the randomly varying coefficients not only as 

outcomes, but as predictors as well. For instance, in a two-level repeated measures study of 

adolescents' tolerance of deviant behaviors, a user may choose to use the level-1 coefficient 

capturing the level of tolerance at the beginning of the study to predict the coefficient tapping the 

linear growth rate.  

 

Treating these coefficients as latent variables, the HLM2, HLM3, HMLM, HMLM2 modules allow 

researchers to study direct as well as indirect effects among them and to assess their impacts on 

coefficients associated with observed covariates in the model. Furthermore, using HMLM with 

unrestricted covariance structures, one may use latent variable analysis to run regressions with 

missing data.  

 

Below are two examples of latent variable analysis via Windows mode. See Appendix F for 

batch and interactive modes. 

11.1.1 A latent variable analysis using HMLM: Example 1 

The first example employs the National Youth Survey data sets described in Section 10.1. The 

MDM file is NYS.MDM, the level-1 data file is NYS1.SAV, and the level-2 file is NYS2.SAV. Figure 

11.1 displays a linear growth model with gender as a covariate. The command file that contains 

the model specification information is NYS2.MLM. 

 

We use 0 , the level of tolerance at age 11, to predict 1 , the linear growth rate, controlling for 

gender. Note that FEMALE must be in the model for both 0  and 1  to control for gender fully. 

Note also that 0  and 1  are latent variables, that is, they are free of measurement error, which is 

contained in e. Furthermore, we assess whether the effect of gender on the linear growth rate 

may change after controlling for the initial status at age 11. We select the homogeneous level-1 

variance option for this model. Thus, using HLM2 will yield identical results in this case. 

 

Below are the steps for setting up a latent variable analysis. 
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Figure 11.1 Model screen for the NYS example 

To set up a latent variable analysis 

 

1. After specifying the model, select the Estimation Settings option from the Other 
Settings  menu. 

2. Choose Latent Variable Regression to open the Latent Variable Regression 

dialog box (Figure 9.2 shows an example for the NYS example). 

3. Select the predictor(s) and outcome(s) by clicking the selection buttons in front of 

them (for our example, select INTRCPT1, 0 , as the predictor and AGE11, 1 , as the 

outcome). 

 

Select HMLM output to illustrate latent variable regression follows. 
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Figure 11.2 Latent Variable Regression dialog box for the NYS example  

 

Final estimation of fixed effects:  
 

Fixed Effect  Coefficient 
 Standard 
error 

 t-ratio  Approx. 
d.f. 

 p-value 

For INTRCPT1, π0 
    INTRCPT2, β00 0.221755 0.015961 13.894 237 <0.001 
     FEMALE, β01 -0.048274 0.022926 -2.106 237 0.035 

For AGE11 slope, π1 
    INTRCPT2, β10 0.070432 0.006781 10.386 237 <0.001 
     FEMALE, β11 -0.012003 0.009826 -1.222 237 0.222 

 

The results indicate that there is a significant linear growth rate in the attitude toward deviant 

behaviors (coefficient = 0.070432, s.e. = 0.006781) for males. Also, there is no gender effect on 

the linear growth rate. 

 

Latent Variable Regression Results 
 
The model specified (in equation format) 
 

    π1 = β10
*
 + β11

*
 (FEMALE) + β12

*
 ( π0) + r1

*
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Outcome Predictor 
Estimated 
Coefficient 

 Standard 
Error 

 t-ratio  p-value 

AGE11,r1,π1 INTRCPT2 ,β10
* 0.024765 0.024807 0.998 0.319 

  FEMALE ,β11
* -0.002062 0.013058 -0.158 0.875 

  π0,β12
* 0.205934 0.105410 1.954 0.050 

 

The results indicate that, controlling for gender, the initial status at age 11 has a marginally 

significant effect on the linear growth rate (coefficient = 0.205934, s.e. = 0.105410). There is no 

statistically significant partial gender effect, however. Indeed, the gender effect on 
1  appears 

somewhat reduced after controlling 
0 .  

 

 Latent Variable Regression: Comparison of Original and Adjusted Coefficients 
 

Outcome Predictor 
Original 
Coefficient 

Adjusted 
Coefficient 

Difference 
Standard 
Error of 
Difference 

AGE11,r1,π1 INTRCPT2  0.07043 0.02477 0.045667 0.024311 
  FEMALE  -0.01200 -0.00206 -0.009941 0.006941 
 
 

This table lists the original coefficients, the adjusted coefficients, and the difference between the 

two for the intercept and the gender effect. For the variable FEMALE, the “original coefficient” 

describes the total association, the “adjusted coefficient” describes the direct association, and the 

“difference”  is the indirect association between gender and the linear growth rate, respectively. 

 

 Var(r
*
) 

AGE11,r1    0.00196 

 

An estimate of the variance of  *

1r , the residual variance in 1 , controlling both FEMALE and 0 , 

is also given. 

 

As mentioned earlier, a latent variable analysis using HLM2 will reproduce identical results. The 

same procedures generalize to three-level applications (HMLM2, HLM3, & HGLM) to model 

randomly varying level-2 coefficients as outcome variables. See Raudenbush and Sampson 

(1999) for an example that implemented a latent variable analysis with a three-level model. In 

the study, they investigated the extent to which neighborhood social control mediated the 

association between neighborhood social composition and violence in Chicago.   

11.1.2 A latent variable analysis using HMLM: Example 2 

In this example, we illustrate how to use latent variable analysis to run regression with missing 

data with an artificial data set. We are interested in estimating regression coefficients that relate 

two predictors to the outcome. There are three intended measures, an outcome (OUTCOME) and 

two predictors (PRED1 and PRED2) for 15 participants in the data. Some participants are missing 

one or two measures. To use HMLM to run regression with missing data, we first re-organize the 

data and re-conceive the three measures for each participant j as “occasions of measurement. “ If 

the data are complete, each case has R = 3 occasions. If participant j is missing one value, there 

will only be 2 occasions for that participant, and if participant j is missing 2 values, there will be 

only 1 occasion for that case. The measure is then re-conceived as ijMEASURE , that is, the value 
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of the datum collected at occasion i for participant j, with 1,2,..., ji n , and with 3jn R  . If 

the data are complete for participant j, then: 

1

2 1

3 2

,

,

.

j j

j j

j j







MEASURE OUTCOME

MEASURE PRED

MEASURE PRED

 

 

Three indicators 
1 jIND , 

2 jIND , and 
3 jIND  indicating whether 

i jMEASURE  is 
jOUTCOME , 

1 ,jPRED  or 
2 jPRED  are added to the data set. 

 

Data for the first three participants are shown in Fig. 11.3. 

 

 

Figure 11.3 First three participants for Example 2 

Note that Participant 1 has complete data, Participant 2 has data on PRED1 and PRED2 but not 

the outcome, and the Participant 3 has data only on OUTCOME.  

 

Data on the measures and the three indicators constitute the level-1 data file, MISSING1.SAV, for 

the example. The level-2 file, MISSING2.SAV, contains a dummy variable, DUMMY, which is not 

to be used in the analysis. A MDM file, MISSING.MDM, is created. Figure 11.4 displays the model 

specified with unrestricted covariance structure for the missing data example. The file that 

contains the file specification information is MISSING1.MLM. 

 

To regress OUTCOME (IND1) on PRED1 (IND2) and PRED2 (IND3), select IND1 as the outcome and 

IND2 and IND3 as predictors in the Latent Variable Regression dialog box. 
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Figure 11.4 Model window for the missing data example 

The following selected output (example MISSING1.MLM) gives the latent variable regression 

results. 

 
Latent Variable Regression Results 
 
The model specified (in equation format) 
 

    π1 = β10
*
 + β11

*
 (π2) + β12

*
 (π3) + r1

*
    

 

 

Outcome Predictor 
Estimated 
Coefficient 

 Standard 
Error 

 t-ratio  p-value 

IND1 ,π1 INTRCPT2 ,β10
* -23.966159 14.173726 -1.691 0.117 

  π2,β11
* 0.879462 0.232665 3.780 0.003 

  π3,β12
* 0.544410 0.220194 2.472 0.029 

 
Latent Variable Regression: Comparison of Original and Adjusted Coefficients 
 

Outcome Predictor 
Original 
Coefficient 

Adjusted 
Coefficient 

Difference 
Standard 
Error of 
Difference 

IND1 ,π1 INTRCPT2  52.25565 -23.96616 76.221809 14.285875 

 

Var(r
*
) 

IND1     33.51133 
 

The results indicate that 2  (associated with IND2) and 3  (associated with IND3) have 

statistically significant effects on IND1 (OUTCOME)
4
.  

                                                
4
Raudenbush and Bryk (Hierarchical Linear Models, 2002) have shown that using this 

approach with complete data replicated the results of SPSS regression analysis for the regression 

coefficients. As HMLM adopts the full maximum likelihood estimation approach and the SPSS uses 

the restricted maximum likelihood approach, the two sets of standard errors estimated differ by a 
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11.2 Applying HLM to multiply-imputed data 

A satisfactory solution to the missing data problem involves multiple, model-based imputation 

(Rubin, 1987, Little & Rubin, 1987, Schafer, 1997). A multiple imputation procedure produces 

M “complete” data sets. Users can apply HLM2 and HLM3 to these multiply-imputed data to 

produce appropriate estimates that incorporate the uncertainty resulting from imputation. 

 

There can be multiply-imputed values for the outcome or one covariate, or for the outcome 

and/or covariates. 

 

HLM has two methods to analyze multiply-imputed data. They both use the same equations to 

compute the averages, so the method chosen depends on the data you are analyzing. 

 

“Plausible Values” as described in Sections 11.2.1 and 11.2.3. This method is usually preferable 

for data sets that have only one variable (outcome or predictor) for which you have several 

plausible values. In this case, you need to make one MDM file containing all of the plausible 

values, plus any other variables of interest. 

 

“Multiple Imputation” as described in Section 11.2.4. This method is necessary if you have more 

than one variable for which you have multiply-imputed data. This method also requires a 

different way of setting up MDM files. Here, you have to create as many MDMs as you have 

plausible vales. When making these MDMs, you should use the same level-2 file (and level-3 file 

if using HLM3), but several level-1 files are needed.  

 

Those variables that are not multiply imputed should be the same in all these level-1 files. The 

variables that are multiply imputed should be separated into the separate level-1 files, but they 

must have the same variable names across these level-1 files, since the same model is run on 

each of these MDMs. 

11.2.1 Data with multiply-imputed values for the outcome or one 
covariate 

HLM2 and HLM3 enable users to produce correct HLM estimates when using data sets that contain 

two or more values or plausible values for the outcome variable or one covariate. One such data 

set is the National Assessment of Educational Progress (NAEP), an U.S. Department of 

Education achievement test given to a national sample of fourth, eighth, and twelfth graders. 

 

Due to the use of balanced incomplete block (BIB) spiraling in the administration of the NAEP 

assessment battery, special procedures and calculations are necessary when estimating any 

population parameters and their standard errors with data sets such as NAEP. Every student was 

not tested on the same items, so item response theory (IRT) was used to estimate proficiency 

scores for each individual student. This procedure estimated a range or distribution of plausible 

values for each student's proficiency rather than an individual observed score. NAEP drew five 

                                                                                                                                                             

factor of 

J

J - Q -1
, where in this case J = 15 and Q = 2.  
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plausible values at random from the conditional distribution of proficiency scores for each 

student. The measurement error is due to the fact that these scores are estimated, rather than 

observed.  

 

In general, these plausible values are used to produce parameter estimates in the following way.  

 

 Each parameter is estimated for each of the five plausible values, and the five estimates 

are averaged.  

 Then, the standard error for this average estimate is calculated using the approach 

recommended by Little & Schenker (1995).  

 This formula essentially combines the average of the sampling error from the five 

estimates with the variance between the five estimates multiplied with a factor related to 

the number of plausible values. The result is the measurement error.  

 

In an HLM analysis, with either two- or three-levels, the parameter estimates are based on the 

average parameter estimates from separate HLM analyses of the five plausible values. That is, a 

separate HLM analysis is conducted on each of the five plausible values.  

 

Without HLM, these procedures could be performed by producing HLM estimates for each 

plausible value, and then averaging the estimates and calculating the standard errors using 

another computer program. These procedures are tedious and time-consuming, especially when 

performed on many models, grades, and dependent variables. 

 

HLM takes the plausible values into account in generating the HLM estimates. For each HLM 

model, the program runs each of the five (or the number specified) plausible values internally, 

and produces their average value and the correct standard errors. There will seem to be one 

estimate, but the five HLM estimates from the five plausible values are produced and their 

average and measurement error calculated correctly, thus ensuring an accurate treatment of 

plausible value data. The output is similar to the standard HLM program output, except that all the 

components are averaged over estimates derived from the five plausible values. In addition, the 

output from the five plausible value runs is available in a separate output file.  

11.2.2 Calculations performed 

The program conducts a separate HLM analysis for each plausible value. The output of the 

separate HLM analyses is written to files with consecutive numbers, for example, OUT.1, OUT.2, 

OUT.3, etc. Then, HLM calculates the average of the parameter estimates from the separate 

analyses and computes the standard errors. The output of the average HLM parameter estimates 

and their standard errors is found in the output file with the extension AVG.  

11.2.2.1 Average parameter estimates 

The following parameter estimates are averaged by HLM:  

 The fixed effects (gammas)  

 The reliabilities 

 The parameter variances (tau) and its correlations  

 The chi-square values to test whether the parameter variance is zero  

 The standard errors for the variance-covariance components (full maximum 
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likelihood estimates) 

 Multivariate hypothesis testing for fixed effects 

11.2.2.2 Standard error of the gammas  

The standard error of the averaged fixed effects (gammas) is estimated as described below. The 

Student's t-value is calculated by dividing the average gamma by its standard error, and the 

probability of the t-value is estimated from a standard t-distribution table.  

 

The standard error of the gammas consists of two components – sampling error and 

measurement error. The following routine provided in the NAEP Data Files User Guide (Rogers, 

et al., 1992) is used to approximate the component of error variance due to the error in 

imputations and to add it to the sampling error.  

 

Let ( 1,..., )m m M   represent the m-th plausible value. Let mt  represent the parameter estimate 

based on the m-th plausible value. Let mU  represent the estimated variance of mt .  

 Five HLM runs were conducted based on each plausible value m . The parameter 

estimates from these runs were averaged: 

* 1

M

m
m

t
t

M




       

 Equation Section 11  (09.01) 

 

 

 The variances of the parameters from these runs were averaged: 
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 The variance of the m estimates, mt , was estimated:  
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 The final estimate of the variance of the parameter estimate is the sum of the two 

components: 

 

  * 11 mV U M B              (09.04) 

where the degrees of freedom is computed: 

 

2. . ( 1)(1 ) ,d f M r    
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where  
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 

. 

 

The square root of this variance is the standard error of the gamma, and it is used in a standard 

Student's t formula to evaluate the statistical significance of each gamma.  

11.2.3 Working with plausible values in HLM 

Below is the procedure for running a plausible value analysis via Windows mode: 

 

To run a plausible value analysis 

 

1. After specifying the model, select the Estimation Settings option from the Other 
Settings  menu. 

2. Choose Plausible Values to open the Select Plausible Value Outcome Variables 

dialog box (See Figure 11.5 for an example). 

3. Select the first plausible value (either the outcome or a covariate) from the Choose first 

variable from level 1 equation drop-down menu. 

4. Double-click the other plausible values from the Possible choices box. 

5. Click OK. 

 

 

Figure 11.5 Select Plausible Value Outcome Variables dialog box 
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11.2.4 Data with multiply-imputed values for the outcome and 
covariates 

There may be multiply-imputed values for both the outcome and the covariates. To apply HLM to 

such data, it is necessary to prepare as many MDM files as the number of imputed data sets. Thus, 

if there are five imputed data sets, five MDM files with identical variable labels need to be 

prepared. To run these models in batch mode, refer to Section F.3 in Appendix F. 

 

Below are the commands for running an analysis with multiply-imputed data sets via Windows 

mode. 

 

To run an analysis with multiply-imputed data sets 

 

1. After specifying the model, select the Estimation Settings option from the Other 
Settings  menu. 

2. Choose Multiple Imputation to open the Multiple Imputation MDM files dialog box 

(See Figure 11.6 for an example). 

3. Enter the names of the MDM files that contain the multiply-imputed data either by typing 

into the File # edit boxes or clicking Browse to open them. 

4. Click OK. Model specification follows the usual format. 

 

The calculations involved are very similar to the ones mentioned in Section 11.2.2. 

 

 

Figure 11.6 Multiple Imputation MDM files dialog box 
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11.3 “V-Known” models for HLM2 

The V-known option in HLM2 is a general routine that can be used for applications where the 

level-1 variances (and covariances) are known. Included here are problems of meta-analysis (or 

research synthesis) and a wide range of other possible uses as discussed in Chapter 7 of 

Hierarchical Linear Models. The program input consists of Q random level-1 statistics for each 

group and their associated error variances and covariances. 

 

We illustrate the use of the program with the following data from the meta-analysis of teacher 

expectancy effects described on pp. 210-216 of Hierarchical Linear Models. Here we show the 

process of V-known analysis in its most generic form, which requires using the interactive mode. 

See Section 11.3.4 for an easier alternative method for Q = 1 using the Windows interface. 

 

 1   0.030 0.016  2.000  
 2   0.120  0.022  3.000  
 3  -0.140  0.028  3.000  
 4   1.180  0.139  0.000  
 5   0.260  0.136  0.000  
 6  -0.060  0.011  3.000  
 7  -0.020  0.011  3.000  
 8  -0.320  0.048  3.000  
 9   0.270  0.027  0.000 
10   0.800  0.063  1.000 
11   0.540  0.091  0.000 
12   0.180  0.050  0.000 
13  -0.020  0.084  1.000 
14   0.230  0.084  2.000 
15  -0.180  0.025  3.000 
16  -0.060  0.028  3.000 
17   0.300  0.019  1.000 
18   0.070  0.009  2.000 
19  -0.070   0.030  3.000 

11.3.1 Data input format 

Unlike the standard HLM2 program, the V-known routine uses only a single data input file. It 

consists of the following information: 

1. The first field is the unit ID in character format.  

2. This is followed by the Q statistics from each unit. In the teacher expectancy effects 

meta-analysis, Q equals one, the experiment effect size. (The effect size estimate appears 

in the third column of Table 7.1 in Hierarchical Linear Models.)  

3. Next are the Q(Q + 1)/2 error variances and covariances associated with the set of Q 

statistics. These variance-covariance elements must be specified in row-column sequence 

from the lower triangle of the matrix, i.e., 11 12 22 , 1, , , ..., ,Q Q QQV V V V V . For the meta-

analysis application only a single error variance is needed. (Note the values in the third 

column above are the squares of the standard errors that appear in the fourth column of 

Table 7.1.)  

4. Last are the potential level-2 predictor variables. In the teacher expectancy effects meta-

analysis, there was only one predictor, the number of weeks of prior contact. (See 

column 2 of Table 7.1). 
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The Q statistics, their error variances and covariances, and the level-2 predictors must be ordered 

as described above and have a numeric format. 

11.3.2 Creating the MDM file 

The V-known program must be implemented in batch or interactive mode; it is not available in 

Windows mode.  

 

We present below an example of an HLM2 session that creates a multivariate data matrix file 

using the V-known routine on the teacher expectancy effects data. 

 

 C:\HLM>HLM2 

 
 Will you be starting with raw data?  y 
 Is the input file a v-known file? y 
 How many level-1 statistics are there? 1 
 How many level-2 predictors are there? 1 
  Enter 8 character name for level-1 variable number 1: EFFSIZE 
 
 Enter 8 character name for level-2 variable number 1: WEEKS 
 Input format of raw data file (the first field must be the character ID) 
  format: (a2,3f12.3) 
  What file contains the data? expect.dat 
 
 Enter name of MDM file: expect.MDM 
    19 groups have been processed 

 

The file, EXPECT.DAT, contains the input data displayed above and the resulting multivariate 

data matrix are saved in the EXPECT.MDM file. Note that the input format has been specified for 

the character ID, the level-1 statistic (EFFSIZE), the associated variance, and the level-2 predictor 

(WEEKS). 

11.3.3 Estimating a V-known model 

Once the MDM file has been created, it can be used to specify and estimate a variety of models as 

in any other HLM2 application. The example below illustrates interactive use of the V-known 

program (example EXPECT.HLM).  

 

C:\HLM>hlm2 expect.MDM 
 
                          SPECIFYING AN HLM MODEL 
Level-1 predictor variable specification 
 
Which level-1 predictors do you wish to use? 
 The choices are:  
 For  EFFSIZE enter  1    
 
  level-1 predictor? (Enter 0 to end)  1 
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Level-1 predictor variable specification 
 
Which level-1 predictors do you wish to use? 
 The choices are:  
 For  EFFSIZE enter  1    
 
  level-1 predictor? (Enter 0 to end)  1 
 
Level-2 predictor variable specification 
Which level-2 variables do you wish to use? 
 
 The choices are:  
 For    WEEKS enter  1    
 
Which level-2 predictors to model  EFFSIZE? 
   Level-2 predictor? (Enter 0 to end)  1 
 
                        ADDITIONAL PROGRAM FEATURES 
 
Select the level-2 variables that you might consider for 
inclusion as predictors in subsequent models. 
 The choices are:  
 For    WEEKS enter  1    
 
Which level-2 variables to model  EFFSIZE? 
  Level-2 variable? (Enter 0 to end)  0 
 
Do you want to run this analysis with a heterogeneous sigma^2? n 
Do you wish to use any of the optional hypothesis testing procedures? n 
 
                           OUTPUT SPECIFICATION 
Do you want a residual file? n 
How many iterations do you want to do? 10000 
Do you want to see OLS estimates for all of the level-2 units? n 
 Enter a problem title: Teacher expectancy meta-analysis 
  Enter name of output file: expect.lis 
 
Computing . . ., please wait 
 
  Problem Title: Teacher expectancy meta-analysis 
 
  The data source for this run  = expect.MDM 
  The command file for this run =  
  Output file name              = expect.lis 
  The maximum number of level-2 units = 19 
  The maximum number of iterations = 10000 
  Method of estimation: restricted maximum likelihood 
  Note: this is a v-known analysis 
 
  The outcome variable is INTRCPT1     
 
  The model specified for the fixed effects was: 
 
 ------------------------------------------------------- 
   Level-1                  Level-2 
   Effects                  Predictors 
-------------------------------------------------------- 
          EFFSIZE, B1      INTRCPT2, G10    
                              WEEKS, G11    
 
 The model specified for the covariance components was: 
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 --------------------------------------------------------------------------- 
 
         Variance(s and covariances) at level-1 externally specified 
 
         Tau dimensions 
                EFFSIZE slope 
 
 Summary of the model specified (in equation format) 
 --------------------------------------------------------------------- 
 
Level-1 Model 
 
Y1 = B1 + E1 
 
Level-2 Model  
 
B1 = G10 + G11*(WEEKS) + U1 
 
 STARTING VALUES 
 
 Tau(0) 
  EFFSIZE,B(null)      0.02004  
 
 Estimation of fixed effects 
(Based on starting values of covariance components) 
 ------------------------------------------------------------------------------------------- 
                                       Standard              Approx. 
    Fixed Effect          Coefficient   Error      T-ratio    d.f.     P-value 
 -------------------------------------------------------------------------------------------- 
 For        EFFSIZE, B1 
    INTRCPT2, G10     0.433737   0.109700     3.954 17    0.001 
       WEEKS, G11       -0.168572   0.046563    -3.620   17    0.002 
 -------------------------------------------------------------------------------------------- 
 
The value of the likelihood function at iteration 1 = -3.414348E+001 
The value of the likelihood function at iteration 2 = -3.350241E+001 
The value of the likelihood function at iteration 3 = -3.301695E+001 
The value of the likelihood function at iteration 4 = -3.263749E+001 
The value of the likelihood function at iteration 5 = -3.121675E+001 
                                                   . 
                                                   . 
The value of the likelihood function at iteration 7849 = -2.979898E+001 
The value of the likelihood function at iteration 7850 = -2.979898E+001 
The value of the likelihood function at iteration 7851 = -2.979897E+001 
The value of the likelihood function at iteration 7852 = -2.979897E+001 
 
Iterations stopped due to small change in likelihood function 
 
******* ITERATION 7853 ******* 
 
Tau 
  EFFSIZE,B       0.00001  
 
Tau (as correlations) 
  EFFSIZE,B    1.000 
 
 --------------------------------------------------------------- 
  Random level-1 coefficient   Reliability estimate 
 --------------------------------------------------------------- 
   EFFSIZE, B                        0.000 
 --------------------------------------------------------------- 
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The value of the likelihood function at iteration 7853 = -2.979897E+001 
 
 Final estimation of fixed effects: 
 ---------------------------------------------------------------------------------------------- 
                                          Standard              Approx. 
    Fixed Effect           Coefficient   Error       T-ratio   d.f.      P-value 
 ---------------------------------------------------------------------------------------------- 
 For        EFFSIZE, B1 
    INTRCPT2, G10        0.408572   0.087146     4.688  17     0.000 
       WEEKS, G11         -0.157963   0.035943    -4.395 17     0.000 
 ---------------------------------------------------------------------------------------------- 
 
Final estimation of variance components: 
 ---------------------------------------------------------------------------------------------------- 
 Random Effect           Standard       Variance       df    Chi-square  P-value 
                           Deviation     Component 
 ---------------------------------------------------------------------------------------------------- 
  EFFSIZE,       U         0.00283       0.00001      17      16.53614    >.500 
 ---------------------------------------------------------------------------------------------------- 
 
 Statistics for current covariance components model 
 ------------------------------------------------------------------- 
 Deviance =     59.59795 
 Number of estimated parameters =    2 

 

In general, the HLM2 results for this example closely approximate the more traditional results that 

would be obtained from a graphical examination of the likelihood function. (For this particular 

model, the likelihood mode is at zero.) Note that the value of the likelihood was still changing 

after 7850 iterations. Often, HLM2 converges after a relatively small number of iterations. When 

the number of iterations required is large, as in this case, this indicates that the estimation is 

moving toward a boundary condition (in this example it is a variance estimate of zero for Tau). 

This can be seen by comparing the starting value estimate for Tau, 0.02004, with the final 

estimate of 0.00001. (For a further discussion see p. 202 of Hierarchical Linear Models.) 

11.3.4 V-known analyses where Q = 1 

There is an alternative and appealing method for analysis for V-known analyses when Q =1. This 

may be accomplished as follows: 

 

1. Select the Estimation Settings option from the Other Settings menu. 

2. Use the pull down menus to select the variable that represents the known level-1 

variance. 

 

This may be accomplished in either the two-level or the three-level HLM programs. 

11.4 Spatial dependence models for HLM2 

The spatial dependence option in HLM2 allows researchers to handle nested data collected in 

spatial settings. In addition to the clustering effects, the spatial HLM2 models accommodate 

dependence induced by contiguity or proximity in geographic locations. This type of models has 

applications for clustered data collected from contiguous geographic locations such as school 

districts, counties, neighborhoods, and countries. Verbitsky-Savitz and Raudenbush (2009), for 

example, applied these models to exploit the spatial dependence of neighborhood social 

processes to considerably improve the precision and validity of assessment of neighborhoods.  
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Below is an example of a spatial HLM2 model.  

11.4.1 A spatial analysis using HLM2 

This example uses data collected by the Project of Human Development in Chicago 

Neighborhoods (Sampson, Raudenbush, & Earl, 1997) on 7,729 residents living in 342 

neighborhoods. It is an unconditional model with a ten-item collective efficacy scale, defined as 

the fusion of social cohesion and informal social control, as the outcome.  

 

For spatial HLM2 models, the level-1 and level-2 models have the same structure as those 

described in Section 2.5. These two data files for the example, linked by level-2 neighborhood 

cluster IDs, are RESIDENT.SAV and NEIGHBOR.SAV. In the level-1 data file, there is one variable, 

collective efficacy (COLLEFF). In the level-2 data file, a dummy variable is included. The spatial 

dependence analysis requires another data file with information on spatial contiguity. The 

information allows the program to create a spatial weight matrix, W, which is a binary contiguity 

matrix indicating that sites are contiguous to each other. ROOK.SAV, contains such information 

for our illustrative example. The variables followed by the neighborhood cluster IDs are: 

 

 N1 – N10 (the first to the tenth adjoining neighborhoods, if any) 

 COUNT (the total number of contiguous neighborhoods) 

 

The data for the first ten neighborhoods are displayed in Fig 11.7. Note that neighborhood 1 (that 

is,  the neighborhood with ID = 1) shares a common boundary with two neighborhoods, 

specifically, neighborhoods 2 and 3. In contrast, neighborhood 2 shares a boundary with 4 

neighborhoods, neighborhoods 8, 6, 3, and 1. 

 

 

Figure 11.7  First ten cases in ROOK.SAV 

 

The file SPATIAL.MDMT stores the commands for creating the two-level multivariate data matrix 

file, SPATIAL.MDM. The procedure is very similar to those described in Section 2.5.1. An extra 

step needed is to instruct the program to include spatial dependence information with the 

following procedure: 
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Figure 11.8   Make HLM – Dialog Box 

 

At the Make MDM – HLM2 dialog box,  

1. Check the box for Include spatial dependence matrix (see Figure 11.8). 

2. Click Browse to select ROOK.SAV. 

3. Click Choose Variables to include the ID and the variables N1-N10 and COUNT.  

 

The file SPATIAL.HLM contains the commands for setting up the unconditional model. The 

procedure follows the steps outlined and illustrated in Section 2.5.2.5.  An additional step is to 

instruct HLM2 to run the model as a spatial dependence model by the following procedure: 

 

1. Open the Other Settings menu and select the Estimation Settings. 

2. Check the box for Run as spatial dependence model (see Figure 11.9). 

 

                                                

5 An exception is that only the intercept (β0) can be specified as random. 
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Figure 11.9 Estimation Settings – HLM2 

 

The model window for our illustrative example in Figure 11.10 gives the model specifications. 

 

 

Figure 11.10 Specification of the spatial dependence uncondtional model 

 

Note that a model for the spatial dependence model is given: 

 

0b Wb u 0  
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where as described in Verbitsky-Savitz and Raudenbush (2009), 

 

 
0b  is a vector of level-2 random spatially autoregressive effects; 

   is a spatial correlation parameter with zero indicating no spatial dependence and positive or 

 negative values indicating whether a site is typically surrounded by other sites with similar or 

 different values on the outcome;  

 W is the spatial weight matrix used in the analysis. As discussed earlier, it is constructed from 

 ROOK.SAV; and 

 u  is the level-2 error. 

 

A spatial dependence analysis using HLM2 provides two sets of results, one for regular HLM and 

the other HLM with spatial dependence. A comparison test of the fit of these models is performed 

and the result is given. Below is a partial output of the results of the unconditional model.  

 

Here are the partial results for the regular HLM: 

 
Iterations stopped due to small change in likelihood function 
 
σ

2
 = 0.42136 

 
Standard error of σ

2
 = 0.00693 

τ 

INTRCPT1,β0 0.08904 

 

 Standard error of τ  
INTRCPT1,β0 0.00850 

 

Random level-1 coefficient   Reliability estimate 

INTRCPT1,β0  0.799 

 
The value of the log-likelihood function at iteration 6 = -7.911855E+003 

 
Final estimation of fixed effects: 
 

Fixed Effect  Coefficient 
 Standard 
error 

 t-ratio 
 Approx. 
d.f. 

 p-value 

For INTRCPT1, β0  
    INTRCPT2, γ00  3.433243 0.018056 190.142 341 <0.001 

 
Final estimation of fixed effects 
(with robust standard errors)  
 

Fixed Effect  Coefficient 
 Standard 
error 

 t-ratio 
 Approx. 
d.f. 

 p-value 

For INTRCPT1, β0  
    INTRCPT2, γ00  3.433243 0.018056 190.144 341 <0.001 
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Final estimation of variance components 

 

Random Effect 
Standard 
 Deviation 

Variance 
 Component 

  d.f. χ
2
 p-value 

INTRCPT1, u0 0.29839 0.08904 341 1870.37148 <0.001 
level-1, r 0.64913 0.42136       
      

 
Statistics for the current model 

 
Deviance = 15823.710765 
Number of estimated parameters = 3 

 
HLM with Spatial Dependence Model Results - Iteration 135 
The value of the log-likelihood function at iteration 135 = -7.835990E+003  
Iterations stopped due to small change in likelihood function 
 

2  = 0.42149 

 

τ  
INTRCPT1,β 0.03477 

 
    

INTRCPT1,β 0.81701 

  

Final estimation of fixed effects: 
 

Fixed Effect  Coefficient 
 Standard 
error 

 t-ratio 
 Approx. 
d.f. 

 p-value 

For INTRCPT1, β0  
    INTRCPT2, γ00  3.404181 0.056443 60.312 341 <0.001 

 
Statistics for the current model 
 
Deviance = 15671.980461 
Number of estimated parameters = 4 

 
Regular HLM vs. HLM with spatial dependence model comparison test 

      
 χ2 statistic = 151.73030 
      Degrees of freedom = 1 
      p-value = <0.001 

 
 Average Level-2 Variance = 0.088502 
 
 Average Level-2 Covariance = 0.005961   
 

The average level-2 variance is the average of the neighborhood-specific variance. These depend 

on  , but also on the magnitude of the spatial dependence correlation,  , and the configuration 

of neighborhoods near that neighborhood. The average level-2 covariance is the average 

covariance between pairs of contiguous neighborhoods. 
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Two features of the results are noteworthy: 

 

 The result of the comparison test provides evidence that the HLM with spatial dependence 

provides a better fit, as indicated by the χ
2
 statistic of 151.73, df = 1, p < .001. 

 A comparison of the standard errors for 
00̂  the regular HLM and HLM with spatial 

dependence (.018 vs .056) suggests that, given ̂ is equal to .8, that there is an 

underestimation  of the standard errors when spatial dependence is ignored.  

 

Users can also obtain spatial empirical Bayes estimates of the neighborhood collective efficacy 

measures by following the procedure as specified in Section 2.5.4.2. Figure 11.11 gives the ten 

records of the residual file for the uncondtional model. 

 

 

Figure 11.11 Level-2 Residual File 

 

U_INTRCP and B_INTRCP are the two Empirical Bayes for the regular HLM and the HLM with 

spatial dependence. For a discussion of the properties of the empirical Bayes estimator that 

exploits spatial dependence, see Verbitsky-Savitz and Raudenbush (2009).  

11.4.2 Other outcome variables 

Spatial dependence models handles continuously distributed as well as discrete outcomes, 

including binary outcomes, counted data, ordered categories, and multinomial outcomes. 
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12 Conceptual and Statistical Background for Cross-classified 
Random Effect Models (HCM2) 

 

 

 

All of the applications discussed thus far have involved a strictly hierarchical data structure. 

Such nesting structures would occur, for example, in a study of neighborhood and school effects 

on child development in which all children living in the same neighborhood attended the same 

school, with multiple neighborhoods per school. In this case we would have children at level 1 

nested within neighborhoods at level 2 and neighborhoods nested within schools at level 3. 

Alternatively, we might have a nested structure in which every child attending a given school 

lived in the same neighborhood, with multiple schools per neighborhood. In this case, we would 

have children nested within schools nested within neighborhoods. HLM3 can be used to 

accommodate such three-level nested data structures. However, we typically find, in fact, that 

children who reside in a specific neighborhood can enroll in one of several schools, and each 

school might draw students from several neighborhoods. In this case, the data gathered will no 

longer have a purely nested structure. Instead, a cross-classification of students by two higher-

level factors, neighborhoods and schools, arises. To handle this more complex data structure 

while modeling the developmental influences of neighborhoods and schools requires the use of 

cross-classified random effects models (HCM2).  

 

Chapter 12 of Hierarchical Linear Models discusses two applications of cross-classified random 

effects models, one with cross-sectional, and the other with longitudinal data. The first 

application is from a study of neighborhood and school effects on educational attainment in 

Scotland (Garner & Raudenbush, 1991). Some of the children in this study enrolled in schools 

located in neighborhoods that were different from the ones they resided in. These students were 

thus cross-classified by neighborhoods and schools. The second case is an assessment of the 

effects of classrooms on children's cognitive growth during the primary school years 

(Raudenbush, 1993) using longitudinal data collected from the Immersion Study (Ramirez, 

Yuen, Ramey, & Pasta, 1991). As there were changes in classroom memberships among the 

students during the course of the investigation, the repeated assessments on cognitive growth 

were cross-classified by teachers. A similar data structure was displayed in Sampson, Sharkey 

and Raudenbush's (2008) longitudinal study on the impact of concentrated disadvantage on the 

verbal ability of African American children. During the seven years of data collection, some of 

the participants moved to live in different neighborhoods. Consequently, the repeated measures 

of their verbal ability were cross-classified by children and time-varying neighborhoods.  

12.1 The general cross-classified random effects models  

A general random cross-classified model consists of two sub-models: the level-1 or within-cell 

model and level-2 or between-cell model. The cells refer to the cross-classifications by the two 

higher-level factors. For example, if the research problem consists of data on students cross-

classified by neighborhoods and schools, a cell consists of a set of students who live in the same 

neighborhood and attend the same school. The level-1 or within-cell model will represent the 

relationships among the student-level variables for those students while the level-2 or between-

cell model will capture the influences of neighborhood- and school-level factors. Formally, there 

are 1,2,..., jki n  level-1 units (e.g., students) nested within each cell cross-classified by j = 1,..., 
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J units of the first higher-level factor (e.g., neighborhoods), designated as rows, and k = 1,..., K 

units of the second higher-level factor (e.g., schools), designated as columns. For a graphical 

representation of this data layout in Garner and Raudenbush (1991), see Table 12.1 in Chapter 

12 of Hierarchical Linear Models. 

 

In HLM7, HCM2 handles continuously distributed as well as discrete outcomes, including binary 

outcomes, counted data, ordered categories, and multinomial outcomes. We use the continuous 

outcome models in the following discussion. The logic of HGLM, as described and illustrated in 

Chapter 5, applies and extends to analyses with any of the four types of discrete outcomes with 

HCM2. 

12.1.1 Level-1 or “within-cell” model 

We represent in the level-1 or within-cell model the outcome for case i nested within row j and 

column k of the two-way classification: 

 

       
0 1 1 2 2i jk jk jk i jk jk i jk p jk pi jk i jkY a a a e               (12.1)

    

where 

 

0 jk is the intercept, the expected value of i jkY  within cell jk when all explanatory variables 

 are set to zero; 

p jk  are the level-1 coefficients of predictors 
pi jka , for p =1,…,P; 

i jke  is the level-1 or within-cell random effect; and 

2  is the variance of 
i jke , that is the level-1 or within-cell variance. Here we assume that the 

 random term 
2~ (0, )ijke N  .  

12.1.2 Level-2 or “between-cell” model 

Each of the p jk  coefficients in the level-1 or within-cell model becomes an outcome variable in 

the level-2 or between-cell model: 

 

   

     

     

0 1 1 1 2 2 2

1 1 1 2 2 2

0 0

p p p

p p p

p jk p p p j k p p j k pQ pQ j Q k

p p k j p p k j p R p R k R j

p j p k

b X b X b X

c W c W c W

b c

    

  

        

      



   (12.2) 

 

where 

 

0p  is the model intercept, the expected value of p jk  when all explanatory variables are set 

 to zero; 

pq  are the fixed effects of column-specific predictors , 1,...,qk pX q Q ; 

pq jb  are the random effects associated with column-specific predictors qkX . They vary 

 randomly over rows j = 1,..., J; 
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pr  are the fixed effects of row-specific predictors , 1,...,r j pW r R ; 

pr kc  are the random effects associated with row-specific predictors 
r jW . They vary randomly 

 over columns k = 1,…, K, and; 

  
0p jb and 

0p kc  are residual row and column random effects, respectively, on 
p j k , after taking 

 into account 
qkX and 

r jW . We assume that  0 00~ 0,p j pbb N  ,  0 00~ 0,p k pcc N  , and 

 that the effects are independent of each other. 

 

The vector of random row effects 
pqjb  (p = 0,…,P; q = 0,…,Qp ;) is assumed multivariate normal 

with a mean zero and a full covariance matrix  . Similarly the vector of random column effects 

prkc  (p = 0,…,P; r = 0,…,Rp ;) is assumed multivariate normal with mean vector zero and full 

covariance matrix  .  

12.2 Parameter estimation 

For continuous outcomes, three kinds of parameter estimates are available in HCM2: empirical 

Bayes estimates of random coefficients; maximum-likelihood estimates of the fixed regression 

coefficients; and maximum likelihood estimate of the variance-covariance components. The 

estimation procedure uses a full maximum likelihood approach (Raudenbush, 1993).  

 

For discrete outcomes, the parameter estimates of the fixed regression coefficients are based on 

the method of penalized quasi-likelihood. Unlike HGLM, however, unit-specific but not 

population-averaged results are available. 

12.3 Hypothesis testing 

As in the case of HLM2, HCM2 routinely prints standard errors and t-tests for each of the fixed 

level-2 coefficients as well as a chi-square test of homogeneity for each random effect. In 

addition, optional “multivariate hypothesis tests” are available in HCM2. Multivariate tests in the 

case of continuous outcomes parallel those described in Section 2.8.8. For discrete outcomes, 

hypothesis testing parallels those described in Section 5.10. 
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13  Working with HCM2 

 

 

 

13.1 An example using HCM2 in Windows mode  

HCM2 analyses can be executed in Windows, interactive, and batch modes. We describe a 

Windows execution below. We consider interactive and batch execution in Appendix G. A 

number of special options are presented at the end of the chapter. 

 

Chapter 12 in Hierarchical Linear Models presents a series of analyses of data from a study of  

neighborhood and school contribution to educational attainment in Scotland (Garner & 

Raudenbush, 1991). We use the data from the study, provided along with the HLM software, to 

illustrate the operation of the HCM2 program. 

13.1.1 Constructing the MDM file from raw data 

In constructing the MDM file, there are the same range of options for data input as for HLM2. 

Similar to HLM3, HCM2 requires two IDs, one for each higher-level unit, and the IDs have to be 

sorted. The two higher-level units in our example are neighborhoods and schools. Whereas the 

user can choose either higher-level unit as the row or column factor, we adopt the convention 

that the data are arranged such that the level with more units becomes the row factor and the 

level with fewer units becomes the column factor. Thus, we will designate the neighborhood (N 

= 542) as the row factor and school (N = 17) as the column factor. 

13.1.1.1 SPSS input 

Data input requires a level-1 file (student-level file), a level-2 row-factor (neighborhood-level) 

file, and a level-2 column-factor (school-level) file. 

 

Level-1 file. The level-1 or within-cell file, ATTAINW.SAV has 2,310 students and 8 variables. The 

two IDs are NEIGHID for neighborhoods and SCHID for schools. The variables are: 

 

 ATTAIN (a measure of educational attainment) 

 P7VRQ (Primary 7 verbal reasoning quotient) 

 P7READ (Primary 7 reading test scores) 

 DADOCC (father's occupation scaled on the Hope-Goldthorpe scale in conjunction with the 

Registrar General's social-class index (Willms, 1986)) 

 DADUNEMP, an indicator for father's unemployment status (1 if unemployed, 0 otherwise) 

 DADED, an indicator for father's educational level (1 if schooling past the age of 15, 0 

otherwise) 

 MOMED, an indicator for mother's educational level (1 if schooling past the age of 15, 0  

otherwise) 

 MALE, an indicator for student gender (1 if male, 0 if female) 

 

Data for the first 15 observations are shown in Figure 13.1. Note that five students from 

Neighborhood 26 and one from Neighborhood 27 attended School 20. These first six 
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observations provided information about two neighborhood-by-school combinations or cells. 

One of the next nine students living in Neighborhood 29 attended School 18 and the other eight 

went to School 20. They provided data for two cross-classified neighborhood-by-school cells 

(see Table 12.1 in Hierarchical Linear Models, p. 374, for a display of the organization of the 

data by counts in each neighborhood-by-school cell).  

 

 

Figure 13.1 First 16 cases in the ATTAINW.SAV dataset 

13.1.1.2 Level-2 row-factor file 

For our neighborhood example, the level-2 row-factor (neighborhood) level file, ATTAINR.SAV, 

consists data on 1 variable for 542 neighborhoods. The variable is DEPRIVE (a scale measuring 

social deprivation, which incorporates information on the poverty concentration, health, and 

housing stock of a local community). 

 

Figure 13.2 shows data from the first 4 neighborhoods. 

 

 

Figure 13.2 First 4 cases in the ATTAINR.SAV data set 

13.1.1.3 Level-2 column-factor file 

The level-2 column-factor (neighborhood) file, ATTAINCO.SAV, has 17 schools and 1 variable. 

The variable is DUMMY, a dummy variable. Figure 13.3 shows data for the first 4 schools. 
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Figure 13.3 First 4 cases in the ATTAINCO.SAV data set 

The steps for the construction of the MDM for HCM2 are similar to the ones described earlier. 

Select HCM2 in the Select MDM type dialog box (see Figure 2.5). Note that the program can 

handle missing data at level 1 or within-cell only. The MDM template file, ATTAIN.MDMT, contains 

a log of the input responses used to create the MDM file, ATTAIN.MDM, using ATTAINW.SAV, 

ATTAINR.SAV, and ATTAINCO.SAV. Figure 13.4 displays the dialog box used to create the MDM 

file. Figures 13.5 to 13.7 show the dialog boxes for the within-cell file, ATTAINW.SAV, the row-

factor file, ATTAINR.SAV, and the column-factor file, ATTAINCO.SAV. 

 

 

Figure 13.4 Make MDM – HCM2 dialog box for ATTAIN.MDMT 
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 Figure 13.5 Choose variables – HCM2 dialog box for level-1 or within-cell file,  
ATTAINW.SAV 

 

 

Figure 13.6 Choose variables – HCM2 dialog box for level-1 or row-factor file, 
ATTAINR.SAV 
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Figure 13.7 Choose variables – HCM2 dialog box for level-1 or column-factor file, 
ATTAINCO.SAV 

13.2 Executing analyses based on the MDM file 

Once the MDM file is constructed, it can be used as input for the analysis. Model specification 

has three steps: 

1. Specification of the level-1 or within-cell model. In our example, we shall model 

educational attainment (ATTAIN) as the outcome. We first formulate an unconditional 

model that includes no predictor variables at any level. In the second or conditional 

model, we use prior measures of cognitive skill, verbal reasoning quotient and 

reading achievement, father's employment status and occupation and father's and 

mother's education to predict attainment.  

2. Specification of the row- or column-factor prediction model. In the second or 

conditional model, we shall predict each student's intercept with social deprivation.  

3. Specification of the residual row, column, and cell-specific effects as random or non-

random, the effects associated with row-specific predictors as varying randomly or 

fixed over columns, and the effects associated with column-specific predictors as 

varying randomly or fixed over rows. We shall test whether the association between 

social deprivation (a row-specific predictor) and attainment varies over schools in the 

third model. 

 

Following the three steps above, we first specify a model with no student-, neighborhood-, or 

school-level predictors. The purpose is to estimate the components of variation that lie between 

neighborhoods, between schools, and within cells. 

1. From the WHLM window, open the File menu. 

2. Choose Create a new model using an existing MDM file to open an Open MDM 

File dialog box. Open the existing MDM file (ATTAIN.MDM in our example).  

3. Click on the name of the outcome variable (ATTAIN in our example). Click Outcome 

variable. The specified model will appear in equation format (see Figure 13.8). 
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Figure 13.8 Unconditional model for the attainment example 

 

The results of the analysis are given below. 

 

Problem Title: Unconditional model 
 
The data source for this run = ATTAIN.MDM 
The command file for this run = attain1.hlm 
Output file name = hcm2.html 
The maximum number of level-1 units = 2310 
The maximum number of row-level units = 524 
The maximum number of column-level units = 17 
The maximum number of iterations = 100 
 
Method of estimation: full maximum likelihood 
The maximum number of iterations = 100 
Z-structure: independent 
 
The outcome variable is ATTAIN  
 

Summary of the model specified 
 
Level-1 Model 

      
 ATTAINijk = π0jk + eijk 

 
Level-2 Model 

 
 π0jk = θ0 + b00j + c00k 
 
For starting values, data from 2310 level-1, 524 row-level and 17 column-level records were used 
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Final Results - iteration 21 
 
Iterations stopped due to small change in likelihood function 
 

 σ
2
 = 0.79909 

 

τrows 

INTRCPT1   
ICPTROW,b00j 
   0.14105 

 

 τcolumns 
INTRCPT1   
ICPTCOL,c00k 
   0.07546 

 
  

 The intra-neighborhood correlation, the correlation between outcomes of two students who live 

in the same neighborhood but attend different schools, is estimated to be: 

  00

' 2
00 00

ˆ ,
ˆ

0.141

0.141 0.075 0.799

0.139.

b

i j k i j k

b c

Corr Y Y 



  


 


 



 

 

Thus, about 13.9% of the total variance lies between neighborhoods. 

 

The intra-school correlation is the correlation between outcomes of two students who attend the 

same school but live in different neighborhoods: 

 

  00

' ' 2
00 00

ˆ ,
ˆ

0.075

0.141 0.075 0.799

0.074.

c

i j k i j k

b c

Corr Y Y


  


 


 



 

 

That is, about 7.4% of the variation lies within schools.  

 

 The intra-cell correlation is the correlation between outcomes of two students who live in the 

same neighborhood and attend the same school: 

 

  00 00

' 2
00 00

ˆ ,

0.141 0.075

0.141 0.075 0.799

0.212.

b c

i j k i j k

b c

Corr Y Y 

 

  




 




 


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Thus, according to the fitted model, about 21% of the variance lies between cells. 

 

The value of the log-likelihood function at iteration 21 = -3.178356E+003 
 

Final estimation of fixed effects: 
 

Fixed Effect  Coefficient 
 Standard 
error 

 t-ratio  Approx. 
d.f. 

 p-value 

For INTRCPT1, π0 
     INTERCEPT,θ0 0.075357 0.072226 1.043 1769 0.297 
  

Final estimation of row and level-1 variance components: 

 

Random Effect 
Standard 
 Deviation 

Variance 
 Component 

  d.f. χ
2
 p-value 

INTRCPT1/ ICPTROW,b00j 0.37556 0.14105 523 904.83225 <0.001 
level-1, e 0.89392 0.79909       

 
Final estimation of column level variance components: 

 

Random Effect 
Standard 
 Deviation 

Variance 
 Component 

  d.f. χ
2
 p-value 

INTRCPT1/ ICPTCOL,c00k 0.27470 0.07546 16 120.45262 <0.001 

 
Statistics for the current model 

 
Deviance = 6356.711470 
Number of estimated parameters = 4  
 

13.3 Specification of a conditional model with the effect associated 
with a row-specific predictor fixed 

The above example involves a model that is unconditional at all levels. In this model we set up a 

level-1 and a row-factor prediction model. 

To set up the level-1 model: 

At the model specification dialog box, select P7VCR, P7READ, DADOCC, DADUNEMP, DADED, 

MOMED, and MALE and grand-mean center all the predictors. Figure 13.9 shows the model with 

the level-1 predictors. In the interest of parsimony, given the small cell sizes and within-

neighborhood sizes, all level-1 coefficients are fixed. (To specify any of them as randomly 

varying, select the equation containing a specific regression coefficient, p , and click on 0pb ). 
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Figure 13.9 Level-1 Prediction Model for the Attainment Study  

To set up the level-2 row-factor prediction model: 

Select the equation containing 0 . A list box for row-factor variables (>>Row<<) will appear. 

Click DEPRIVE and apply the grand-mean centering scheme. In the level-2 model, we treated the 

association between social deprivation and educational attainment as fixed across all schools. 

We relax this assumption in our next model. Figure 13.10 displays the conditional model. Note 

that c01 is disabled. 
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Figure 13.10 Conditional Model for the Attainment Study, with Social Deprivation Effect 
Fixed 

The results of the analysis are given below. 

 
Problem Title: Conditional Model, with social deprivation effect fixed 
The data source for this run = ATTAIN.MDM 
The command file for this run = ATTAIN2.hlm 
Output file name = hcm2.html 
The maximum number of level-1 units = 2310 
The maximum number of row-level units = 524 
The maximum number of column-level units = 17 
The maximum number of iterations = 100 
Method of estimation: full maximum likelihood 
The maximum number of iterations = 100 
Z-structure: independent 
 
The outcome variable is ATTAIN  
 

Summary of the model specified 
 
Level-1 Model 

     
 ATTAINijk = π0jk + π1jk*(P7VRQijk) + π2jk*(P7READijk) + π3jk*(DADOCCijk) + π4jk*(DADUNEMPijk)  
         + π5jk*(DADEDijk) + π6jk*(MOMEDijk) + π7jk*(MALEijk) + eijk 
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Level-2 Model 

     
 π0jk = θ0 + b00j + c00k  + (γ01)*DEPRIVEj 
     π1jk = θ1 
     π2jk = θ2 
     π3jk = θ3 
     π4jk = θ4 
     π5jk = θ5 
     π6jk = θ6 
     π7jk = θ7 
 
P7VRQ P7READ DADOCC DADUNEMP DADED MOMED MALE have been centered around the grand 
mean. 
DEPRIVE has been centered around the grand mean. 
 
For starting values, data from 2310 level-1, 524 row-level and 17 column-level records were used 
 
Final Results - iteration 34 
 
Iterations stopped due to small change in likelihood function 
 

σ
2
 = 0.45891 

 

τrows 

INTRCPT1   
ICPTROW,b00j 
   0.00014 

 

τcolumns 

INTRCPT1   
ICPTCOL,c00k 
   0.00389 

 
The value of the log-likelihood function at iteration 34 = -2.384802E+003 
 

Final estimation of fixed effects: 
 

Fixed Effect  Coefficient 
 Standard 
error 

 t-ratio  Approx. 
d.f. 

 p-value 

For INTRCPT1, π0 
     INTERCEPT,θ0 0.094740 0.021133 4.483 1769 <0.001 
     DEPRIVE, γ01 -0.156676 0.025178 -6.223 522 <0.001 

For P7VRQ, π1 
     INTERCEPT,θ1 0.027556 0.002263 12.176 1769 <0.001 

For P7READ, π2 
     INTERCEPT,θ2 0.026291 0.001749 15.028 1769 <0.001 

For DADOCC, π3 
     INTERCEPT,θ3 0.008165 0.001359 6.008 1769 <0.001 
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For DADUNEMP, π4 
     INTERCEPT,θ4 -0.120771 0.046779 -2.582 1769 0.010 

For DADED, π5 
     INTERCEPT,θ5 0.144426 0.040782 3.541 1769 <0.001 

For MOMED, π6 
     INTERCEPT,θ6 0.059440 0.037381 1.590 1769 0.112 

For MALE, π7 
     INTERCEPT,θ7 -0.056058 0.028401 -1.974 1769 0.049 

 

Final estimation of row and level-1 variance components: 
 

Random Effect 
Standard 
 Deviation 

Variance 
 Component 

  d.f. χ
2 p-value 

INTRCPT1/ ICPTROW,b00j 0.01184 0.00014 522 548.81015 0.202 
level-1, e 0.67743 0.45891       
 
Final estimation of column level variance components: 
 

Random Effect 
Standard 
 Deviation 

Variance 
 Component 

  d.f. χ
2 p-value 

INTRCPT1/ ICPTCOL,c00k 0.06239 0.00389 15 36.38151 0.002 
 
Statistics for the current model 
 
Deviance = 4769.604659 
Number of estimated parameters = 12 

 

Several features of the results are remarkable: 

 

 Several level-1 covariates are significantly related to educational attainment, with especially 

large effects for P7READ and P7VRQ.  

 The residual level-1 variance is estimated to be 0.459, implying that 43% of the 

unconditional level-1 variance (estimated at 0.799) is accounted for by the covariates. 

 Controlling these level-1 effects, a highly significant negative effect of social deprivation 

appears ( 01 = -0.157, t = –6.22).  

 The residual variation between neighborhoods, 00b , (estimated at 0.0001), and between 

schools, 00c  (estimated at 0.004) are close to zero; compare to the unconditional variance 

estimates (0.141 and 0.075). The level-2 neighborhood variance component was substantially 

reduced. 

 

13.4 Specification of a conditional model with the effect associated 
with the row-specific predictor random 

In the previous model, the relationship between social deprivation and attainment was assumed 

invariant across schools. Now we test the tenability of this assumption.  

 



219 
 

 

 

Figure 13.11 Conditional Model for the Attainment Study, with Social Deprivation Effect 
Random 

To specify the effect of the row-specific predictor random, select the equation containing 0 . 

Click on 
01c . Figure 13.11 displays the conditional model with the social deprivation effect 

specified as random. We compare the model deviance of this model against the one estimated in 

the last analysis. The procedure is the same as described in Section 2.9.6. 

 

The results of the analysis are given below. 

 

σ
2
 = 0.45519 

 

      τrows 

INTRCPT1   
ICPTROW,b00j 
   0.00371 

 

τcolumns 
INTRCPT1   INTRCPT1   
ICPTCOL,c00k DEPRIVE,c01k 
   0.00391    0.00159 
   0.00159    0.00067 

 

The point estimate of the variance of the unique contribution of school k to the association 

between social deprivation and attainment is .001 and that of the covariance between the effect 

with the school random effect is .002. 
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τcolumns (as correlations)  
INTRCPT1/ ICPTCOL,c00k   1.000   0.984 
INTRCPT1/ DEPRIVE,c01k   0.984   1.000 

 

The value of the log-likelihood function at iteration 865 = -2.384254E+003 

 
Final estimation of fixed effects: 

 

Fixed Effect  Coefficient 
 Standard 
error 

 t-ratio  Approx. 
d.f. 

 p-value 

For INTRCPT1, π0 
     INTERCEPT,θ0 0.092434 0.021354 4.329 1752 <0.001 
     DEPRIVE, γ01 -0.159051 0.026763 -5.943 522 <0.001 

For P7VRQ, π1 
     INTERCEPT,θ1 0.027636 0.002263 12.211 1752 <0.001 

For P7READ, π2 
     INTERCEPT,θ2 0.026242 0.001750 14.992 1752 <0.001 

For DADOCC, π3 
     INTERCEPT,θ3 0.008112 0.001360 5.964 1752 <0.001 

For DADUNEMP, π4 
     INTERCEPT,θ4 -0.120306 0.046759 -2.573 1752 0.010 

For DADED, π5 
     INTERCEPT,θ5 0.142622 0.040753 3.500 1752 <0.001 

For MOMED, π6 
     INTERCEPT,θ6 0.060870 0.037358 1.629 1752 0.103 

For MALE, π7 
     INTERCEPT,θ7 -0.056139 0.028383 -1.978 1752 0.048 

 
Final estimation of row and level-1 variance components: 
 

Random Effect 
Standard 
 Deviation 

Variance 
 Component 

  d.f. χ
2 p-value 

INTRCPT1/ ICPTROW,b00j 0.06087 0.00371 522 545.30137 0.232 
level-1, e 0.67468 0.45519       
 
Final estimation of column level variance components: 
 

Random Effect Standard 
 Deviation 

Variance 
 Component 

  d.f. χ
2 p-value 

INTRCPT1/ ICPTCOL,c00k 0.06255 0.00391 15 32.32912 0.006 
INTRCPT1/ DEPRIVE,c01k 0.02582 0.00067 15 9.67718 >0.500 
 
Statistics for the current model 
 
Deviance = 4768.508277 
Number of estimated parameters = 14 

 

Model comparison test 

 
     χ

2
 statistic = 1.09638 

     Degrees of freedom = 2 
     p-value = >.500 

 

The result of the deviance test is not significant. There is no evidence that the association 

between neighborhood social deprivation and attainment varies over schools. Not surprisingly, 
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the standard error for 01 , the social deprivation effect, remains nearly unchanged, as do all 

inferences about the fixed effects.  

13.5 Other program features 

HCM models provide options for multivariate hypothesis tests for the fixed effects and the 

variance-covariance components. A “no-intercept” model is available for the level-1, level-2 and 

between-cell models. Figure 13.12 displays the Basic Model Specifications - HCM2 dialog 

box. 

 

 

Fig 13.12 The Basic Model Specifications – HCM2 dialog box 

The options are similar to the corresponding dialog box for HLM2 (see Section 2.5.2). Unlike 

HLM2, the user has the option to create a level-1, row and column residual file. There is an option 

unique to HCM2. When modeling longitudinal, repeated measures, it is possible to select a 

cumulative effect model to allow carry-over treatment effects by specifying a cumulative Z-

structure model. See Hierarchical Linear Models, p. 390, for an example. HCM2 also allows 

users to diagonalize the  s for rows and columns and weigh the cases within cells and rows (see 

Fig 13.13). 

 

The Fixed Intercept, Random Coefficient option on the Estimation Settings dialog box is 

used to invoke the fiting of fixed intercepts random coefficients in models as discussed in 

Chapter 19. The Diagonalize Tau options constrain the variance-covariance matrices to diagonal 

matrices; in other words no covariation between random coefficients are assumed or estimated if 

this option is checked. 
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Figure 13.13 The Estimation Settings – HCM2 dialog box 
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14 Conceptual and Statistical Background for Three-Level 
Hierarchical and Cross-classified Random Effects Models 
(HCM3) 

 

 

 
The HCM2 models discussed in the previous chapters allow researchers to analyze data that 

display structures in which the lower-units are cross-classified by two higher-level factors. 

Suppose, however, that one of the higher-level factors is itself nested within a yet-higher level 

factor. The three-level hierarchical and cross-classified random effects models (HCM3) represent 

this case, where level-1 units are cross-classified by two higher-level factors, with units from one 

of the higher-level factors nested within a next higher-level unit. 

 

Hong and Raudenbush (2008) used three-level hierarchical and cross-classified random effects 

models to investigate how schools and their teachers may contribute to student growth, taking 

into account also the student-level variables. In their study, students were moving over time 

across teachers and the teachers were nested within schools. We can say that the repeated 

measures (level-1) were cross-classified by students (rows) and teachers (columns) with teachers 

nested within schools (clusters). The model is sufficiently flexible to allow the students also to 

change schools over the course of the study. In general, we may say that level-1 observations are 

crossed by rows and columns and the columns are nested within clusters. 

14.1 The general 3-level hierarchical and cross-classified random 
effects models  

A general three-level hierarchical and cross-classified model consists of three sub-models: level-

1 or within-cell, level-2 or between-cell, and a level-3 or between-cluster model. As in HCM2, the 

cells refer to the cross-classifications by rows and columns. The columns, however, are nested 

within clusters.  

 

For example, if the research problem consists of repeated developmental data on students cross-

classified by student and teachers, with teachers clustered within schools, the level-1 or within-

cell model will represent the relationship between time and development for each child. The 

level-2 or between-cell model will capture the influences of student- and teacher-level 

predictors, and the level-3 or between-cluster model will examine the effects of school-level 

variables. Formally, there are i=1,2,…, njkl level-1 units (e.g., repeated measurement of student 

achievement) nested within cells cross-classified by j = 1,…, J rows (e.g., students) and k = 

1,…., K columns,  with columns with cluster l = 1, …., L.  

 

Here is an example of a data layout for three waves of developmental data (njkl = 3) for J = 4 

students crossed by K = 9 teachers, with the teachers nested within L = 3 schools: 
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Table 14.1 Organization of data of the HCM3 example 

 

  School1   School2   School3  

 Teacher1

1 

Teacher2

1 

Teacher3

1 

Teacher1

2 

Teacher2

2 

Teacher3

2 

Teacher1

3 

Teacher2

3 

Teacher3

3 

Stud 1 Y1111 Y2121 Y3131       

Stud 2    Y1212 

 

Y2222 Y3232    

Stud 3       Y1313 

 

 Y3333 

Stud 4 Y1411     Y2422    Y3433 

 

Table 14.1 indicates that the repeated assessments are cross-classified by students and teachers, 

with teachers clustered within schools. Student 1 stayed in school 1 over three years of 

observation, changing teachers each year. Similarly Student 2 stayed in school 2 while changing 

teachers each year. Student 3 stayed in the same school, but was not observed during year 2. 

Student 4 had all three observations, but changed schools after year 1 and year 2.  

 

HCM3 can handle continuously distributed as well as binary outcomes. We use the continuous 

outcome models in the following discussion. The logic of HGLM, as described and illustrated in 

Chapter 7, applies and extends to analyses with binary outcomes with HCM3. 

14.1.1 Level-1 or “within-cell” model 

We represent in the level-1 or within-cell model the outcome for case i in individual cells cross-

classified by level-2 units j and k, with unit k nested within cluster l. 

 

    

1 2

1

0 1 2

0

ijkl ijkl pijkl ijkl

P

pijkl ijkl

p

ijkl jkl jkl jkl pjkl

jkl pjkl

a a a e

a e

Y    

 


     

 

 


                   (14.1) 

 

where 

0 jkl  is the intercept, the expected value of i jklY  when all explanatory variables are set to 

zero; 

pjkl  are level-1 coefficients of predictors pjkla (p=1, 2, …, P) for case i in cell jkl;  

ijkle  is the level-1 or within-cell random effect, and; 

2  is the variance of ijkle , that is the level-1 or within-cell variance. Here we assume that the  

   random term ),0(~ 2Neijkl . 

14.1.2 Level-2 or “between-cell” model 

Each of the pjkl  coefficients in the level-1 or within-cell model becomes an outcome variable in 

the level-2 or between-cell model: 
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          (14.2) 

 

where 

pl  is the level-2 model intercept, the expected value of p jkl  when all explanatory variables 

are  set to zero; 

pql  are the level-2 coefficients of column-specific predictors , 1,...,qkl pX q Q ,  

pqjb  are the random effects associated with column-specific predictors 
qkX . They vary 

randomly  over rows j = 1,..., J; 

prl  are the level-2 coefficients of row-specific predictors , 1,...,rjl pW r R ; 

pr klc  are the random effects associated with row-specific predictors 
rjlW . They vary 

randomly  over columns k = 1,…, Kl and clusters l = 1,…, L; and 

0p jb  and 0p klc  are residual row- and column-specific random effects, respectively, on 
pjkl , 

after  taking into account qklX  and 
rjlW .  

 

The vector of row random effects, containing  ,0 jpb ,…, PQjb  is assumed multivariate normal with 

a mean zero and a full covariance matrix  . Similarly the vector with elements 
0p klc ,…, PRklc  is 

assumed multivariate normal with mean vector zero and full covariance matrix  .  

14.1.3 Level-3 model 

Each of the level-2 coefficients become an outcome variable at level 3: 
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        (14.3) 

 

where 

 

00p  is the intercept, the expected value of pl  when all explanatory variables are set to zero; 

0p s are the coefficients of cluster-specific predictors slZ  for pl ; 
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0pq  is the intercept, the expected value of 
pql  when all explanatory variables are set to 

zero; 

pqs are the coefficients of cluster-specific predictors , 1,...,sl pqZ s S for 
pql  ; 

pqsjb  are the random effects associated with cluster-specific predictors slZ . They vary 

randomly  over rows j = 1,..., J; 

0pr  is the intercept, the expected value of prl  when all explanatory variables are set to zero; 

prs are the coefficients of cluster-specific predictors 
slZ  for prl ; 

pr sjb  are the random effects associated with cluster-specific predictors slZ . They vary 

randomly  over rows j = 1,..., J ; and 

0p ld , 
pqld , and 

prld  are residual random effects. We assume these to be multivariate normal 

in  distribution with zero means and variances 
0 , ,p pq pr   , respectively. 

 

14.2 Parameter estimation 

Three kinds of parameter estimates are available in HCM3. For continuous outcomes, empirical 

Bayes estimates of random effects, maximum-likelihood estimates of the level-3 coefficients, 

and maximum likelihood estimates of variance-covariance parameters are available. In nonlinear 

models, the level-3 coefficients are estimated via penalized quasi-likelihood. Unlike HGLM, 

however, only unit-specific and not population-averaged results are available. 

     

14.3 Hypothesis testing 

As in the case of HLM2, HCM3 routinely prints standard errors and t-tests for each of the fixed 

level-2 coefficients as well as a chi-square test of homogeneity for each random effect. In 

addition, optional “multivariate hypothesis tests“ are available in HCM3. Multivariate tests in the 

case of continuous outcomes parallel those described in Section 2.8.8. For binary outcomes, 

hypothesis testing parallels those described in Section 5.10. 
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15 Working with HCM3  

 

 

 

15.1 An example using HCM3 in Windows mode 

HCM3 analyses can be executed in Windows, interactive, and batch modes. We describe a 

Windows execution below. We consider interactive and batch execution in Appendix H. A 

number of special options are presented at the end of the chapter. 

 

To illustrate the operation of the program, we use the data from Hong and Raudenbush's (2008) 

study on the effects of time-varying instructional treatments (intensive vs. conventional math 

instruction) on student achievement.  

15.1.1 Constructing the MDM file from raw data 

In constructing the MDM file, there is the same range of options for data input as for HCM2. HCM3 

requires three IDs, one for each of two level-2 factors, and one for the level-3 clusters. The two 

level-2 factors in our examples are student and teacher. As teachers (N = 498) were clustered 

within schools (N = 67) and the model allows students (N = 4216) to change schools, we will 

designate teacher as the column factor and student as the row factor. 

 

Note: The level-1 file is to be sorted on ascending row (student) IDs, and, in this file, sorting by 

column IDs within clusters. The level-2 row file is to be sorted on ascending row (student) IDs. 

The level-2 column file is to sorted by column IDs within clusters. The cluster file is to be sorted 

by cluster IDs. 

15.1.2 Statistical package input 

Data input requires a level-1 file (a time-series student achievement data file in our example), a 

level-2 row-factor (student-level) file, a level-2 column-factor (teacher-level) file, and a level-3 

cluster-level (neighborhood-level) file. Our illustration uses SPSS file input, but the procedure 

for all other statistical packages is analogous. 

 

Level-1 file. The level-1 or within-cell file, GROWTH.SAV has 7342 repeated measures collected 

on 4216 students. Figure 15.1 shows the time series data for the first four students. Following the 

school, student, and teacher ID fields are students' values on six variables: 

 

 MATH  

A Stanford Achievement Test math test score. 

 YEAR (year of the study minus 2) 

This variable can take on values of -1, 0, and 1 for the three years of data collection 

from grade 3 to grade 5. 

 G4D1 is an indicator that that takes on a value of 1 if a child receives intensive math 

instruction in grade 4 and if the outcome is observed at grade 4. This will be used to 

assess the effect of grade-4 intensive math instruction on grade-4 outcome. 
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 G4D21 is an indicator that a child receives intensive math instruction in grade 4 and if 

the outcome is observed at grade 5. This will be used to test the effect of grade-4 

intensive math instruction on grade-5 outcome for those who do not receive intensive 

math instruction in grade 5. 

 G5D22 

An indicator that a child receives intensive math instruction in grade 5 and if the 

outcome is observed at grade 5. This will be used to test the effect of intensive math 

instruction in grade 5 on grade 5 outcome for those who did not have intensive math 

instruction in grade 4. 

 TWOWAY 

A product term of a two-way interaction between G4D21 with G5D22. It will thus be an 

indicator that the child received intensive math instruction in both grades 4 and 5 and if 

the outcome is observed at grade 5. This will test whether having intensive math 
instruction in both years has an effect that exceeds the sum of the separate effects. 

 

 

Figure 15.1 First 10 records in the GROWTH.SAV dataset 

 

We see that student 1 attended school 15 and was taught by teachers 83, 104, and 135. None of 

the teachers adopted intensive math instruction. In addition, student 3 had data for the second 

and third year only. 

 

Level-2 row-factor file. The level-2 row-factor units in the illustration are 4216 students. The data 

are stored in the file STUDENT.SAV. The level-2 data for the first ten children are listed in Figure 

15.2. The file has one dummy variable. 
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Figure 15.2 First 10 cases in the STUDENT.SAV dataset 

Level-2 column-factor file. The level-2 column-factor (teacher) file, TEACHER.SAV, has two IDs 

and a dummy variable. The first ID is the level-3 (i.e., school) ID and the second ID is the level-2 

column factor (i.e., teacher) ID. Figure 15.3 lists the data for the first ten records. 

 

 

Figure 15.3 First 10 cases in the TEACHER.SAV data set 

Level-3 file. The level-3 (school) level file, SCHOOL.SAV, has the level-3 (school) ID and a 

dummy variable. Figure 15.4 lists the data for the first ten records. 

 

 

Figure 15.4 First 10 cases in the SCHOOL.SAV data set 

In sum, there are six variables at level 1 and one dummy variable for each of the level-2 row- 

and column-factor files and the level-3 file. The steps for the construction of the MDM for HCM3 
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are similar to the ones described in Section 2.5.1.1. The user will select HCM3 in the Select 

MDM type dialog box (see Figure 2.5). Note that the program can handle missing data at level 1 

or within cell only. The MDM template file, GROWTH.MDMT, contains a log of the input 

responses used to create the MDM file, GROWTH.MDM, using GROWTH.SAV, STUDENT.SAV, 

TEACHER.SAV, and SCHOOL.SAV. Figure 15.5 displays the dialog box used to create the MDM 

file. Figures 15.6 show the dialog boxes for the level-1 file. 

 

 

Figure 15.5 Make MDM - HCM3 dialog box for GROWTH.MDMT  

 

Figure 15.6 Choose variables - HCM3 dialog box for level-1 file, GROWTH.SAV 

15.2 Executing analyses based on the MDM file 

Once the MDM file is constructed, it can be used as input for the analysis. Model specification 

has five steps: 
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1. Specification of the level-1 model. In our case we shall model mathematics 

achievement (MATH) as the outcome, to be predicted by YEAR, G4D1, G4D21, G5D22, 

and TWOWAY. Hence, the level-1 model will have six coefficients for each student: the 

intercept and the partial slopes for the five variables. For longitudinal analysis, it is 

possible to select a cumulative effect model to allow carry-over treatment effects by 

specifying a cumulative Z-structure model (see Hierarchical Linear Models, p.390); 

we use this option in the analysis. 

2. Specification of the level-2 row- or column-factor prediction model. Here each level-1 

coefficient – the intercept and the five slopes in our example – becomes an outcome 

variable. One may use variables on student and teacher characteristics (not supplied 

with the example data files) to predict each of these level-1 coefficients.  

3. Specification of row- or column effects as random or non-random. We shall model the 

intercept and the YEAR slope as varying randomly over rows and columns.  

4. Specification of the level-3 prediction model. Here each level-2 coefficient becomes an 

outcome, and one may select school variables (not included in the example data files) 

to predict school-to-school in these level-2 coefficients.  

5. Specification of the level-2 coefficients as random or non-random. We let two of the 

six level-2 intercepts vary over schools. 

 

Following the five steps above, we specify a model to study the effects of time-varying 

instructional treatments on student achievement. The Windows execution is very similar to the 

one for HCM2 as described in Section 13.4. The command file, GROWTH1.MLM, contains the 

model specification input responses. Figure 15.7 displays the model specified. 
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Figure 15.7 Unweighted model for the growth example 

The results of the analysis are given below. 

 
Problem Title: Unweighted model  
The data source for this run = growth.mdm 
The command file for this run = growth1.hlm 
Output file name = growth1.html 
The maximum number of level-1 units = 7342 
The maximum number of row units = 4216 
The maximum number of column units = 498 
The maximum number of cluster units = 67 
The maximum number of iterations = 100 
Method of estimation: full maximum likelihood 
Z-structure: cumulative across columns 
Data design: (row by column) within clusters 
 
The outcome variable is MATH  
 

The level-1 intercept and YEAR slope   
vary randomly over rows and columns 

These two level-3 
coefficients are specified 
as randomly varying 

 

Outcome 

Intercept 

 
YEAR slope 

slope 
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Summary of the model specified 
 
Level-1 Model 
 
     MATHijkl = π0jkl + π1jkl*(YEARijkl) + π2jkl*(G4D1ijkl) + π3jkl*(G4D21ijkl) + π4jkl*(G5D22ijkl)  
                       + π5jkl*(TWOWAYijkl) + eijkl  

 
Level-2 Model 
     
 π0jkl = θ0l + b00jl + c00kl 
     π1jkl = θ1l + b10jl + c10kl 
 π2jkl = θ2l 
     π3jkl = θ3l 
     π4jkl = θ4l 
     π5jkl = θ5l 

 
Level-3 Model 
 
 θ0l = δ000 + d00l 
     θ1l = δ100 + d10l 
     θ2l = δ200 
     θ3l = δ300 
     θ4l = δ400 
     θ5l = δ500 

 

For starting values, data from 5299 level-1 records, 2173 rows, 498 column, and 65 cluster records  
    were used 

Final Results - iteration 485 
 
Iterations stopped due to small change in likelihood function  

 

σ
2
 = 304.82130 

 

τπ  
         YEAR  

   θ0,b00    θ1,b10 

   769.17514    -18.09880 

   -18.09880    21.22623 

 

 τπ (as correlations)  
  1.000  -0.142 

 -0.142   1.000 

 

 τβ  

       YEAR  

  θ0,c00   θ1,c10 

   133.52764    -24.04565 

   -24.04565    48.79836 
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τβ (as correlations)  

  1.000  -0.298 

  

 -0.298   1.000 

  

 

τγ  

         YEAR  

   θ0,d00    θ1,d10 

   169.31794    28.10279 

   28.10279    29.76755 

 

τγ (as correlations)  
  1.000   0.396 

  0.396   1.000 

 
The value of the log-likelihood function at iteration 485 = -3.536565E+004 

 

Final estimation of fixed effects: 
 

Fixed Effect  Coefficient 
 Standard 
error 

 t-ratio 
 Approx. 
d.f. 

 p-value 

For INTRCPT1  
   For INTERCEPT 

    θ0,δ000 609.850986 1.962504 310.751 66 <0.001 
For YEAR  
   For INTERCEPT 

    θ1,δ100 21.064011 1.140716 18.466 66 <0.001 
For G4D1  
   For INTERCEPT 

    θ2,δ200 2.753381 2.371599 1.161 7338 0.246# 
For G4D21  
   For INTERCEPT 

    θ3,δ300 0.231710 3.584218 0.065 7338 0.949# 
For G5D22  
   For INTERCEPT 

    θ4,δ400 7.507799 2.332107 3.219 7338 0.002# 
For TWOWAY  
   For INTERCEPT 

    θ5,δ500 1.160337 4.322456 0.268 7338 0.788# 

 

The p-vals above marked with a “#” should regarded as a rough approximation. 
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Final estimation of fixed effects (with robust standard errors) 
 

Fixed Effect  Coefficient 
 Standard 
error 

 t-ratio 
 Approx. 
d.f. 

 p-value 

For INTRCPT1  
   For INTERCEPT 

    θ0,δ000 609.850986 1.954775 311.980 66 <0.001 
For YEAR  
   For INTERCEPT 

    θ1,δ100 21.064011 1.112653 18.931 66 <0.001 
For G4D1  
   For INTERCEPT 

    θ2,δ200 2.753381 2.927131 0.941 7338 0.347# 
For G4D21  
   For INTERCEPT 

    θ3,δ300 0.231710 4.389057 0.053 7338 0.958# 
For G5D22  
   For INTERCEPT 

    θ4,δ400 7.507799 3.019164 2.487 7338 0.013# 
For TWOWAY  
   For INTERCEPT 

    θ5,δ500 1.160337 6.470068 0.179 7338 0.858# 

 

The p-vals above marked with a “#” should regarded as a rough approximation. 
 

Final estimation of row and level-1 variance components: 
 

Random Effect 
Standard 
 Deviation 

Variance 
 Component 

  d.f. χ
2
 p-value 

θ0,b00 27.73401 769.17514 2172 11413.58016 <0.001 
YEAR/θ1,b10 4.60719 21.22623 2172 2177.42726 0.463 
level-1, e 17.45913 304.82130       

 
Note: The chi-square statistics reported above are based on only 2173 of 4216 units that had sufficient 
data for computation. Fixed effects and variance components are based on all the data. 

 
Final estimation of column level variance components: 
 

Random Effect 
Standard 
 Deviation 

Variance 
 Component 

  d.f. χ
2
 p-value 

θ0,c00 11.55542 133.52764 429 539.50878 <0.001 
YEAR/θ1,c10 6.98558 48.79836 429 0.01770 >0.500 

 
Note: The chi-square statistics reported above are based on only 495 of 498 units that had sufficient 
data for computation. Fixed effects and variance components are based on all the data. 

 
Final estimation of cluster level variance components: 
 

Random Effect 
Standard 
 Deviation 

Variance 
 Component 

  d.f. χ
2
 p-value 

θ0,d00 13.01222 169.31794 64 256.96222 <0.001 
YEAR/θ1,d10 5.45596 29.76755 64 136.92770 <0.001 

 
Note: The chi-square statistics reported above are based on only 65 of 67 units that had sufficient data 
for computation. Fixed effects and variance components are based on all the data. 
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As reported by Hong and Raudenbush (2008), no significant causal effect of Grade 4 treatment 

on Grade 4 outcomes. A positive and significant effect of Grade 5 treatment on Grade 5 

outcome,     
400̂  = 7.51 (SE = 3.019, t = 2.487)

 6
. 

 
Statistics for the current model 
 
Deviance = 70731.304874 
Number of estimated parameters = 16 

15.3 Other program features 

HCM3 models provide options similar to those of HCM2. It also allows users to diagonalize the τπ, 

τβ, and τγ when estimating the variance components if interests focus only on the diagonal 

elements of any of the three matrices. In addition, design weights are allowed for level-1, level-2 

row factor and level-3 units. 

                                                
6
We used an improved algorithm here and thus the results are a bit different from those published in 

Hong and Raudenbush (2008).  
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16 Conceptual and Statistical Background for Hierarchical 
Linear Model with Cross-Classified Random Effects (HLMHCM) 

 

 

 
In HCM2, level-1 units are nested within cells and cross-classified by two higher-level factors. 

HLMHCM adds a level within the cells. For example, we may have a growth model for each of a 

set of students, all of whom live in the same neighborhood and attend the same school. We 

would say that level-1 units (repeated measures) are nested within level-2 units (children); level-

2 units are crossed by rows (neighborhoods) and columns (schools). Another example might 

involve repeated item responses at a given time for a student encountering a given teacher. The 

level-1 units are the item responses, nested within occasions (level-2) crossed by rows (students) 

and columns (teachers).  

16.1 The general hierarchical linear model with cross-classified random 
effects 

A general hierarchical HLMHCM has three sub-models: a level-1 model and a level-2 model 

within each cell; and a level-3 model or between-cell model that incorporates row and column 

effects.  

 

Formally, there are m = 1,2,…, nijk level-1 units (e.g., repeated measurement of student 

achievement) nested within level-2 (e.g., students) I =1,…, njk nested within cells cross-

classified by j = 1,..., J rows (e.g., neighborhoods) and k = 1,..., K  columns (e.g., schools). 

 

Here is an example of a data layout for three waves of developmental data (nijk = 3) nested within 

J = 10 students nested within cells cross-classified by J = 3 neighborhoods (rows) and K = 3 

schools (columns): 

 

Table 16.1 Organization of data of the HLMHCM example 

 School1 School2 School3 

Neighborhood1 Y1111, Y2111, Y3111 of Stud 1 
Y1211, Y2211, Y3211 of Stud 2 

Y1311, Y2311, Y3311 of Stud 3 

 
 

Neighborhood3 Y1411, Y2411, Y3411 of Stud 4 Y1511, Y2511, Y3511 of Stud 5 

Y1611, Y2611, Y3611 of Stud 6 
Y1711, Y2711, Y3711 of Stud 7 

Neighborhood3 Y1811, Y2811, Y3811 of Stud 8 

Y1911, Y2911, Y3911 of Stud 9 
 Y11011, Y21011, Y31011 of Stud 10 

 

Table 16.1 indicates that the repeated developmental data are nested within individual students 

nested within cells cross-classified by neighborhoods and schools. Note that unlike in HCM3, the 

students never leave the neighborhood or school of origin. 
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16.1.1 Level-1 or “within-unit” model 

We represent in the level-1 model the outcome Y for response m of the level-2 unit i cross-

classified by row j and column k. 

 

      

1 2

1

0 1 2

0

ijk ijk pijk mijk

P

pijk mijk

p

mijk ijk ijk ijk pijk

ijk pijk

a a a

a

Y 



   

 


     

 

 


                   (16.1) 

 

where 

0ijk is the intercept, the expected value of mi jkY  when all explanatory variables are set to 

zero; 

pijk  are level-1 coefficients of predictors pijka ( p=1,2,…,P) ;  

mijk is the level-1 random effect; and 

2  is the variance of mijk , that is the level-1 variance. Here we assume that the random term  

   2(0, )mijk N  . 

16.1.2 Level-2 or “between-unit” or “within-cell” model 

Each of the pijk  (p=0,1,…,P) coefficients in the level-1 model becomes an outcome variable in 

the level-2 or within-cell model: 
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    (16.2) 

 

0p jk  is the intercept, the expected value of pi jk  when all explanatory variables are set to 

zero; 

pqjk  are level-1 coefficients of predictors 0p jk (p=1,2,…,P);  

pijke  is the level-2 or within-cell random effect, and 

  is the variance-covariance  matrix of pijke , that is the level-2 variance. Here we assume that 

the  random term ),0(~ Nepijk  . The vector containing elements pijke  is assumed 

multivariate  normal with a mean zero and a full covariance matrix,  .  

16.1.3 Level-3 model or “between-cell” model 

Each of the pqjk  (q = 0, 1, …, Qp) coefficients in the level-2 or within-cell model becomes an 

outcome variable in the level-3 or between-cell model: 
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where 

 

pq , pqr  are the fixed effects of column-specific predictors , 1, ,qk pX r R , 

pqrjb  are the random effects associated with column-specific predictors 
r kX . They vary 

randomly  over rows j = 1,..., J; 

pqs  are the fixed coefficients of row-specific predictors , 1,...,s j pW s S ; 

pqskc  are the random effects associated with row-specific predictors sjW . They vary randomly 

 over columns k = 1,…, K; and 

pqrjb , and 
pqskc  are residual row- and column-specific random effects, respectively, on pqjk , 

 after taking into account r kX  and 
sjW .  

 

The vector containing elements pqrjb  is assumed multivariate normal with a mean zero and a full 

covariance matrix  . Similarly, the vector with elements pqskc  is assumed multivariate normal 

with mean vector zero and full covariance matrix  .  

16.2 Parameter estimation 

Three kinds of parameter estimates are available in HLMHCM. For continuous outcomes, 

empirical Bayes estimates of random effects, maximum-likelihood estimates of the level-3 

coefficients, and maximum likelihood estimates of variance-covariance parameters are available. 

In nonlinear models, the level-3 coefficients are estimated via penalized quasi-likelihood. Unlike 

HGLM, however, only unit-specific and not population-averaged results are available.    

16.3 Hypothesis testing    

As in the case of HLM2, HLMHCM routinely prints standard errors and t-tests for each of the fixed 

level-3 coefficients as well as a chi-square test of homogeneity for each random effect. In 

addition, optional “multivariate hypothesis tests“ are available in HLMHCM. Multivariate tests in 

the case of continuous outcomes parallel those described in Section 2.8.8. For discrete outcomes, 

hypothesis testing parallels those described in Section 7.10. 
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17 Working with HLMHCM  

 

 

 

17.1 An example using HLMHCM in Windows mode 

HLMHCM analyses can be executed in Windows, interactive, and batch modes. We describe a 

Windows execution below. We consider interactive and batch execution in Appendix I. A 

number of special options are presented at the end of the chapter. 

 

Chapter 8 in Hierarchical Linear Models and Chapter 4 of this manual provide examples of 

HLM3 analyses of repeated measures data nested within students within schools collected by the 

US Sustaining Effects Study and by an urban school effects study, respectively. To illustrate the 

operation of the HLMHCM program, we perform another achievement growth analysis. Unlike the 

previous examples, however, this analysis considers not only the school but the neighborhood 

contexts within which the students resided in as well. The data were obtained from 567 students 

from 224 schools in 74 urban neighborhoods in which repeated achievement measures are nested 

within students cross-classified by schools and neighborhoods. We chose a similar set of 

covariates to allow users to compare and contrast these set of models with those HLM3 models 

executed in Chapter 4. 

17.1.1 Constructing the MDM file from raw data 

In constructing the MDM file, there is the same range of options for data input as for HLM2. 

HLMHCM requires three IDs, one for the level-2 (students in our illustration) units, and one for the 

units of each of the higher-level factors (school and neighborhood), and the level-2 IDs have to 

be sorted. As there are more schools than neighborhoods in our example, we follow the 

convention adopted for HCM2 and designate school as the row factor and neighborhood as the 

column factor. 

17.1.2 Statistical package input 

Data input requires a level-1 within-unit file (a time-series student achievement data file in our 

example), a level-2 or between unit (student-level) file, a level-3 row-factor (school-level) file, 

and a level-3 column-factor (neighborhood-level) file. 

 

Level-1 file. The level-1 or within-cell file, GROWTH.SAV has 2008 observations collected on 567 

students beginning at grade one and followed up annually thereafter for six years. Figure 17.1 

shows the time series data for the first three students. All of them have complete data; typically 

there are three or four observations per child. Following the student ID field are that student's 

values on two variables: 
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 AGE8 

 The age of the child minus 8 at each testing occasion. Therefore, it is 0 at age 8, 1 at age 

9,  etc. 
 MATH  

 A math test score in an IRT metric. 

 

 

Figure 17.1 First 18 records in the GROWTH.SAV dataset 

 

We see that the first student was about seven and a half years old (AGE8 = –0.420) during the 

first data collection wave with a math score of 2.1. 

 

Level-2 file. The level-2 units in the illustration are 567 students. The data are stored in the file 

STUDENT.SAV. The level-2 data for the first eight children are listed in Figure 17.2. The first ID 

is the level-3 row-factor (i.e., school) ID, the second ID is the level-3 column factor (i.e., 

neighbor)  ID, and the third ID is the level-2 (i.e., student) ID. Note that the level-2 files must be 

sorted in the same order of level-2 ID. 

 

There are three variables: 

 

 FEMALE (1 = female, 0 = male) 

 BLACK (1 = African-American, 0 = other) 

 HISPANIC (1 = Hispanic, 0 = other) 

 

We see, for example, that student 1 who attended school 175 and resided in neighborhood 68 is a 

African-American male (FEMALE = 0, BLACK = 1, HISPANIC = 0). 
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Figure 17.2 First 10 cases in the STUDENT.SAV dataset 

Level-3 row-factor file. The level-3 row-factor (school) level file, SCHOOL.SAV, consists of data 

on 1 variable for 224 schools. The variable is SCHPOV, which is an indicator of school poverty, 

as measured by the percentage of the total number of students enrolled in free or subsidized 

lunch programs.  

 

We see that the first school, school 1, has 91% of its students enrolled in free or subsidized lunch 

programs. 

 

 

Figure 17.3 First 8 cases in the SCHOOL.SAV data set 

Level-3 column-factor file. The level-3 row-factor (neighborhood) level file, NEIGH.SAV, consists 

of data on 1 variable for 74 neighborhoods. The variable is DISADV (a scale measuring social 

deprivation, which incorporates information on the poverty concentration, health, and housing 

stock of a local community). A measure of neighborhood disadvantage, constructed through an 

oblique factor analysis from the 1990 decennial census data, tapped the level of poverty and 

unemployment, and the percentage of families that were headed by females and percentage on 

welfare (Sampson & Raudenbush, 1999; Sampson, Raudenbush, & Earls, 1997). 
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Figure 17.4 First 8 cases in the NEIGH.SAV data set 

In sum, there are two variables at level 1, three at level 2, and one for each of the level-3 factors.  

 

 

Figure 17.5 Make MDM- HLMHCM dialog box for GROWTH.MDMT  

The steps for the construction of the MDM for HLMHCM2 are similar to the ones described in 

Section 2.5.1.1. The user will select HLMHCM in the Select MDM type dialog box (see Figure 

2.5). Note that the program can handle missing data at level 1 or within cell only. The MDM 

template file, GROWTH.MDMT, contains a log of the input responses used to create the MDM file, 

GROWTH.MDM, using GROWTH.SAV, STUDNET.SAV, SCHOOL.SAV, and NEIGH.SAV. Figure 18.5 

displays the dialog box used to create the MDM file. Figures 17.6 to 17.9 show the dialog boxes 

for the level-1 file, GROWTH.SAV, the level-2 file, STUDENT.SAV, the level-3 row file, 

SCHOOL.SAV, and the level-3 column file, SCHOOL.SAV. 
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Figure 17.6 Choose variables HLMHCM dialog box for level-1 file, GROWTH.SAV 

 

 

Figure 17.7 Choose variables HLMHCM dialog box for level-2 file, STUDENT.SAV 
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Figure 17.8 Choose variables HLMHCM dialog box for level-3 row-factor file, SCHOOL.SAV 

 

Figure 17.9 Choose variables HLMHCM dialog box for level-3 column-factor file, 
NEIGH.SAV 

17.2 Executing analyses based on the MDM file 

Once the MDM file is constructed, it can be used as input for the analysis. Model specification 

has three steps: 

 

1. Specification of the level-1 model. In our case we shall model mathematics achievement 

(MATH) as the outcome, to be predicted by AGE8. Hence, the level-1 model will have two 

coefficients for each student: the intercept and the AGE slope.  

2. Specification of the level-2 prediction model. Here each level-1 coefficient – the intercept 

and the AGE8 slope in our example – becomes an outcome variable. We may select certain 

student characteristics to predict each of these level-1 coefficients. In principle, the level-2 
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parameters then describe the distribution of growth curves cross-classified by schools and 

neighborhoods. 

3. Specification of level-1 coefficients as random or non-random across level-two units. We 

shall model the intercept and the AGE8 slope as varying randomly across the students cross-

classified by schools and neighborhoods.  

4. Specification of the level-3 row- and/or column-factor prediction model. Here each level-2 

coefficient becomes an outcome, and we can select row- and/or column-factor variables to 

predict school-to-school and neighbor-to-neighbor variation in these level-2 coefficients. In 

principle, this model specifies how schools and neighborhoods differ with respect to the 

distribution of growth curves within them. 

5. Specification of the residual row and column as random or non-random, the effects 

associated with row-specific predictors as varying randomly or fixed over columns, and the 

effects associated with column-specific predictors as varying randomly or fixed over rows. 

We shall test whether the associations between neighborhood disadvantage (a column-

specific predictor) and growth parameters vary over schools. 

 

Following the five steps above, we first specify a model with no student-, neighborhood-, or 

school-level predictors. The Windows execution is very similar to the one for HCM2 as described 

in Section 11.2. The command file, GROWTH1.HLM, contains the model specification input 

responses. Figure 17.10 displays the model specified. 

 

 

Figure 17.10 Unconditional model for the growth example 

The results of the analysis are given below. 

 

Specifications for this HLM-HCM run 
 
Problem Title: UNCONDITIONAL LINEAR GROWTH MODEL  
 
The data source for this run = growth.mdm 
The command file for this run = growth1.hlm 
Output file name = growth1.html 

Both level-2 coefficients are 
specified as randomly varying 
across schools and neighbors 

Both level-1 coefficients 
are specified as randomly 
varying 

 

Outcome Intercept 

 AGE8 slope 
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The maximum number of level-1 units = 2008 
The maximum number of level-2 units = 567 
The maximum number of row units = 224 
The maximum number of column units = 74 
The maximum number of iterations = 100 
Method of estimation: full maximum likelihood 
 
The outcome variable is MATH 

 
Summary of the model specified 
 
Level-1 Model 

     
 MATHmijk = ψ0ijk + ψ1ijk*(AGE8mijk) + εmijk  

 
Level-2 Model 

  
    ψ0ijk = π00jk + e0jk 
    ψ1ijk = π10jk + e1jk 

 
Row/Column Model 
  
 π00jk = θ00 + b000j + c000k 
     π10jk = θ10 + b100j + c100k 
 
For starting values, data from 1967 level-1, 526 level-2, 219 rows, and 74 column records were used 

 
Final Results - iteration 814 

 
Iterations stopped due to small change in likelihood function 

 

σ
2
 = 0.16452 

 

τ  
  INTRCPT1    AGE8 

  INTRCPT2,e0   INTRCPT2,e1jk 

   0.27574    0.07972 

0.07972    0.03283 

 

τ (as correlations)  

  1.000   0.838 

  0.838   1.000 

 

Note that the estimated correlation between true status at AGE = 8 and true rate of change is 

estimated to be 0.838 for students in the same cell cross-classified by schools and 

neighborhoods. 

 

Ω  

  INTRCPT1    AGE8 

  INTRCPT2   INTRCPT2 

ICPTROW,b000   ICPTROW,b100 

   0.10927    -0.00606 

   -0.00606    0.00580 
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Ω (as correlations)  

  1.000  -0.241 

 -0.241   1.000 

 

Note that the estimated correlation between true school mean status at AGE = 8 and true school-

mean rate of change is estimated to be -0.241. 

 

Δ  

  INTRCPT1    AGE8 

  INTRCPT2   INTRCPT2 

   ICPTCOL,c000    ICPTCOL,c100 

   0.02840    0.01363 

   0.01363    0.00720 

 

Δ (as correlations)  

  1.000  0.954        

  0.954  1.000  

 
Note that the estimated correlation between true neighborhood mean status at AGE = 8 and true 
neighborhood-mean rate of change is estimated to be 0.954. 

 

 
The value of the log-likelihood function at iteration 814 = -1.917348E+003 

 
Final estimation of fixed effects: 
 

Fixed Effect  Coefficient 
 Standard 
error 

 t-ratio 
 Approx. 
d.f. 

 p-value 

For INTRCPT1, π0 

    INTRCPT2,       

    INTERCEPT, θ00 2.257403 0.042925 52.589 274 <0.001 
For AGE8, π1 

    INTRCPT2,       

    INTERCEPT, θ10 0.880177 0.016734 52.598 274 <0.001 

 

The above table indicates that the average growth rate is significantly positive at 0.880 logits per 

year, t = 52.598. 

 
Final estimation of level-1 and level-2 variance components 
 

Random Effect 
Standard 
 Deviation 

Variance 
 Component 

  d.f. χ
2
 p-value 

INTRCPT1,  e0 0.52510 0.27574 268 4818.18751 <0.001 
AGE8,  e1jk 0.18119 0.03283 268 1465.94774 <0.001 
σ

2
,ε 0.40561 0.16452       

 
Note: The chi-square statistics reported above are based on only 526 of 567 units that had sufficient 
data for computation. Fixed effects and variance components are based on all the data. 
 

The results above indicate significant variability among children cross-classified by schools and 

neighborhoods in terms of mean status at AGE = 8 (χ2 = 4818.18751, df = 268) and in terms of 

yearly rate of change (χ2 = 1465.94774, df = 268). 
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Final estimation of row level variance components 
 

Random Effect 
Standard 
 Deviation 

Variance 
 Component 

  d.f. χ
2
 p-value 

INTRCPT1/ INTRCPT2/ ICPTROW,b000 0.33055 0.10927 224 87.39230 >0.500 
AGE8/ INTRCPT2/ ICPTROW,b100 0.07616 0.00580 224 201.21512 >0.500 

 

The results above indicate there is no significant variability among schools in terms of mean 

status at AGE = 8 (χ2 = 87.39230, df = 224) and in terms of yearly rates of change (χ2 = 

201.21512, df = 224). 

 
Final estimation of column level variance components 
 

Random Effect 
Standard 
 Deviation 

Variance 
 Component 

  d.f. χ
2
 p-value 

INTRCPT1/INTRCPT2/ ICPTCOL,c000 0.16851 0.02840 73 1316.77855 <0.001 
AGE8/INTRCPT2/ ICPTCOL,c100 0.08484 0.00720 73 831.88840 <0.001 

 

The results above indicate significant variability among neighbors in terms of mean status at 

AGE = 8 (χ2 = 1316.77855, df = 73) and in terms of yearly rates of change (χ2 = 831.88840, df = 

73). 

 
Statistics for the current model 
 
Deviance = 3834.695088 
Number of estimated parameters = 12 

17.3 Specification of a level-2 and level-3 conditional model, with the 
effect associated with a column-specific predictor fixed 

The above example involves a model that is unconditional at all levels. In this model we set up a 

level-2 and a row-factor prediction model. 

To set up the level-2 model: 

Select the equation containing pijk to be modeled, a list box for level-2 variables (>>Level-2<<) 

will appear. Figure 17.12 shows the models with BLACK and HISPANIC as the level-2 predictors. 

In the interest of parsimony, all level-2 coefficients are fixed. (To specify either of them as 

randomly varying, select the equation containing a specific regression coefficient, pqjk , and 

click on pqrjb  and/or pqskc ). 
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Figure 17.12 Level-2 prediction model for the growth study 

To set up the level-3 row or/and column-factor prediction model: 

Select the equation containing 
pqjk  to be modeled, a list box for level-3 row-factor variables 

(>>Row<<) will appear. To display level-3 column-factor variables, click on   and 

the corresponding list box of variables. Figure 17.13 shows the level-3 column-factor prediction 

model with DISADV as the covariate. In the level-3 model, we treated the association between 

neighborhood disadvantage and the growth parameters as fixed across all schools. Note that 001 jb

and 101 jb  are disabled. We relax this assumption in our next model.  
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Figure 17.13 Conditional model for the growth study, with neighborhood disadvantage 
effect fixed 

The results of the analysis are given below. 

 
Specifications for this HLM-HCM run 
 
Problem Title: CONDITIONAL LINEAR GROWTH MODEL, WITH NEIGHBORHOOD DISADVANTAGE  
 
The data source for this run = growth.mdm 
The command file for this run = growth2.hlm 
Output file name = growth1.html 
The maximum number of level-1 units = 2008 
The maximum number of level-2 units = 567 
The maximum number of row units = 224 
The maximum number of column units = 74 
The maximum number of iterations = 100 
Method of estimation: full maximum likelihood 
 
The outcome variable is MATH 

 
Summary of the model specified 
 
Level-1 Model 

 
    MATHmijk = ψ0ijk + ψ1ijk*(AGE8mijk) + εmijk  

 
Level-2 Model 

 
    ψ0ijk = π00jk + π01jk*(BLACKjk) + π02jk*(HISPANICjk) + e0jk 
    ψ1ijk = π10jk + π11jk*(BLACKjk) + π12jk*(HISPANICjk) + e1jk 
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Row/Column Model 

 
π00jk = θ00 + b000j + c000k 

                   + DISADVk*(β001) 
    π01jk = θ01 
    π02jk = θ02 
    π10jk = θ10 + b100j + c100k 
                   + DISADVk*(β101) 
    π11jk = θ11 
    π12jk = θ12 
 
For starting values, data from 1967 level-1, 526 level-2, 219 rows, and 74 column records were used 

 
Final Results - iteration 1300 
 
Iterations stopped due to small change in likelihood function 
 

σ
2
 = 0.16386 

 

τ  
  INTRCPT1    AGE8 

  INTRCPT2,e0   INTRCPT2,e1jk 

   0.27546    0.08088 

   0.08088    0.03538 

 

τ (as correlations)  

  1.000   0.819 

  0.819   1.000 

 

Ω  

  INTRCPT1    AGE8 

  INTRCPT2   INTRCPT2 

   ICPTROW,b000    ICPTROW,b100 

   0.09506    -0.00711 

   -0.00711    0.00320 

 

Ω (as correlations)  

  1.000  -0.408 

 -0.408   1.000 

 

Δ  
  INTRCPT1    AGE8 

  INTRCPT2   INTRCPT2 

   ICPTCOL,c000    ICPTCOL,c100 

   0.01332    0.00656 

   0.00656    0.00338 

 

Δ (as correlations)  
  1.000   0.979 

  0.979   1.000 

 
The value of the log-likelihood function at iteration 1300 = -1.900326E+003 
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Final estimation of fixed effects: 
 

Fixed Effect  Coefficient 
 Standard 
error 

 t-ratio 
 Approx. 
d.f. 

 p-value 

For INTRCPT1, π0 

    INTRCPT2,       

    INTERCEPT, θ00 2.639580 0.090173 29.272 270 <0.001 
     DISADV, γ001 -0.001726 0.050288 -0.034 222 0.973 

     BLACK,       

    INTERCEPT, θ01 -0.443355 0.103660 -4.277 270 <0.001 

    HISPANIC,       

    INTERCEPT, θ02 -0.468207 0.098680 -4.745 270 <0.001 
For AGE8, π1 

    INTRCPT2,       

    INTERCEPT, θ10 0.933753 0.035488 26.312 270 <0.001 
     DISADV, γ101 -0.050330 0.020853 -2.414 222 0.016 
     BLACK,       
    INTERCEPT, θ11 -0.105109 0.040518 -2.594 270 0.010 
    HISPANIC,       
    INTERCEPT, θ12 -0.036124 0.038978 -0.927 270 0.354 
 
Final estimation of level-1 and level-2 variance components 
 

Random Effect 
Standard 
 Deviation 

Variance 
 Component 

  d.f. χ
2
 p-value 

INTRCPT1,  e0 0.52484 0.27546 268 6019.63723 <0.001 
AGE8,  e1jk 0.18811 0.03538 268 1363.77540 <0.001 
σ

2
,ε 0.40480 0.16386       

 
Note: The chi-square statistics reported above are based on only 526 of 567 units that had sufficient 
data for computation. Fixed effects and variance components are based on all the data. 
 

Final estimation of row level variance components 
 

Random Effect 
Standard 
 Deviation 

Variance 
 Component 

  d.f. χ
2
 p-value 

INTRCPT1/ INTRCPT2/ ICPTROW,b000 0.30832 0.09506 224 79.66634 >0.500 
AGE8/ INTRCPT2/ ICPTROW,b100 0.05653 0.00320 224 182.46985 >0.500 

 
Final estimation of column level variance components 
 

Random Effect 
Standard 
 Deviation 

Variance 
 Component 

  d.f. χ
2
 p-value 

INTRCPT1/INTRCPT2/ ICPTCOL,c000 0.11543 0.01332 73 2085.34935 <0.001 
AGE8/INTRCPT2/ ICPTCOL,c100 0.05810 0.00338 73 1337.03181 <0.001 

 
Statistics for the current model 

 
Deviance = 3800.651318 
Number of estimated parameters = 18 
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The results suggest that: 

 

 Compared to their reference group (non-Black and non-Hispanic); African and Hispanic 

American students on average had a lower mathematics score at age 8 than did white 

students. Also, African American students had a significantly lower growth rate in 

mathematics achievement ( 11 = -0.105, t = -2.594) than did white students. 

 Neighborhood disadvantage had a negative association with the growth rate of the 

reference group ( 101  = -0.050, t = -2.414). 

 The column level variance at level 3 of each growth parameter was substantially reduced     

(> 50%). The residual variation between neighborhoods in c000 (estimated at 0.01332) 

and in c100 (estimated at 0.00338) are less than half of those in the unconditional models 

(0.02840 and 0.00720).  

17.4 Other program features 

HLMHCM models provide options for multivariate hypothesis tests for the fixed effects and the 

variance-covariance components. A “no-intercept” option is available for the level-1, level-2, 

and the level-3 row and column models. In addition to continuous outcomes, they handle binary 

and count outcomes. HLMHCM also allows users to diagonalize the τ, Ω , and Δ when interests 

focus only on the diagonal elements. 
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18 Graphing Data and Models 

 

 

 

HLM2 and HLM3 provide the ability to make data-based and model-based graphs. Data-based graphs 

allow examination of univariate and bivariate distributions. Model-based graphs, which can be 

produced by the HLM2, HLM3, HMLM, HMLM2 and HCM2 modules of WHLM, facilitate visualization 

and presentation of analytic results for the whole or a subset of the population of interest. They also 

enable users to check the tenability of underlying model assumptions. 

18.1 Data – based graphs – two level analyses 

18.1.1 Box-and-whisker plots 

We first illustrate how to use box-and-whisker plots to display univariate distributions of level-1 

variables for each level-2 unit, with and without a level-2 classification variable. Using the 

HS&B data (see Section 2.5.1.1), we display graphical summaries of the mathematics 

achievement variable, MATHACH, and simultaneously show differences in the student scores 

within a school and among schools. 

 
To prepare box-and-whisker plots 
 

1. From the HLM window open the File menu. 

2. Choose Create a new model using an existing MDM file to open an Open MDM File 

dialog box. Open HSB.MDM. 

3. Open the File menu, choose Graph Data … box-whisker plots to open an Choose Y for 

box plot dialog box (see Figure 18.1). 

4. Select MATHACH in the Y-axis drop-down list box. 

5. Choose the number of groups to be used for graphing. There are three options: (a) First ten 

groups; (b) Random sample of spec'd prob (specified probability) and (c) All groups (n 

= total number of groups) for users to choose from in the Number of groups drop-down list 

box. The selection of option (b) requires the user to specify the proportion or percent of the 

level-2 units to be included. to do so, enter a probability into the text box for Probability (0 

to 1). In our example, we randomly select 10 percent of the schools to illustrate. we select 

Random sample of spec'd prob from the Number of groups drop-down list box. Enter 0.1 

into the text box for Probability (0 to 1) to indicate that 10 percent or a proportion of .1 of 

the schools will be used. 

6. Specify the arrangement of the plots by either (a) the original order of the groups as they 

appear in the data set or (b) the median in an ascending order. Click on the selection button 

for median in the Sort by section to arrange the box-and-whisker plots of MATHACH by 

median in an ascending order (see Figure 18.2). 
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Figure 18.1 Choose Y for box plot dialog box 

 

 

Figure 18.2 Choose Y for box plot dialog box for the MATHACH example 

7. Click OK to display the plots (see Figure 18.3). 
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Figure 18.3 Box and whisker plot for MATHACH  

The figure gives side-by-side graphical summaries of the distributions of MATHACH for the 

sixteen schools sorted by median. The x-axis denotes number of schools in the display and the y-

axis mathematics achievement. The plot tells us that the first school from the left has a median 

score of about 6.05, which is the lowest school median in this group. The distribution of the 

scores of the students in this school is positively skewed and there is an outlier at the upper end.   

 

The third and the fourth schools from the left have similar distributions of mathematics scores. 

Compared to the distribution of the scores of the adjacent school on the right, however, the 

scores of these two schools display greater variability, as defined by the lengths of the boxes or 

interquartile ranges. In addition, there is an outlier at the upper end of the distribution for the 

fifth school. The highest median mathematics score among the 16 schools was 19.08. 

 

8. (Optional) WHLM allows users to list the raw data of a specific group that is graphically 

summarized in one of the box-and-whisker plots as well. To see the data of a specific level-2 

unit, click on one of the box-and-whisker plots (near the median is usually a good place) in 

Figure 18.3, which brings up the following dialog box: 
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Figure 18.4 Box & Whisker Attributes dialog box 

For a description of the options, see Table 18.1. 

 

Click Data and then a dialog box containing the data of a specific group will appear. In our 

example, we examine the raw scores of the school with the highest median (see Figure 18.5). 

The title bar of Figure 18.5 tells us the level-2 ID of the box-and-whisker plot we selected is 

3427. # is a zero-based counter for group plots.  

 

 

Figure 18.5 Data for School 3427 dialog box 

As the box-and-whisker plots are plotted individually in the example, it is 0. X tells us that the 

data are from the thirteenth school displayed on the plot. Y1 to Y11 list the mathematics scores 

for the first eleven students in School 3427. Move the bottom scroll box to the left to display 

more scores for the other students. 

9. (Optional) To edit the graph, open the Edit menu and choose Graph Parameters.... The user 

can change attributes such as size and color of the graph, border, and plotting area. By 

choosing Copy graph or Copy current page (when there are more than one pages of 

graphs), users can directly copy and paste the graph or current page into a word processing or 

graphics document.  

10. (Optional) To print the graph, open the File menu, select Print current page or Print 

selected graph when there are more than one graph. Users can choose Printing Options... 

to change printing parameters such as choice of background, border type, aspect ratio (the 

ratio of the x-axis length to the y-axis length, the default is 5/3), and printing style. 
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Table 18.1 Definitions and options in the Box & Whisker Attributes dialog box 

 Key terms Function Option Definition 

1 Midpoint Specify the type of average used 2 choices 1. Median 

2. Mode 
2 Box Size Specify the width in units of the axis 

that the box width is parallel to. 

  

3 Min, Max, and 

Coefficient for box 

or whisker and 
Constant for box 

Min and Max specify the box 

percentage minimum and maximum 

when the box or whisker Type is 
PERCENT. The coefficient is the 

box or whisker coefficient by which 

the selected range value will be 

multiplied. The Constant is the box 
constant, valid when the box Type is 

CONSTANT. 

  

4 Midpoint marker Display a Marker Attributes 

dialog box that allows the user to 

specify the shape, color, size, and 

style of the midpoint marker. 

 

 
 

5 Line attributes Display a Line Parameters dialog 

box that allows the user to specify 
the thickness, color, and style of the 

whisker. 

  

 

11. To save the graph for future use by opening the File menu and choose Save as metafile. A 

Save as dialog box will open. Enter a filename for the file and click OK. The file can be 

saved as an Enhanced Metafile (.EMF) (default and preferred as it holds more information 

than the other option) or Windows Metafile (.WMF). Users can use word processing 

programs to insert the graph file into the text. For example, to insert the saved .EMF file into 

Word, choose Insert-...Picture-...From File from Word's main menu. 

12. (Optional) To make modifications to the specifications, select Graph Settings. The 

Equation Graphing dialog box will appear. We are going to illustrate this by adding a level-

2 classification variable next. 
 
To include a level-2 classification variable 
 

13. After choosing the Y-Axis variable, select the level-2 classification variable in the Z-focus 

drop-down list box. There are two types of level-2 classification variables, categorical and 

continuous. For categorical variables, WHLM will classify the plots with the levels of the 

variables. For continuous variables, users can choose either to dichotomize them using 

median splits, or trichotomize them into three groups: (a) 0 to 24
th
 percentile; (b) 25

th
 to 75

th
 

percentile; and (c) 76
th

 percentile and above. These two options, available when a continuous 

classification variable is chosen, can be found in the lower Z-focus drop-down list box. In 

our example, we will choose school sector, Catholic vs. public school, as the classification 

variable. To continue working on the plot we have just made, click Graph Settings to open 

the Equation Graphing dialog box. Select SECTOR in the Z-focus dialog box. The 

following graph will be displayed (see Figure 18.6).  
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Figure 18.6 Box-and-whisker plots for MATHACH for a random sample of schools as 
classified by school sector 

In the graph, the box-and-whisker plots for Catholic and public schools are coded differently 

(red for Catholic and blue for public schools). The colored graphs (not showed here) suggest that 

the three schools that have the highest median mathematics scores are Catholic schools. The 

school with the lowest average belongs to the public sector. 

 

Users can edit the legends by clicking on them in the graph above to open the Legend 

Parameters dialog box (see Figure 18.7), which allows them to make changes in the titles of the 

legends, their sizes and font types, and the display of the legend box. For example, one may like 

to change SECTOR = 0 in the text box of Figure 18.7 to PUBLIC = 0 and SECTOR = 1 to 

CATHOLIC = 1. 

 

 

Figure 18.7 Legend Parameters dialog box 
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18.1.2 Scatter plots 

In the previous section, we illustrated how to graphically summarize and compare univariate 

distributions of level-1 variables, with and without a level-2 classification variable. Now we 

demonstrate how to use data-based scatter plots to explore bivariate relationships between level-

1 variables for individual or a group of level-2 units, with and without controlling level-2 

variables. We will continue to use the HS&B data set and we are going examine the relationships 

between MATHACH and SES for a group or individual schools, with and without controlling for 

the sector of the school. 

 

To prepare a scatter plot 

1. From the HLM window, open the File menu. 

2. Choose Create a new model using an existing MDM file to open an Open MDM File 

dialog box. Open HSB.MDM. 

3. Open the File menu, choose Graph Data …. line plots, scatter plots to open a Choose X 

and Y variables dialog box (see Figure 18.8). 

4. Select SES from the X-axis drop-down list box. 

5. Select MATHACH from the Y-axis drop-down list box. 

6. Select number of groups. In this example, select Random sample of spec'd prob and enter 

.2 into the textbox to select 20 percent of the schools. 

 

 

Figure 18.8 Choose X and Y variables dialog box 

7. Select type of plot. Users can select one of the two major types of plots: (a) scatter plot; and 

(b) line plot with and without markers or asterisks showing where the data points are. Click 

the selection button for Scatter plot (default) for this example. 

8. Select type of pagination. There are three options: (a) all groups on the same graph (default); 

(b) one graph per groups and to display a maximum of eight graphs on one page, and (c) 1 
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graph per group and to be displayed on multiple pages. In this example, we will display the 

bivariate relationship between SES and MATHACH for all the selected schools on a single 

graph. We choose the option All groups on same graph accordingly. 

9. Click OK to make the scatter plot. This gives us the following graph (see Figure 18.9), 

indicating a moderate positive association between SES and MATHACH, and suggesting that 

both variables have “ceilings” (upper limits). 

10. For more information on the editing, printing, saving and modification options, see Steps 11 

to 13 in Section 18.1.1. 

 

 

Figure 18.9 Scatter plot for the 20% random sample of cases 

To include a level-2 classification variable 
 

11. After specifying the variables for the x- and y-axis, select the controlling variable from the Z-

focus drop-down list box. As in the case for the box-and-whisker plots, users can choose 

either a categorical and continuous controlling variable (see Step 14 in Section 18.1.1). In 

our example, we will choose school sector, Catholic vs. public school, as the controlling 

variable. To continue working on the scatter plot we have just made, click Graph Settings to 

open the Equation Graphing dialog box. Select SECTOR in the Z-focus dialog box. The 

following graph will be displayed (see Figure 18.10).  
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Figure 18.10 Scatter plot for random sample by SECTOR 

The color-coded scatter plot shows that there is not in general a radical difference in the SES-

MATHACH relationship for the two types of schools.  

 

It may be helpful to use a different pagination option to help us to discern the relationships for 

these two groups of school. Instead of having all the groups on the same graph, we select the 1 

graph/group, multiple/page pagination option. This gives us Figure 18.11, where we see how 

the two groups of schools vary in their SES and MATHACH distributions. Note, for example, that 

school 8946 has high levels of SES and that in school 4325, the association between SES and 

MATHACH appears a bit stronger than in several of the other schools. WHLM puts a maximum of 8 

groups in a window. We can page back and forth using the -> and <- buttons in the lower right 

corner of the window to display the scatter plots for other schools.  
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Figure 18.11 Scatter plots for individual schools on one page 

As an elaboration of this, we can also choose on the Graph Settings dialog box to have each 

group's plot in a separate graph by choosing 1 graph/group, 1/page, as shown below: 
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Figure 18.12 Individual scatter plot for school 7697 

18.1.3 Line plots – two-level analyses 

In scatter plots, observations on a pair of level-1 variables are plotted to examine their 

association, with and without a level-2 controlling variable. In line plots, level-1 repeated 

measures observations are joined by lines to describe changes or developments over time during 

the course of the research study. We illustrate this type of plot with data from two studies of 

children's vocabulary development (Huttenlocher, Haight, Bryk, and Seltzer, 1991, see also 

Hierarchical Linear Models, pp. 170-179). Twenty-two children were observed in the home on 

three to seven occasions at 2 to 4-month intervals during their second year of birth. A measure of 

the child's vocabulary size at each measurement occasion was derived from these observations. 

In this example, the level-1 file, VOCABl1.SAV has 

 

 AGE      Age in months 

 VOCAB  Vocabulary size 

 AGE12  Age in months minus 12 

 AGE12Q  AGE12*AGE12  

 

The level-2 data file, VOCABL2.SAV, consists of 22 children and an indicator variable for gender 

 MALE    An indicator for gender (1 = male, 0 = female) 
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To prepare a scatter plot 

 

1. From the HLM window, open the File menu. 

2. Choose Create a new model using an existing MDM file to open an Open MDM File 

dialog box. Open VOCAB.MDM. 

3. Open the File menu, choose Graph Data...line plots, scatter plots to open an Choose X 

and Y variables dialog box (see Figure 18.8). 

4. Select AGE from the X-axis drop-down list box. 

5. Select VOCAB from the Y-axis drop-down list box. 

6. Select number of groups. In this example, we include all the children in the display by 

selecting All groups (n = 22) in Number of groups drop-down list box. 

7. Select type of line plot and method of interpolation. Users can select line plots with and 

without markers or asterisks showing where the data points are. The two types of 

interpolation are linear and cubic. In linear interpolations, the data points are simply joined 

by straight line segments. Cubic interpolations may be chosen to provide a smoother function 

and more continuity between the segments. For our example, suppose we want a line plot 

with no markers that is graphed with the linear interpolation method. Click the selection 

button for Straight line. 

8. Select type of pagination. In this example, we want to have the trajectories for all children on 

the same graph and select All groups on same graph pagination option accordingly. When 

all the choices are made, the Choose X and Y variables dialog box should look like the one 

shown in Figure 18.13. 

 

 

Figure 18.13 Choose X and Y variables dialog box for line plot of VOCAB and AGE 

 

9. Click OK to make the line plot. The following graph will appear. 
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Figure 18.14 Line plot of the vocabulary score vs. the age of the child 

 

We see that, for all children, vocabulary size is near zero at around a year of age (12 – 15 

months) and that for each child, vocabulary size increases, typically quite rapidly during the 

second year of life. 

 

To include a classifying level-2 variable 

 

Now we want to look at the difference between boys and girls. On the menu of the graph dialog 

box, click Graph Settings. Here we choose the level-2 variable FEMALE as a Z-focus variable. 

For illustrative purposes, we will use the cubic interpolation method this time by clicking the 

selection button for Cubic interpolation line. The colored version of the following graph shows 

that girls' vocabulary tends to grow more rapidly than that of boys, on average. 
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Figure 18.15 Cubic interpolation line plot of the difference between boys and girls 

18.2 Model-based graphs – two level 

18.2.1 Model graphs 

WHLM provides graphing options to display the relationships between the outcome and the 

predictor(s) based on the final analytic results. The options allow us to visually represent the  

results of the models for the whole or a subset of population, and to graphically examine 

underlying model assumptions as well. Below we provide a 2-level example of a growth curve 

analysis of pro-deviant attitude for fourteen-year-old youth over a period of five years with data 

from the National Youth Survey (Elliot, Huizinga, & Menard, 1989; Raudenbush & Chan, 

1993). In our example, the level-1 file, NYSW2.SAV, has 1,066 observations collected from 

interviewing annually fourteen-years-old youths beginning at 1976: 

 

 ATTIT A nine-item scale assessing attitudes favorable to deviant behavior 

Subjects were asked how wrong (very wrong, wrong, a little bit wrong, not wrong at 

all) they believe it is for someone their age, for example, to damage and destroy 

property, use marijuana, use alcohol, sell hard drugs, or steal. 

 

The measure was positively skewed; so a logarithmic transformation was performed 

to reduce the skewness. 

 AGE16 Age of participant at a specific time minus 16 

 AGE16S = AGE16 * AGE16 

 

The level-2 data file, NYSB2.SAV, consists of 241 youths and three variables per participant. 
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 FEMALE An indicator for gender (1 = female, 0 = male) 

 MINORITY An indicator for ethnicity (1 = minority, 0 = other) 

 INCOME Income 

 

At level-1, we formulate a polynomial model of order 2 using AGE16 and AGE16S (see Figure 

18.16) with FEMALE and MINORITY as covariates at level-2 modeling 
0 , the expected pro-

deviant attitude score at age 16 for subject j; 
1  and 

2 , which are the expected average linear 

and quadratic growth rate for pro-deviant attitude score respectively. The procedure for setting 

up the model is given in 2.5.2. We will ask WHLM to graph the predicted values of pro-deviant 

attitude scores at different ages for different gender-by-ethnicity groups.  

 

 

Figure 18.16 A polynomial model of order 2 with FEMALE and MINORITY as level-2 
covariates 

 

To prepare the graph 

 

1. After running the model, select Basic Settings to open the Basic Model Specifications – 

HLM2 dialog box. 

2. Enter a name for the graphics file. The default name is grapheq.geq. 

3. Enter a title and name the output filename, save the command file, and run the analysis as 

described in section 2.5.2. 

4. Open the File menu and choose Graph Equations. An Equation Graphing dialog box will 

open (see Figure 18.17). Table 18.2 lists the definitions and options in the Equation 

Graphing dialog box. 
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Figure 18.17 Equation Graphing – Specification dialog box 

 

We now proceed to select the predictor variables and specify their ranges or values, and choose 

the graphing functions and the various attributes of the plot for the polynomial model 

represented in Figure 18.16, as described in Steps 5 to 14 below. 

 

5. Select AGE16 in the X focus Level 1 drop-down list box to graph pro-deviant attitude score 

as a function of age. 

6. Select Entire range in the Range of x-axis drop-down list box to include the entire range of 

age on the x axis in the graph. 
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Table 18.2   Definitions and options in the Equation Graphing dialog box 

 Key terms Function Option Definition 

1 X focus Specify the variable to be 

displayed on x-axis 

2 choices 1. Level-1 predictor 

2. Level-2 predictor 
2 Range of x-axis Specify the maximum and 

minimum values of X to be 

displayed 

5 choices 1. 10
th
 to 90

th
 percentiles 

2. 5
th
 to 95

th
 percentiles 

3. 25
th
 to 75

th
  percentiles 

4. +/- 2 s.e.'s 
5. Entire range 

3 Categories/ 

transforms/ 

interactions 

Define the reference category 

for categorical variables with 

more than two levels, and 

specify the relationship 
between the 

transformed\interaction and 

the original variables 

5 choices 1. define categorical variable (for 

variable with more than two 

levels) 2. interaction 

3. power of x/z 
4. square root 

5. natural log 

4 Range/ 

Titles/ 
Color 

Specify the maximum and 

minimum values of X and Y 
to be displayed (defaults are 

values computed). 

Enter legend titles for X and 
Y. 

Enter graph title. 

Select screen color 

 

 
 

 

 
 

2 choices 

 

 
 

 

 
 

1. Black and white 

2. Color 
5 Other Settings Specify graphing function 

 

Predictors not in graph 
 

 

Use fixed effects from 
These are only available for 

HGLM models, and Laplace is 

only available if Laplace was 
asked for in HGLM2/HGLM3 

Bernoulli runs 

2 choices 

 

2 choices 
 

 

3 choices 

1. rough – original points 

2. smooth – smoothed data 

1. constant at grand mean 
(default) 

2. constant at zero. 

1. unit-specific PQL estimates 
2. population-average estimates 

3. unit-specific Laplace estimates 

 

6 Z focus(1 or 2) Specify the first or second 

classification variable for X 

3 choices 1. Level-1 predictor 

2. Level-2 predictor 

7 Range of z-axis  

 

Specify the specific values of 

Z focus to be included. 

4 choices 

for 

continuous 
variables 

 

 

2 choices 
for 

categorical 

variables 

1. 25
th
 and 75

th
 percentiles 

2. 25th/50th/75th percentiles 

3. Averaged lower/upper 
quartiles 

4. Choose up to 6 values (enter 

the six values into the textboxes) 
 
1. Use the two actual values 

2. Choose one or two values 
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7. Click 1 in the Categories/transforms/interactions section and select power of x/z for 

Polynomial relationships. An Equation Graphing - power dialog box will open (see Figure 

18.18). 

 

 

Figure 18.18 Equation Graphing – power dialog box  

 

8. The textbox to the left of the equal sign is for the entry of the transformed variable. Select 

AGE16S in the drop-down list box (see Figure 18.19). The textbox to the right is for the entry 

of the original variable. AGE16 will appear in the drop-down list box as it is the only level-1 

variable left. Enter 2 in the textbox for the power to be raised. Click OK. 

 

 

Figure 18.19 Equation for the transformed variable AGE16S 

 

9. Click Range/Legend/Color to specify the ranges for x- and y-axis (the default values are 

those computed from the data), to enter legend and graph titles, and to select screen color 

(see Figure 18.20). Enter Pro-deviant attitude score as a function of age, gender and 

ethnicity in the textbox for Graph title. Click OK. 

 

 

Figure 18.20 Select Range/Legend/Color dialog box 

 

10. Click the Other settings button and click the selection button for Smooth in For 

continuous x section to display a set of smooth curves. 

11. Select FEMALE in the Z focus(1) drop-down list box to graph pro-deviant attitude score as a 

function of age for male and female youths. Use the two actual values will appear in the 
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textbox for the Range of z-axis as FEMALE is an indicator variable. We will use this default 

option. 

12. Select MINORITY in the Z focus(2) drop-down list box to graph pro-deviant attitude score as 

a function of age for minority and non-minority male and female youths. Use the two actual 

values will appear in the textbox for the Range of z-axis as MINORITY again is an indicator 

variable. We will use this default option. See Figure 18.21 for the specifications for this 

growth curve analysis example. 

13. Click OK. A colored version of the plot (not displayed here) showing the relationship 

between pro-deviant attitude score and age for different gender-by-ethnicity groups will 

appear (see Figure 18.22). The curves indicate that there is a nonmonotonic and nonlinear 

relationship between pro-deviant attitude scores and age for minority and non-minority male 

youths over the five year period. Such a relationship, however, does not exist for minority 

and non-minority female youths. 

14. For information on the editing, printing, saving, and modification options, see Steps 11 to 13 

in section 18.1.1. 

 

 

Figure 18.21 Specifications for the Growth Curve Analysis Example  
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Figure 18.22 Plot showing the relationship between pro-deviant attitude score and age for  
    different gender-by-ethnicity groups  

18.2.2 Level-1 equation modeling 

WHLM will also let us examine plots for individual level-2 units by just using the level-1 equation 

instead of the entire model. For this example, we will be using the vocabulary data, VOCAB.MDM 

described in section 18.1.2, and have run the following model: 

 

 

Figure 18.23 Model specification window for the vocabulary data 

 

To perform the level-1 equation graphing 

 

1. After the model is run, select Graph Equations...Level-1 equation graphing from the File 

menu, which will give us the following dialog box.  
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Figure 18.24 Level-1 equation Graphing dialog box 

 

For the definition of Number of groups, see step 5 in section 18.1. Table 18.2 describes and 

explains the other options in the dialog box. 

 

2. Select an X focus variable. In our example, we want the age of the child in months minus 12 

to be the X focus. Choose AGE12 from the X focus drop-down list box. 

3. Select number of groups. We will include all the children. Choose All groups (n=22) in the 

Number of groups drop-down list box. 

4. Specify the relationship between the transformed and the original variable. The transformed 

variable is AGE12S and the original variable is AGE12. Click 1 in the Categories/ 

transforms/interactions section and select power of x/z for Polynomial relationships. A 

Equation Graphing - power dialog box will open. Select AGE12S from the drop-down list 

box to the left of the equal sign. AGE12 will appear in the drop-down list box as it is the only 

level-1 variable left. Enter 2 in the textbox for the power to be raised. Click OK. 

5. (Optional) click Range/Legend/Color to specify the ranges for x- and y-axis (the default 

values are those computed from the data), to enter legend and graph titles, and to select 

screen color. 

6. Click the Other settings button and click the selection button for Smooth in For 

continuous x section to display a set of smooth curves. Click OK. 

7. Click OK and we get the following figure that shows vocabulary size accelerates during the 

second year of life. Note that the individual trajectories, as expected, are “smoother” than in 

the comparable data-based graphs in Figure 18.14 in Section 18.1.3. 
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Figure 18.25 Predicted trajectories of vocabulary growth for individual children  

To include a level-2 classification variable 

 

8. Click Graph Settings on the menu bar to open the Level-1 equation Graphing dialog box. 

9. Choose MALE from the Z-focus drop-down list box as the level-2 classification variable. 

10. Click OK. The following figure will appear. A colored version of the graph (not shown here) 

indicates that girls on average have a greater acceleration rate in vocabulary growth over the 

course of the study. 
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Figure 18.26 Predicted trajectories of vocabulary growth of individual children grouped by 
gender 

18.2.3 Level-1 residual box-and-whisker plots 

In addition to plotting predicted values for individual level-2 units using level-1 equations, users 

can also examine the distributions of the level-1 errors or residuals (see Equation 3.63 on p. 50 in 

Hierarchical Linear Models). The plots allow users to graphically examine the assumptions 

about the level-1 residuals and to identify cases for which the model provides a particularly poor 

fit. We continue to use VOCAB.MDM to illustrate this graphing procedure.  

 

To prepare level-1 residual box-and-whisker plots 

 

1. After the model is run, select Graph Equations...Level-1 box whisker from the File menu, 

which will give us the following dialog box. 
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Figure 18.27 Choose Y for box plot dialog box 

 

For definitions of the options in the dialog box, see Section 18.1.1. Note that the variable for Y-

axis, level-1 residual has been pre-selected. 

 

2. Select All groups (n=22) in the Number of groups to include all the 22 children in the 

display. 

3. Click the selection button for median in the Sort by section to arrange the plots by median 

order. 

4. Click OK. The following graph will appear. 
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Figure 18.28 Box-and-whisker plots of the level-1 residuals  

 

The box-and-whisker plots provide side-by-side graphical summaries of the level-1 residuals for 

each level-2 units. The plots suggests that the underlying model assumptions may not be tenable. 

First, quite a number of the distributions are highly asymmetric, such as the last one from the 

left. Thus, the normality assumption may not hold. There seems to be heterogeneity of variance 

as well, judging from the wide disparities in the box lengths. The nonconstant residual spread 

may suggest an omission of important effects from the model. However, there are no extreme 

values or outliers in any of the 22 plots. Note that this graphical analysis of level-1 residuals 

differs from the one performed in Section 2.5.4.1.2 in that it does not pool the residuals across 

level-2 units. In addition, WHLM has a statistical test for evaluating the adequacy of the 

homogeneity of level-1 variance assumption (see Section 2.8.8.2). See Hierarchical Linear 

Models pp. 263-267 for a discussion of the examination of assumptions about level-1 random 

effects. 

 

5. (Optional) Users can look at the EB estimates for any child by clicking on the corresponding 

box-and-whisker plot. See Step 9 in Section 18.1.1. 

6. (Optional) Users can choose to include a level-2 classification variable when examining the 

level-1 residuals. See Step 14 in Section 18.1.1. 

18.2.4 Level-1 residual vs predicted value 

Users can graphically assess the assumptions of constant error variance and linearity and probe 

for outlying cases by examining a scatter plot of level-1 residuals and predicted values. Using the 
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same data and model of the previous two sections, we now plot the level-1 residual against its 

predicted value. 

 
To prepare a level-1 residuals by predicted values scatter plot 

 

 After the model is run, select Graph Equations...Level-1 residual vs predicted value from 

the File menu, which will give us the following dialog box. 

 

 

Figure 18.29 Choose X and Y variables 

 

For definitions of the various options in the dialog box, see Section 18.1.2. Note that the X-axis 

variable, Pred. val. and Y-axis variable, Level-1 residuals have been pre-selected.  

 

 Select All groups (n=22) in the Number of groups to include all the 22 children in the 

display. 

 Click the selection button for Scatter plot in the Type of plot section to request a scatter 

plot of the predicted values by level-1 residuals. 

 Select All groups on same graph in the Pagination section to display all the residuals 

pooled across the level-2 units. To examine the residuals for individual children, choose 

either of the other pagination options. 

 Click OK. 

 



281 
 

 

 

Figure 18.30 Plot of level-1 residuals by predicted values 

 

The plot suggests that there is a tendency for the residual scatter to get narrower at the smallest 

predicted values and to get wider around the interval between 150 and 170. The residuals seem 

to follow a slightly curvilinear trend as well. They may suggest that there is a specification error 

in the model.  

 (Optional) Users can choose to include a level-2 classification variable when examining the 

level-1 residuals. See Step 14 in Section 18.1.1. 

18.2.5 Level-1 EB/OLS coefficient confidence intervals 

We can also look at graphs of the estimated empirical Bayes (EB) or OLS estimates of randomly 

varying level-1 coefficient (see Section 1.3 and Hierarchical Linear Models, p. 47 and p. 49 for 

their computational formulae). This enables us to compare level-2 units with respect to these two 

types of estimates. 

 

 To prepare level-2 EB estimates of randomly varying level-1 coefficient confidence intervals 

 

1. After the model is run, select Graph Equations...Level-2 EB/OLS coefficient confidence 

intervals from the File menu, which will give us the following dialog box: 
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Figure 18.31 95% Confidence Intervals dialog box 

 

For definitions about the various options regarding Y- and Z-focus and sorting, see Section 

18.1.1. 

 

2. Choose the randomly varying level-1 coefficient of interest. We will look at the coefficient 

for the quadratic term or acceleration rate of vocabulary growth in this example. Choose 

AGE12S from the Y-focus drop-down list box. 

3. Select All groups (n=22) in the Number of groups to include all the 22 children in the 

display. 

4. Click the EB residual button in the Type of residual section to select the empirical Bayes 

estimates. 

5. Click OK. The following graph will appear. 

 

The graph suggests that there is significant variation in the rate of acceleration in vocabulary 

growth in children during the second year of life. For instance, the confidence intervals of the EB 

estimates of the AGE12S coefficients for the last four children from the left did not overlap with 

those of the first eleven children.   

 

6. Users can look at the actual empirical Bayes estimates and their 95% confidence intervals of 

individual level-2 units by clicking on the confidence interval plots. 

7. (Optional) Users can choose to include a level-2 classification variable when examining the 

confidence interval plots. See Step 14 in Section 18.1.1. 
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Figure 18.32 Confidence intervals of empirical Bayes estimates of the AGE12S coefficients 

18.2.6 Graphing categorical predictors 

Model graphs can be displayed in which predictor variables are categorical. Suppose, for 

example, that the variable ETHNICITY has three possible values: BLACK, HISPANIC, and WHITE 

and that this variable is represented by indicator variables for BLACK and HISPANIC, with WHITE 

serving as the reference category. To represent ethnicity as a predictor, click the first box under 

Categories/ transformations/interactions. Next, click on define categorical variable. Then 

four boxes will appear: 

 

1.   Under the box Choose first category from foci click on the variable that is the first of the 

indicator variables in the model. In our example, this will be BLACK. 

2.   Under the box Possible choices click on any other indicators in the model that represent the 

categorical variable of interest; in our case, there is only one : HISPANIC. 

3.   Under Name of reference category, type in the name of the reference group; in our case, 

this will be WHITE. 

4.   Under Category Name, type the name of the categorical variable; in our case, this will be 

ETHNICITY. 

 

Now click OK to continue. 
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18.3 Three-level applications 

Graphing with 3-level data is very similar to the 2-level graphing. The only two differences are 

that users can (a) group the plots at either level 2 or 3, and (b) choose exclusively a level-2 or 

level-3 classifying or conditioning variable. To illustrate these two differences, we will use the 

EG.MDM as describe in Section 4.1. We will prepare line plots of the mathematics test score, 

MATH, to detect trends over the course of the six-year study, grouped by the level-3 units, 

schools, and classified by a level-3 variable, the socioeconomic composition of schools. The 

same logic applies to the sets of three-level model-based graphing procedure.    

 

To prepare line plots with level-3 grouping 

 

1. From the HLM window, open the File menu. 

2. Choose Create a new model using an existing MDM file to open an Open MDM File 

dialog box. Open EG.MDM. 

3. Open the File menu, choose Graph Data...line plots, scatter plots to open an Choose X 

and Y variables dialog box (see Figure 18.33). 

4. Select YEAR from the X-axis drop-down list box. 

5. Select MATH from the Y-axis drop-down list box. 

6. Select number of groups. In this example, we want to include a random sample of 20 percent 

of the schools in the display. Select Random sample of spec'd prob from the Number of 

groups drop-down list box. Enter 0.2 into the textbox for Probability (0 to 1) to indicate that 

10 percent or a proportion of .1 of the schools will be used. 

7. Select type of plot and method of interpolation (see Step 7 in Section 18.1.3 for 

explanations). For our example, we want a line plot with no markers that is graphed with the 

linear interpolation method. Click the selection button for Straight line. 

8. Select type of grouping at level 2 or level 3. In this example, we want to have the trajectories 

for individual schools (Group at level 3). Click Group at level-3 selection button (default) 

in the Grouping section. 

9. Select type of pagination. We want separate plots for individual schools and choose 1 

graph/group, multiple page option accordingly. 
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Figure 18.33 Choose X and Y variables dialog box 

 

10. Click OK. The following graph will appear. 

 

The eight line plots indicate the collection of students' growth trajectories of mathematics 

achievement within individual schools. The schools varied in their number of students. There 

was a generally positive average rate of growth across all schools. 
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Figure 18.34 Line plots of MATH against YEAR for eight schools 

 
To include a level-3 classification variable 

 

11. Now we want to look at the trajectories as classified by the socioeconomic composition of 

the study body of a school. On the menu of the graph dialog box, click Graph Settings. 

Choose the level-3 variable LOWINC, the percent of students from low income families, as a 

Z-focus variable. As LOWINC is a non-dichotomous variable we have an additional choice 

that was not needed for our earlier dichotomous z-foci. In this case, we choose Above/Below 

50th percentile from the combo box immediately below where we chose the LOWINC as the 

grouping variable. 

12. Click OK. The following graph will appear. 
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Figure 18.35 Line plots of MATHACH against YEAR for eight schools by LOWINC 

 

This shows us that schools with a greater percent of students from low income families (upper high) 

tend to have lower mathematics achievement than do schools with less percent of poor students. 

Compared to their peers in School 2020, for instance, students in School 2330 generally have lower 

achievement across the six years. 
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19 The Fixed Intercepts Random Coefficient (FIRC) Model 

 

 

 

19.1 Conceptual background for FIRC 

Fixed effects models can serve as a useful tool for causal inference. In multilevel settings, for 

instance, they can help to remove unobservable confounding attributable to clusters in the 

analysis such as persons, schools, neighborhoods, states, or countries when the treatment 

assignment occurs within clusters. Many articles have considered the choice between a fixed 

effects model versus a random effects model using criteria such as the assumptions required for 

the estimators to be consistent (Raudenbush, 2009). HLM offers the option to estimate either or 

both classes of models. In addition, it allows researchers to combine features of both types of 

models with a fixed intercepts and a random treatment coefficient (FIRC) to improve causal 

inferences in multisite intervention (e.g., Bloom, Raudenbush, Weiss, & Porter, 2017), meta-

analysis (e.g., Weiss et al., 2017), as well as panel studies (e.g., Raudenbush, 2009) by 

investigating heterogeneity of treatment effects across sites.  

19.1.1 The fixed intercepts and a random treatment coefficient (FIRC) 
model 

To illustrate the FIRC models, we first consider a) a random intercept and a fixed treatment 

coefficient HLM2, and b) a fixed intercepts and a fixed treatment coefficient HLM2 model and 

some of their key assumptions using a multisite trial example in which the level-1 individuals 

within each level-2 study site are randomly assigned to a treatment or control group. 

19.1.1.1 A random intercept and a fixed treatment coefficient HLM2 model 

The random intercept and fixed treatment coefficient HLM2 model, as described in Section 1.1, 

consists of two sub-models at level 1 and level 2. The level-1 model is represented as 

 

0 1 ij ijij j jTreatment rY                                                                (19.1) 

 

where Treatmentij is an indicator variable for the treatment group membership of individual i in 

study site j with 1 = treatment, 0 = control; and rij is a random term and we assume rij ~ N(0, σ2
). 

 

The Level-2 model is represented as 

 

 

00 0

10

0

1

jj

j

u







 


                                                                   (19.2) 

where 

 

γ00 is the overall mean of the control group; 

u0j is the level-2 random intercept effect and we assume u0j ~ N(0, τ00). ; and 

γ10 is the overall treatment effect. 
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The mixed or combined model is 

 

10 000 ij j ijij Treatment u rY                                                         (19.3) 

 

For the estimate of the treatment effect to be consistent, the fraction of persons assigned to the 

treatment, jTreatment  is assumed to be uncorrelated with site-specific random effects u0j.  

Varying jTreatment  correlated with unobserved site characteristics can produce inconsistent 

parameter estimates (Bloom et al., 2017). 

19.1.1.2 A fixed intercepts and a fixed treatment coefficient HLM2 model 

The level-1 model remains the same, and the level-2 model is represented as 
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jj
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








                                                                  (19.4) 

where 

 

u0j is a fixed constant. The key innovation in computation is recognizing that we can 

equivalently regard u0j  as a random effect for which we have no prior information, that is we 

assume 1

0 00 00(0, ), i.e., 0ju N     ; and 

γ10 is the treatment effects, assumed in this case to be constant across all level-2 units. 

 

This model is also known as the fixed-effects model in the econometric literature. It estimates 

fixed site-specific intercepts (u0j). This parameterization removes the between-site variability in 

any level-1 predictors. Thus the previously discussed assumptions for the fixed intercept and 

fixed coefficient model required for consistent estimation of the treatment effect can be 

relaxed.(7) The mixed or combined model is 

 

01 ij j ijij jTreatment u rY                                                    (19.5) 

 

By re-formulating the fixed effects model as a random effects model with infinite variance,
1

0 00 00(0, ), i.e., 0ju N     , HLM2 enables users to estimate the fixed effects model very 

simply without having to include dummy variables and without centering of variables (see 

Section 19.2.14 for details).  

19.1.1.3 A fixed intercepts and a random treatment coefficient (FIRC) HLM2 model 

Again the level-1 model remains the same.  The level-2 model becomes 
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                                                         (19.6) 

                                                

7 An alternative parameterization of the same model is to group-mean center Treatmentij (see 

Section 2.5.2). 
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There is an additional site-specific random effect, u1j, associated with the treatment in FIRC in 

this model. We assume that 1

0 00 00(0, ), i.e., 0ju N     and 
1 ju ~ N(0, τ11). The combined 

model is 

 

0 11 ij j j ij ijij jTreatment u u Treatment rY                                           (19.7) 

 

 

where 
0 ju is a site-specific fixed effect and 

1 ju is a random effect for treatment. The random site-

specific program assignment effects allow researchers to investigate cross-site variation and to 

produce site-specific empirical Bayes estimates of impact.  In addition, when the aim is to 

generalize to a population of clusters, the FIRC model also reduces the bias associated with the 

conventional site fixed effects model with fixed treatment effect (see Bloom, Raudenbush, 

Weiss, and Porter, 2017, winner of the Best Article Award in the Journal of Research on 

Educational Effectiveness). 

19.1.2 Parameter estimation 

Three kinds of parameters are available in HLM2 and HLM3 FIRC.  Empirical Bayes estimates of 

random effects, maximum-likelihood estimates of the level-2 or level-3 coefficients in HLM2 and 

HLM3 respectively, and maximum likelihood estimates of variance-covariance parameters are 

available. When estimating the variance of the treatment effects, HLM2 and HLM3 allows the 

treatment/control heteroscedasticity. For example, the outcome variance for its treatment group 

members differ from that for its control group within sites (Raudenbush & Bloom, 2015) (see 

Section 2.8.5 for details).   

19.1.3 Hypothesis testing 

HLM2 and HLM3 output a chi-square test of homogeneity for each random effect.  Also, users can 

use the likelihood ratio test to compare the fit of the various models. 

19.2 Working with FIRC 

HLM2 and HLM3 FIRC analyses can be executed in Windows, interactive, and batch modes. To 

illustrate the operation of the program, we use the data from the Tennessee's Student/Teacher 

Achievement Ratio study project (STAR) (Shin & Raudenbush, 2011), which was a statewide 

effort to study the effect of reduced class size on student academic performance in Tennessee. 

Windows model execution is illustrated.  

We will first look at the effects of reduced of class size using a two-level model with students 

nested within school. 

19.2.1 HLM2 Statistical package input 

We will use SPSS file input in our example.  There are two data files for the HLM2 FIRC analysis, 

one at the student level, and one at the school site level.  

 
Level-1 file. The level-1 file, STAR1.SAV has math and reading proficiency data as well as the 

type of class of 5,786 students participated in STAR.  The variables are: 
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 MATH  a math test in IRT scale score metric 

 CLASSTYP an indicator of class type (1 = small with 13-17 students, 0 = other) 

 
Level-2 file. The level-2 file, STAR3.sav has data collected from 79 schools that the students 

attended. The variable is: 

 

 SIZE school size 

 
Using HLM2, the MDM file STARHM2.MDM is created.   

19.2.1.1 Executing analyses based on the MDM File 

We first illustrate a) a random intercept and a fixed treatment coefficient model, then b) a fixed 

intercepts and a fixed treatment coefficient model, finally followed by c) a fixed intercepts and a 

random treatment coefficient model. We summarize the results at the end of this section. 

19.2.1.2 A random intercept and a fixed treatment coefficient model 

The command file, STARHM2A.HLM, contains the model specification input responses for the 

fixed intercepts and a fixed treatment coefficient model. Figure 19.1 displays the model 

specified. 

 

 

Figure 19.1 The random intercept and a fixed treatment coefficient model 
specification for the STARHM2 example  
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The results of the analysis are given below. 

 
Problem Title: Random Intercept and A Fixed Treatment Coefficient Model 
 
The data source for this run = STARHM2.MDM 
The command file for this run =STARHM2A.HLM 
Output file name = STARHM2A.HTML 
The maximum number of level-1 units = 5786 
The maximum number of level-2 units = 79 
The maximum number of iterations = 100 
Method of estimation: full maximum likelihood 
 
The outcome variable is MATH  
 
Summary of the model specified 
Step 2 model 
 
Level-1 Model 
    MATHij = β0j + β1j*(CLASSTYPij) + rij  
 
Level-2 Model 
    β0j = γ00 + u0j 
    β1j = γ10  
 
Mixed Model 
    MATHij = γ00  
    + γ10*CLASSTYPij  + u0j+ rij 
 
Final Results - Iteration 3 
Iterations stopped due to small change in likelihood function 
 
σ

2
 = 1804.30900 

 
Standard error of σ

2
 = 33.77701 

 
τ 

INTRCPT1,β0      458.63366 

 
Standard error of τ 

INTRCPT1,β0      77.25120 

 
Approximate confidence intervals of tau variances 
INTRCPT1 : (327.960,641.373) 
 

Random level-1 coefficient   Reliability estimate 

INTRCPT1,β0 0.945 

 
The value of the log-likelihood function at iteration 3 = -3.001734E+004 
 

Final estimation of fixed effects: 
 

Fixed Effect  Coefficient 
 Standard 
error 

 t-ratio 
 Approx. 
d.f. 

 p-value 

For INTRCPT1, β0  
    INTRCPT2, γ00  483.000600 2.506586 192.693 78 <0.001 
For CLASSTYP slope, β1  
    INTRCPT2, γ10  9.087321 1.232934 7.370 5706 <0.001 
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Final estimation of fixed effects 
(with robust standard errors)  

 

Fixed Effect  Coefficient 
 Standard 
error 

 t-ratio 
 Approx. 
d.f. 

 p-value 

For INTRCPT1, β0  
    INTRCPT2, γ00  483.000600 2.615873 184.642 78 <0.001 
For CLASSTYP slope, β1  
    INTRCPT2, γ10  9.087321 2.340424 3.883 5706 <0.001 

 
Final estimation of variance components 

Random Effect 
Standard 
 Deviation 

Variance 
 Component 

  d.f. χ
2
 p-value 

INTRCPT1, u0 21.41573 458.63366 78 1540.50368 <0.001 
level-1, r 42.47716 1804.30900       

 
Statistics for the current model 
Deviance = 60034.676525 
Number of estimated parameters = 4 

19.2.1.3 A fixed intercepts and a fixed treatment coefficient model 

The command file, STARHM2B.HLM, contains the model specification input responses for the 

fixed intercepts and a fixed treatment coefficient model. A conventional way to specify such 

model is to include J – 1 school site dummy variables into the model. HLM2 offers a simple step 

to set up the model.  

 

  

Figure 19.2 Estimation settings – HLM2 dialog box 
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After clicking OK, the fixed intercepts and fixed treatment coefficient will be displayed, as 

shown in Figure 19.3.  Note that the level 2 model for β0j is a no-intercept model.   

 
 

 

Figure 19.3 The fixed intercepts and a fixed coefficient model specification for the 
STARHM2B example  

 
Here is the output: 

 
Specifications for this HLM2 run 
 
Problem Title: Random Intercept and Fixed Coefficient Model 
 
The data source for this run = STARHM2.MDM 
The command file for this run = STARHM2B.HLM 
Output file name = hlm2.html 
The maximum number of level-1 units = 5786 
The maximum number of level-2 units = 79 
The maximum number of iterations = 100 
Method of estimation: full maximum likelihood 
 
 
The outcome variable is MATH  
 
Summary of the model specified 
 
Step 2 model 
 
Level-1 Model 
    MATHij = β0j + β1j*(CLASS_TYij) + rij  
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Level-2 Model 
    β0j = u0j 
    β1j = γ10  
 
Mixed Model 
    MATHij =  
    + γ10*CLASSTYPij  + u0j+ rij 
 
Final Results - Iteration 6 
 
Iterations stopped due to small change in likelihood function 
 
σ

2
 = 1804.31836 

 
The value of the log-likelihood function at iteration 6 = -2.973353E+004 
 

Final estimation of fixed effects: 
 

Fixed Effect  Coefficient 
 Standard 
error 

 t-ratio 
 Approx. 
d.f. 

 p-value 

For CLASSTYP slope, β1 
    INTRCPT2, γ10 9.127153 1.233739 7.398 5706 <0.001 

 
 

Final estimation of fixed effects 
(with robust standard errors) 
 

Fixed Effect  Coefficient 
 Standard 
error 

 t-ratio 
 Approx. 
d.f. 

 p-value 

For CLASSTYP slope, β1 
    INTRCPT2, γ10 9.127153 2.343758 3.894 5706 <0.001 

 
 

Final estimation of variance components 
 

Random Effect 
Standard 
 Deviation 

Variance 
 Component 

  d.f. χ
2
 p-value 

level-1, r 42.47727 1804.31836       

 
Statistics for the current model 
Deviance = 59467.054530 
Number of estimated parameters = 2 

19.2.1.4 A fixed intercepts and a random treatment coefficient model 

The command file, STARHM2C.HLM, contains the model specification input responses for the 

fixed intercepts and a random treatment coefficient model. Figure 19.4 displays the model 

specified. 
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Figure 19.4 The fixed intercepts and a random treatment coefficient model 
specification for the STARHM2C example  

 
Here is the output: 

 
Problem Title: Fixed Intercepts and A Random Treatment Coefficient Model 
 
The data source for this run = STARHM2.MDM 
The command file for this run = STARHM2C.HLM 
Output file name =STARHM2C.HTML 
The maximum number of level-1 units = 5786 
The maximum number of level-2 units = 79 
The maximum number of iterations = 100 
Method of estimation: full maximum likelihood 
 
 
The outcome variable is MATH  
 
Summary of the model specified 
 
Step 2 model 
 
Level-1 Model 
    MATHij = β0j + β1j*(CLASSTYPij) + rij  
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Level-2 Model 
    β0j = u0j 
    β1j = γ10 + u1j 
 
Mixed Model 
    MATHij =  
    + γ10*CLASSTYPij  + u0j + u1j*CLASSTYPij + rij 
 
Final Results - Iteration 11 
 

Iterations stopped due to small change in likelihood function 
 
σ

2
 = 1742.81131 

 
τ 

CLASSTYP,β1      301.75903 

 
τ (as correlations) 

CLASSTYP,β1      1.000 

 

Random level-1 coefficient   Reliability estimate 

CLASSTYP,β1 0.705 

 
The value of the log-likelihood function at iteration 11 = -2.968392E+004 
 

Final estimation of fixed effects: 
 

Fixed Effect  Coefficient 
 Standard 
error 

 t-ratio 
 Approx. 
d.f. 

 p-value 

For CLASSTYP slope, β1 
    INTRCPT2, γ10 8.538461 2.328306 3.667 78 <0.001 

 
 

Final estimation of fixed effects 
(with robust standard errors) 

 

Fixed Effect  Coefficient 
 Standard 
error 

 t-ratio 
 Approx. 
d.f. 

 p-value 

For CLASSTYP slope, β1 
    INTRCPT2, γ10 8.538461 2.327321 3.669 78 <0.001 

 
 

Final estimation of variance components 
 

Random Effect 
Standard 
 Deviation 

Variance 
 Component 

  d.f. χ
2
 p-value 

CLASSTYP slope, u1 17.37121 301.75903 78 280.89921 <0.001 
level-1, r 41.74699 1742.81131       

 
Statistics for the current model 
Deviance = 59367.836357 
Number of estimated parameters = 3 

19.2.1.5 Summary of the results 

Table 19.1 summarizes the results for the three models. 
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                  Model 
 
    Estimate 

A Random Intercept 
and A Fixed Treatment 
Coefficient 

Fixed Intercepts and a 
Fixed Treatment 
Coefficient 

Fixed Intercepts and a 
Random Treatment 
Coefficient 

Average Treatment 
Effect 

9.087321 9.127153 8.538461 

Model-Based Standard 
Error of Average 
Treatment Effect 

2.340424 1.233739 2.328306 

Robust Standard Error of 
Average Treatment 
Effect8 

2.340424 2.343758 2.327321 

Variance of Treatment 
Effect 

NA NA 
301.75903  

(χ
2
 = 280.89921, 

df = 78, p < 0.001) 

Table 19.1 Summary of the treatment estimates from the three models 

 
The results of the FIRC models with a minimum of assumptions suggest that there is evidence of 

cross-site variation in the program impact.  

19.2.2 An example of HLM3 FIRC  

The above illustrative example ignores a level of nesting--the classroom level, thus a three-level 

model with students nested within classrooms within schools will better accommodate the data 

structure.  

19.2.2.1 HLM3 Statistical package input 

There are three data files for the HLM3 FIRC analysis: the student-, classroom-, and school-level 

files.  

 

Level-1 file. The level-1 file, STAR1.SAV has math and reading proficiency data of 5,786 

students participated in STAR.  The variables are: 

 

 MATH  a math test in IRT scale score metric 

 READING a reading test in an IRT scale score metric 

 

Level-2 file. The level-2 file, STAR2.SAV has class treatment type data collected from 325 

classrooms that the students attended. The variable is: 

 

 CLASSTYP an indicator of class type (1 = small with 13-17 students, 0 = other) 

 

Level-3 file. The level-3 file, STAR3.SAV has data collected from 79 schools that the students 

attended. The variable is: 

 

 SIZE school size 

                                                

8 See Section 1.9 for a discussion of the robust standard errors. 
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Note that CLASSTYP is now a classroom-level variable. Using HLM3, the MDM file 

STARHM3.MDM is created.   

19.2.2.2 An annotated example of HLM3 FIRC 

The command file, STARHM3A.HLM, contains the model specification input responses for the 

fixed intercepts and a fixed treatment coefficient model. Figure 19.5 displays the model 

specified. 

 

 

Figure 19.5 The fixed intercepts and a random treatment coefficient model 
specification for the STARHM3 example  

 

Here is the output: 

 

Specifications for this HLM3 run 
 
Problem Title: Fixed Intercepts and a Random Treatment Coefficient Model 
 
The data source for this run = STARHM3.MDM 
The command file for this run = STARHM3A.HLM 
Output file name = STARHM3A.HTML 
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The maximum number of level-1 units = 5786 
The maximum number of level-2 units = 325 
The maximum number of level-3 units = 79 
The maximum number of iterations = 100  
Method of estimation: full maximum likelihood 
 
The outcome variable is MATH  
 
Summary of the model specified 
 
Level-1 Model 
    MATHijk = π0jk + eijk 
 
Level-2 Model 
    π0jk = β00k + β01k*(CLASSTYPjk) + r0jk 
 
Level-3 Model 
    β00k = u00k 
    β01k = γ010 + u01k 
 
Mixed Model 
    MATHijk = γ*CLASSTYPjk+ r0jk  + u01k  + u01k *CLASSTYPjk + eijk 
 
For starting values, data from 5786 level-1 and 325 level-2 records were used 
 
Final Results - Iteration 46 
 
Iterations stopped due to small change in likelihood function 
 
Standard errors for σ

2
,τπ, and τβ are not computable. 

 
σ

2
 = 1597.25481 

 
τπ 
 

INTRCPT1,π0    262.45362 

 

τβ 

 

INTRCPT1   

CLASSTYP,β01 

   68.18371 

τβ (as correlations) 

INTRCPT1/CLASSTYP,β01   1.000 

 
 

Random level-2 coefficient   Reliability estimate 

INTRCPT1/CLASSTYP,β01 0.149 

 
The value of the log-likelihood function at iteration 46 = -2.955771E+004 
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Final estimation of fixed effects: 
 

Fixed Effect  Coefficient 
 Standard 
error 

 t-ratio 
 Approx. 
d.f. 

 p-value 

For INTRCPT1, π0 
   For CLASSTYP, β01 
           INTRCPT3, γ010  8.744220 2.406371 3.634 78 <0.001 

 
 

Final estimation of fixed effects (with robust standard errors)  
 

Fixed Effect  Coefficient 
 Standard 
error 

 t-ratio 
 Approx. 
d.f. 

 p-value 

For INTRCPT1, π0 
   For CLASSTYP, β01 
           INTRCPT3, γ010  8.744220 2.386153 3.665 78 <0.001 

 
 

Final estimation of level-1 and level-2 variance components 
 

Random Effect 
Standard 
 Deviation 

Variance 
 Component 

  d.f. χ
2
 p-value 

INTRCPT1,r0 16.20042 262.45362 167 684.59376 <0.001 
level-1, e 39.96567 1597.25481       

 
Final estimation of level-3 variance components 

 

Random Effect 
Standard 
 Deviation 

Variance 
 Component 

  d.f. χ
2
 p-value 

INTRCPT1/CLASSTYP,u01 8.25734 68.18371 78 87.77158 0.210 

 

Note that the between-school variance of the treatment effect is now 68.18, as compared 

to 301.76 when the classroom level was ignored. 

 
Statistics for the current model 
Deviance = 59115.428958 
Number of estimated parameters = 5 
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20 Multivariate HLM2 from Incomplete Data based on 
Automated Multiple Imputation 

 

 

 

20.1 Conceptual Background Regarding Automated Multiple Imputation 

Missing data are a ubiquitous problem in most social sciences research.  In multilevel studies, 

explanatory as well as outcome variables may be subject to missingness at any of the levels.  It is 

extremely important to use an multilevel imputation model when the analysis model is a 

multilevel model. If one uses a single-level imputation procedure and then subjects the multiply 

imputed data to multilevel analysis, one can anticipate significant bias.  

 

HLM offers a completely automated procedure to handle ignorable missing data in two-level 

models (Y. Shin & S. W. Raudenbush, 2013). The user first specifies a two-level HLM model. 

This model is flexible in that it can involve multiple outcome variables, including a mixture of 

level-1 and level-2 outcomes. The program then i) searches the variables that have missing 

values; ii) estimates a multivariate imputation model; iii) generates multiple imputed data sets, 

iv) analyzes each of these according the user’s specified model; and averages the results using 

“Rubin’s rules”(Rubin, 1987). Users can also specify a list of “auxiliary variables” at each of the 

two levels, ones that are not needed for the substantive analysis but that contain information 

about the missing data. These variables are used in the estimating the imputation model to 

improve the precision of the analysis and to improve robustness. The imputation model is 

estimated using full-information maximum likelihood.  

20.1.1 Logic and assumptions of the approach 

HLM implements the multiple imputation of missing data in multilevel studies developed by Shin 

and Raudenbush (2013). The key idea is to re-express a desired hierarchical model as the joint 

distribution of the outcomes and  all variables  that are subject to missingness, conditional on all 

of the covariates that are completely observed, and to estimate the joint model. We present an 

example of a general two-level random intercept model, as described in Shin (2013), to illustrate 

the logic and assumptions of the approach. Shin and Raudenbush (2013) provide the details of 

the estimation and of a more general framework that could handle “ignorable” missing data. The 

key assumption is that the data are missing at random (“MAR”- Little & Rubin, 2002).. MAR 

means that the missing pattern is conditionally independent of missing data given the observed 

data, and provides robust inferences when the observed data contain substantial information 

about the missing values. 

20.1.1.1 A Random Intercept HLM2 model 

A random intercept model with a level-1 and a level-2 predictor, as discussed in Section 1.1, can 

be expressed as consisting of two models. 

 

Level-1 model. The level-1 model is 

          0 1ti i i ti tiY a e                                                       (20.1) 

where 
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0i 0j is the intercept,  

1i  is the level-1 coefficient of predictor Xij, and 

tie is the level-1 random effect, and it is assumed that 2~ (0, )tie N  .  

 

Level-2 model. The level-2 model is 

 

00 01 0

10

0

1

i ii

i

X r 







  


                         (20.2) 

 

where 

  

 γ00, γ01, and γ10 are level-2 coefficients; 

 Wj is a level-2 predictor; and 

 u0j is a level-2 random effect and it is assumed that u0j ~ N(0,τ). 

  

Mixed model. The mixed or combined model is 

 

00 01 10 0ti i ti i tiY X a r e                     (20.3) 

 

When the outcome, tiY , and the level-1 and level-2 predictors, 
tia  and iX , are subject to 

missingness, there will be a total of seven possible missing data patterns for individual i in unit j, 

i.e., one, two, or all three values of ( , , )ti ti iY a X  could be missing. . The imputation model is 

 

1 11

2 2 2

3 3 0

ti i ti

ti i ti

i i

Y b

a b

X b



 



      
      

        
            

                (20.4) 

where 

 

 α1, α2, and α3 are the means of ( , , )ti ti iY a X  ; 

b1j, b2j, and b3j are level-2 specific effects, and they are assumed to be multivariate normally  

distributed with a mean vector of zero and variance-covariance matrix Τ; and 

 1ti  and 2ti  are level-1specific effects, and they are assumed to be bivariate normally  

     distribution with a mean vector of zero and variance and covariance matrix ∑. 

 

HLM estimates 20.4 in which all variables having missing values are regressed on all variables 

having complete data; it then uses the parameter estimates to generate M imputed data sets; it 

then analyzes each of these in turn and combines the results using the “Rubin’s rules,” as 

described in Section 11.2.1.  

 

To improve the precision and robustness of the analysis, the user can specify a list of “auxiliary 

variables.” These are variables that are not needed for the substantive analysis, but that contain 

information about the missing data. They are used in the estimation of the imputation model and 

therefore influence the imputed data sets. However, they are not included in the user’s desired 
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models. The auxiliary variables can include a mixture of level-1 and level-2 variables and may or 

may not themselves be subject to missingness. 

 

The user can also output all of the multiply-imputed data sets for further analysis for analysis 

using HLM or another program. With the analysis of incomplete data routine, the program allows 

users to specify and analyze a general class of univariate and multivariate models in which there 

is an arbitrary number of outcome variables defined at either level 1 or level 2.  

20.2 Working with Automated Multiple Imputation in HLM2 

HLM2 analyses of incomplete data can be executed in Windows, interactive, and batch modes.  

To illustrate the operation of the program, we use the data from the Early Childhood 

Longitudinal Student Kindergarten Cohort (ECLS_K) of 1998 (Tourangeau, Nord, Lê, Sorongon, 

& Najarian, 2009).  The study followed the children in fall kindergarten (K) of 1998, spring-K of 

1999, fall-first grade (G1) of 1999, spring-G1 of 2000, spring-third grade (G3) of 2002, spring-

fifth grade (G5) of 2004 and spring-eighth grade (G8) of 2007. Windows mode execution is 

illustrated.  

20.2.1 An example using Analysis of Incomplete Multilevel Data in 
Windows mode 

We first run a complete case analysis studying how income is related to the trajectories of 

mathematics and reading proficiency; then we illustrate a three-step procedure to perform an 

analysis of incomplete multilevel data (Shin, 2013; Shin & Raudenbush, 2007). 

20.2.1.1 HLM2 Statistical package input 

We will use SPSS file input in our example. There are two data files for the HLM2 analysis of 

incomplete multilevel data. 

 

Level-1 file. The level-1 file, ECLK981.SAV, has 148,470 observations collected on 21,210 

children between fall kindergarten and spring-eight grade.   

 

There are three variables: 

 

 MATH a math test in IRT scale score metric 

 READING  a reading test in an IRT scale score metric 

 GRADE the grade level minus 3 of the child at each testing occasion.  Therefore, it is 0 at 

Grade 3. 
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Figure 20.1 First fourteen records from two children in the ECLK981.SAV dataset 

 

Note that Child 1 in School 1 has missing data at the third and five to seventh occasions. 

 

Level-2 file. The level-2 units are 21,210 children.  The data are stored in the file ECLK982.SAV. 

 

There are three variables of interest: 

 

 INCOME income of the family  

 PARSCR a parental occupational prestige score 

 BLACK an indicator for ethnicity (1 = African American, 0 = other) 

 

In creating the MDM file, we inform WHLM that there are missing data at level 1 and instruct the 

program to delete cases while performing analyses.  The response file, ECLK98.MDMT, contains 

a log of the input responses for creating the MDM file, ECLK98.MDM. Below are the descriptive 

statistics: 

 
LEVEL-1 DESCRIPTIVE STATISTICS 

 

 VARIABLE NAME       N       MEAN         SD         MINIMUM      MAXIMUM 

      MATH         94543      69.07      44.41        10.51       172.20 

   READING         92208      87.39      53.05        21.01       208.90 

     GRADE        148470      -0.57       2.88        -3.50         5.00 

 

 

                      LEVEL-2 DESCRIPTIVE STATISTICS 

 

 VARIABLE NAME       N       MEAN         SD         MINIMUM      MAXIMUM 

    INCOME         14439       5.31       6.44         0.00        14.18 

    PARSCR         20122      39.47      21.34         0.00        77.50 

     BLACK         21210       0.15       0.36         0.00         1.00 

 

At Level 1, there are 36% missing data on math proficiency, at level 2, there are 32% of income 

missing. 
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20.2.1.2 An annotated example of HLM2 analyses with complete cases 

We first perform a complete case analysis studying income inequality in the average level and 

growth of mathematics and reading proficiency.  To set up a model with both the mathematics 

and reading outcomes, after selecting MATH as the outcome, we add READING as an additional 

outcome, as shown in Fig. 20.2. 

 

 
 

Figure 20.2 Model window for the bivariate outcome model 

 

Then we add the level-2 variable INCOME to predict the trajectories of the mathematics and 

reading proficiency.  The model is displayed in Figure 20.3. 

 

 

Figure 20.3 Model window for the income inequality model 
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Specifications for this HLM2 run 
 
Problem Title: complete case analysis 
 
The data source for this run = ecls_growth2.mdm 
The command file for this run comp_case.hlm 
Output file name = complete_case.html 
The maximum number of level-1 units = 148470 
The maximum number of level-2 units = 21210 
The maximum number of iterations = 100 
Method of estimation: full maximum likelihood 
 

Note that the data include 148,470 level-1 records and 21,210 level-2 records 

 
Summary of the model specified 

Step 2 model 
Level-1 Model 
    READINGti = π0i + π1i*(GRADEti) + eti  
    MATHti = π2i + π3*(GRADEti) + eti  
Level-2 Model 
    π0i = β00 + β01*(SQRTINCi) + r0i 
    π1i = β10  
    π2i = β20 + β21*(SQRTINCi) + r2i 
    π3i = β30  
 
SQRTINC has been centered around the grand mean. 
 
Run-time deletion has reduced the number of level-1 records to 66244 
 
Run-time deletion has reduced the number of level-2 records to 14227  

 

Note that in using only the cases with complete data, the sample size has been reduced from 

148,470 to 66,244 level-1 records  and from 21,210 to 14,227 level-2 records. 

 
Multivariate Results - Iteration 11 

 
NOTE: level-1 and level-2 slopes have been duplicated across all level-2 equations. 
 
Iterations stopped due to small change in likelihood function 
 
Σ 

READING /INTRCPT2       400.82401    223.10221 

MATH /INTRCPT2       223.10221    226.33769 

 
Standard errors of Σ 

READING /INTRCPT2       2.47540    1.63818 

MATH /INTRCPT2       1.63818    1.39974 
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Σ (as correlations) 

READING /INTRCPT2       1.000    0.741 

MATH /INTRCPT2       0.741    1.000 

 
Tau 

READING      179.35413    128.60219 

MATH      128.60219    148.38418 

 
Standard errors of Tau 

READING      3.27465    2.51379 

MATH      2.51379    2.42009 

 
Tau (as correlations) 

   READING    1.000    0.788 

   MATH    0.788    1.000 

 
Final estimation of fixed effects  
 

Fixed Effect  Coefficient 
 Standard 
error 

 t-ratio 
 Approx. 
d.f. 

 p-value 

For READING /INTRCPT2  
    INTRCPT2  88.020042 0.399905 220.103 21208 <0.001 
     SQRTINC  2.274971 0.047271 48.127 21208 <0.001 
     GRADE  17.440996 0.030265 576.270 21209 <0.001 
For MATH /INTRCPT2  
    INTRCPT2  70.532434 0.343039 205.610 21208 <0.001 
     SQRTINC  1.914606 0.040636 47.116 21208 <0.001 
     GRADE  14.632042 0.022925 638.269 21209 <0.001 

 
The value of the log-likelihood function at iteration 11 = -5.563652E+005  

20.2.1.3  An annotated example of HLM2 with analysis of incomplete data using 
multiple, model-based imputation 

The results show that income is positively associated with both the mean of math and reading 

proficiency at Grade 3 as well as the linear growth of both proficiencies.  This complete case 

analysis assumed that the data were missing completely at random (“MCAR” - Rubin, 1976).  

MCAR is a very strong assumption indicating that the missing data are a simple random sample 

from the complete data. When this strong assumption was untenable, such analysis, in general, is 

inefficient and will generally result in biased inferences. 

20.3 An annotated example of HLM2 analysis of incomplete data 

HLM analysis of incomplete data has three major steps (Shin, 2013; Shin & Raudenbush, 2007): 

 

1. Specify the desired models given incompletely observed multilevel data as described in 

Section 20.2.1.2.   

 

The model specified by the user is the same as that just estimated. However, both the 

mathematics and reading proficiency variables at level 1 and the INCOME variable at level 2 have 

missing data. The GRADE variable has no missing data. With the analysis of incomplete 

multilevel data, HLM automatically reparameterizes the models as the joint distribution of  the 

math and reading outcomes and the variables subject to missingness conditional on the 
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completely observed variables. HLM then efficiently estimates the joint distribution using 

maximum likelihood under the assumption of multivariate normality. 

 

2. Generate multiply-imputed complete data based on the ML estimates of the joint model. The 

procedure consists of  

 

a. Opening the Other Settings menu and selecting the Estimation Settings to open the 

Estimation Settings – HLM2 dialog box (See Figure 20.4). 

 

 

Figure 20.4 Estimation Settings – HLM2 dialog box 

Click Automatic Imputation to open the Automatic Multiple Imputation dialog box (see 

Figure 20.5). We have selected 10 data sets.  

 

We also choose 2 “augmentation” variables, sometimes called auxiliary variables to improve the 

imputations. “PARSCAR” is a measure of occupational status and should be a good predictor of 

income. “BLACK” is an indicator for African-American background. 
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Figure 20.5 Automatic Multiple Imputation dialog box 

c. Enter the number of datasets to generate. We enter 10 as a pilot for this example. There is an 

option to set a random seed number.  Users have the option to save the multivariate data matrix 

files for each data set and keep imputed raw data files that they may like to analyze further using 

HLM or another program. They can also ask for a record of imputed raw data statistics (see 

Figure 20.5). 

 

3. Analyze the desired model by complete-data analysis given the multiple imputation. Click OK 

on the Automatic Multiple Imputation dialog box, then click OK on the Estimation Settings –

HLM2 dialog box. Save and run the model. 

 

The results of the analysis are given below. 

 

Specifications for this HLM2 run 
 

Problem Title: multiple imputation analysis with augmentation 
 
The data source for this run = ecls_growth2.mdm 
The command file for this run = mult_imput_aug.hlm 
Output file name = mult_imp_aug_avg.html 
The maximum number of level-1 units = 148470 
The maximum number of level-2 units = 21210 
The maximum number of iterations = 100 
Method of estimation: full maximum likelihood 
Automatic imputation random number seed: -1563333359 
Summary of the model specified 
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Level-1 Model 

     
READINGti = π0i + π1i*(GRADEti) + eti  
    MATHti = π2i + π3*(GRADEti) + eti  

 
Level-2 Model 

     
π0i = β00 + β01*(SQRTINCi) + r0i 
    π1i = β10  
    π2i = β20 + β21*(SQRTINCi) + r2i 
    π3i = β30  
 
Run-time deletion has reduced the number of level-2 records to 21177  
 

Imputation Model Results - Iteration 12 

 
NOTE: level-1 and level-2 slopes have been duplicated across all level-2 equations. 
 
Iterations stopped due to small change in likelihood function 
 
Σ* 

READING /INTRCPT2       384.59710    212.27386 

MATH /INTRCPT2       212.27386    218.08554 

 
Standard errors of Σ* 

READING /INTRCPT2       2.01342    1.32284 

MATH /INTRCPT2       1.32284    1.13236 

 
Σ (as correlations) 

READING /INTRCPT2       1.000    0.733 

MATH /INTRCPT2       0.733    1.000 

 
Tau* 

READING      219.61749    162.47932    18.88858    89.97725 

MATH      162.47932    172.81037    15.57391    72.71537 

INTRCPT1/ SQRTINC      18.88858    15.57391    8.49343    24.58023 

INTRCPT1/ PARSCR      89.97725    72.71537    24.58023    271.33135 

 
Standard errors of Tau* 

READING      3.11204    2.39569    0.43120    2.16650 

MATH      2.39569    2.24130    0.36548    1.83209 

INTRCPT1/ SQRTINC      0.43120    0.36548    0.09854    0.41885 

INTRCPT1/ PARSCR      2.16650    1.83209    0.41885    2.70453 

 
Tau (as correlations) 

   READING    1.000    0.834    0.437    0.369 

   MATH    0.834    1.000    0.407    0.336 

INTRCPT1  / SQRTINC    0.437    0.407    1.000    0.512 

INTRCPT1  / PARSCR    0.369    0.336    0.512    1.000 
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Final estimation of fixed effects (Imputation model)  
 

Fixed Effect  Coefficient 
 Standard 
error 

 t-ratio 
 Approx. 
d.f. 

 p-value 

For READING /INTRCPT2  
    INTRCPT2  105.186989 0.137141 767.001 106050 <0.001 
     BLACK  -8.957698 0.348835 -25.679 106050 <0.001 
     GRADE  17.364407 0.025382 684.125 21209 <0.001 
For MATH /INTRCPT2  
    INTRCPT2  85.276019 0.116036 734.912 106050 <0.001 
     BLACK  -9.810738 0.295823 -33.164 106050 <0.001 
     GRADE  14.585079 0.019155 761.426 21209 <0.001 
For SQRTINC  
    INTRCPT2  7.892670 0.024780 318.504 21208 <0.001 
     BLACK  -2.151829 0.068689 -31.327 21208 <0.001 
For PARSCR  
    INTRCPT2  42.878649 0.125462 341.766 21208 <0.001 
     BLACK  -9.272788 0.327137 -28.345 21208 <0.001 

 
The value of the log-likelihood function at iteration 12 = -9.006426E+005  

 

Note that the two outcomes, reading and math (at level 1) are in the multivariate model as outcomes. 

Also note that the predictor SQRTINC, which is subject to missingness, is also an outcome. In 

addition, the augmentation variable PARSCR is an additional outcome because HLM has found that it 

is subject to missingness. All outcomes are regressed on GRADE and BLACK, which are completely 

observed. 

 

The results for the user specified model are below. 

 
Final Imputation Model Results - 10 Imputations 

 
Σ 

READING /INTRCPT2       385.72825    211.59869 

MATH /INTRCPT2       211.59869    217.84582 

 
Standard errors of Σ 

READING /INTRCPT2       1.29524    1.28592 

MATH /INTRCPT2       0.54992    1.23742 

 
Σ (as correlations) 

READING /INTRCPT2       1.000    0.730 

MATH /INTRCPT2       0.730    1.000 

 
Tau 

READING      187.73964    137.45631 

MATH      137.45631    154.13887 

 
 
  



313 
 

 

Standard errors of Tau 

READING      2.37041    1.86367 

MATH      1.86367    1.80465 

 
Tau (as correlations) 

   READING    1.000    0.808 

   MATH    0.808    1.000 

 
Final estimation of fixed effects  
 

Fixed Effect  Coefficient 
 Standard 
error 

 t-ratio 
 Approx. 
d.f. 

 p-value 

For READING /INTRCPT2  
    INTRCPT2  86.624227 0.293843 294.797 4814 <0.001# 
     SQRTINC  2.229091 0.036345 61.331 12 <0.001# 
     GRADE  17.371634 0.081062 214.301 9 <0.001# 
For MATH /INTRCPT2  
    INTRCPT2  69.271059 0.581186 119.189 14 <0.001# 
     SQRTINC  1.882094 0.081095 23.209 12 <0.001# 
     GRADE  14.593083 0.056957 256.214 10 <0.001# 

 
The p-vals above marked with a “#” should regarded as a rough approximation. 
 

Note the small degrees of freedom. This reflects the large amount of missing data, particularly on 

income. The degrees of freedom can be increased by increasing M, the number of data sets. 

20.3.1 Cross-Level Interactions 

When working with the missing data program, cross-level interactions are presented differently than 

has been standard in HLM. 

  

Consider for example the univariate model 

 

0 1

0 00 01 0

1 10 11

ti i i ti ti

i i i

i i

Y a e

X r

X

 

  

  

  

  

 

 

 

Suppose that the predictor X is subject to missingness. It must therefore be put on the left side of the 

imputation model. However, modeling X as a predictor of 1i induces an interaction between a and X  

as we can see by inspecting the mixed model 

 

 00 01 10 0 11 0ti i i i ti i tiY X X a r e          . 

 

Because X is missing, so is i tiX a , so it must also be put on the left. Technically, many such 

interaction terms will not follow a normal distribution. However, the robustness of the procedure to 

failure of normality can typically be improved by centering both predictors a and X. 

 

Here is how HLM will represent the model results: 
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Final estimation of fixed effects 
(with robust standard errors)  
 

Fixed Effect  Coefficient 
 Standard 
error 

 t-ratio 
 Approx. 
d.f. 

 p-value 
Fraction of 
  Missing Info. 

For INTRCPT1, π0   
    INTRCPT2, β00  84.780324 0.381040 222.497 71 <0.001 0.282 
     SQRTINC, β01  2.475539 0.047462 52.158 60 <0.001 0.301 

For GRADE slope, π1   
    INTRCPT2, β10  15.345154 0.098909 155.145 18 <0.001 0.470 

For CPROD1 slope, π2   
    INTRCPT2, β20  0.249093 0.012099 20.588 16 <0.001 0.483 

 

 

CPROD1 is the generated cross-product of GRADE*SQRTINC. 
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A Using HLM2 in interactive and batch mode 

 

 

 

This appendix describes and illustrates how to use HLM2 in batch mode to construct MDM files, to 

execute analyses based on the MDM file, and to specify a residual file to evaluate model fit. It also 

lists and describes command keywords and options. References are made to appropriate sections in 

the manual where the procedures are described in greater details.   

A.1 Using HLM in batch and/or interactive mode 

HLM users can control which questions come to the screen by means of a command file. At one 

extreme, the command file is virtually empty and questions regarding every possible optional 

procedure or output will come to the screen. At the other extreme, the command file specifies the 

answer to every question that might arise, in which case the analysis is performed completely in 

batch mode. In between the two extremes are a large number of possibilities in which various 

questions are answered in the command file while other questions come to the screen. Hence, the 

execution can be partly batch and partly interactive. 

 

An example of a command file for the Intercept and Slopes-as-Outcomes Model for the HS&B data is 

shown below. The italicized comments provide a brief description of each command function. A 

complete overview of each of the keywords and related options in this command file appears in the 

Section A.2. 

 
#This command file was run with HSB.MDM       Indicates which MDM was used. 
NUMIT:100                                   Sets the maximum number of iterations. 
STOPVAL:0.0000010000         Sets the criteria for automatically stopping the iterations. 
NONLIN:N                                     Switch to do a non-linear analysis. 

LEVEL1:MATHACH=INTRCPT1+SES,1+RANDOM          Specifies the level-1 model. 
LEVEL2:INTRCPT1=INTRCPT2+SECTOR+MEANSES+RANDOM/SIZE,PRACAD,DISCLIM,HIMNTY 

LEVEL2:SES=INTRCPT2+SECTOR+MEANSES+RANDOM/SIZE,PRACAD,DISCLIM,HIMNTY 

                              Specifies the level-2 model and other level-2  
             predictors for possible inclusion in subsequent models  
                  for both intrcpt1 and the ses slope. 

LEVEL1WEIGHT: NONE                Specifies level-1 weight variable. 
LEVEL2WEIGHT: NONE                  Specifies level-2 weight variable. 
RESFIL:N                                Controls whether a residual file is created. 
HETEROL1VAR:N                    Specifies an analysis with a heterogeneous sigma2.  

ACCEL:5                Controls frequency of use of accelerator. 
LVR:N                              Specifies a latent variable regression model. 
LEV1OLS:10                            Controls the number of level-1 OLS regressions  

                          printed out. 
MLF: N                    Specifies restricted maximum likelihood. 
HYPOTH:N                      Disables some optional hypothesis testing procedures. 
FIXTAU:3                          Alternative options for generating starting values. 

CONSTRAIN:N                 Estimates a model with constrained level-2 coefficients. 
OUTPUT:HSB1.OUT                               File where HLM2 output will be saved. 
FULLOUTPUT: Y                           Controls amount of output in output file. 

TITLE: Intercept and Slopes-as-Outcome Model                Title on page 1 of output. 
 

An user can rename the file with or without modification with a plain text (ASCII) editor for 

subsequent batch-mode application. For instance, he or she may request the program to print out all 

the level-1 OLS regressions by changing the LEV1OLS:10 to LEV1OLS:160 and rename the file to 

HSB2.MLM. The user can execute the analysis by typing: 
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HLM2 HSB.MDM HSB2.MLM 

  

at the system prompt. As the run is fully specified in the command file HSB2.MLM, no questions will 

come to the screen during its execution. This is full batch mode. The user may choose a fully 

interactive execution mode or an execution mode that is partly interactive and partly batch. With 

partly interactive, partly batch mode, some specification occurs in the command file; the program 

prompts the user with questions for the remaining program features. Some users may find this a 

useful way to suppress some the questions relating to less often used features of the programs. Fully 

interactive mode is invoked when one of the programs is invoked without a second argument, i.e., 

 
HLM2 HSB.MDM 

 

In this case, all of the possible questions will be asked with the exception relating to type of 

estimation used. (mlf:y must be specified in the command file). 

A.2 Using HLM2 in batch mode 

A command file consists of a series of lines. Each line begins with a keyword followed by a colon, 

after the colon is the option chosen by the user, i.e., 

 
KEYWORD:OPTION 

 

For example, HLM2 provides several optional hypothesis-testing procedures, described in detail in 

the Sections 2.9.2 to 2.9.4. Suppose the user does not wish to use these optional procedures in a 

given analysis. Then the following line would be included in the command file: 

 
HYPOTH:N 

 

The keyword HYPOTH concerns the optional hypothesis testing procedures; the option chosen, 'N', 

indicates that the user does not wish to employ these procedures. Alternatively, the user might 

include the line: 

 
HYPOTH:Y 

 

This prompts HLM2 to activate the optional hypothesis testing menu during model specification in 

the interactive mode. Lines beginning with a pound (#; also called hash mark) are ignored and may 

be used to put comments in the command file. 

 

HLM2, by default, has set up the following options unless the user specifies an alternative command 

file.   

 
STOPVAL:0.0000010000                    Sets convergence criterion to be 0.000001.  

ACCEL:5                        Use accelerator once after five iterations. 
FIXTAU:3               Use the “standard” computer-generated values for the variances  

                                                                        and covariances. 
MLF:N                             Use the restricted maximum likelihood approach. 

 

Table A.1 presents the list of keywords and options recognized by HLM2. Examples with detailed 

explanation follow. 
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Table A.1 Keywords and options for the HLM2 command file  

 

Keyword Function Option Definition 

LEVEL1 
Level-1 model  

specification 

INTRCPT1 
 
+VARNAME 
 
+VARNAME,1 
 
+VARNAME,2 

Level-1 intercept 

Level-1 predictor (no centering) 

Level-1 predictor centered around group (or level-2 unit) mean 

Level-1 predictor centered around grand mean 

LEVEL2 
Level-2 model  

specification 

INTRCPT2 
+VARNAME 
+VARNAME,2 
 
+/VARLIST 

Level-2 intercept 

Level-2 predictor (no centering) 

Level-2 predictor centered around grand mean 

List after the slash level-2 variables for exploratory analysis and 

“t-t-enter” statistics on subsequent runs 

NUMIT 
Maximum 
number of 

iterations 

POSITIVE 
INTEGER 

 

ACCEL 
Controls iteration 

acceleration INTEGER 3 Selects how often the accelerator is used. Default is 5. 

LEV1OLS 

Number of units 

for which OL 
equations should 

be printed 

POSITIVE 
INTEGER 

Default is 10. 

CONSTRAIN 
Constraining of 

gammas 
N 
Y 

No constraining 

Yes: two or more gammas will be constrained 

 

The program will prompt the user interactively to set the constraints. Alternatively, constraints can be 

set in the command file. For example, suppose the following coefficients were estimated: 

01 11 20 21, , ,     and we wish to specify 20 21  , we add the following command line:  

 
CONSTRAIN: 0,0,1,1. 

 

For the following coefficients: 00 01 02 10 11 12, , , , , ,       the command line:  

 
CONSTRAIN: 0,1,2,0,1,2  

 

will have the following result: 01 11   and 02 12  . 

 

Note that all coefficients sharing the value “0” are free to be estimated independently. 

HYPOTH 
Select optional 

hypothesis 

testing menu 

Y 
 
 
N 

Yes: send optional hypothesis testing menu to the screen during 

interactive mode use. 

No. (Note, during batch execution, HYPOTH:N should be 

selected to suppress screen prompt. Select desired options 

through keywords below. 

GAMMA# 

Specifies a 

particular 

multivariate 

contrast to be 

tested. 

 
In any single run, HLM2 will test up to 5 multivariate 

hypotheses. Each hypothesis may consist of up to 5 contrasts. 
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Table A.1 Keywords and options for the HLM2 command file (continued) 

 

 

Each contrast is specified by its own line in the command file. The contrast associated with the first 

hypothesis is specified with the keyword GAMMA1. For example, the contrast shown in Fig 2.37 can be 

specified by adding the following lines: 

 
GAMMA1:0.0,1.0,0.0,0.0,0.0,0.0 
GAMMA1:0.0,0.0,0.0,0.0,1.0,0.0 

 

For the second hypothesis, the keyword is GAMMA2 and for the third it is GAMMA3 (See Section 2.9.2 

for further discussion and illustration.) 

 

HOMVAR 
Test homogeneity of 

level-1 variance 

N 
 
Y 

No 

Yes 

DEVIANCE 
Deviance statistic from 

prior analysis 
POSITIVE REAL 
NUMBER 

-2 * log-likelihood at maximum-

likelihood estimate 

DF 

Degrees of freedom 

associated with deviance 
statistics from prior 

analysis (use only if 

“DEVIANCE” has been 

specified) 

POSITIVE 
INTEGER 

 

FIXTAU 
Method of correcting 

unacceptable starting 

values 

1 
 
2 
 
3 
4 
 
5 

Set all off-diagonal elements to 0 

Manually reset starting values 

Automatic fix-up (default) 

Terminate run 

Stop program even if starting values are 

acceptable; display starting values and 

then allow user to manually reset them. 

HETERO1VAR  
N 
 
VARLIST 

No 
Variable list 

FIXSIGMA2 Controls 
2

  

N 
 
REAL 
NUMBER>0 

Default: does not restrict 
2

 . 

Fixes 
2

  to the specified value. 

LEVEL1WEIGHT 
LEVEL2WEIGHT 

Specifies design weights Variable name 
Allows specification of design weights at 

the respective levels. Example 

level1weight:weight1 

LEVEL1DELETION Level-1 deletion list VARLIST 

This keyword only comes into play when 

the user has opted for deleting data at 

analysis time while making the MDM 

file. By default in such cases, deletion is 

done on the variables in the model. See 

section 2.9.2.2 for more details. 

STOPVAL 
Convergence criterion 

for maximum likelihood 

estimation 

POSITIVE REAL 
NUMBER 

Example: 0.000001. Can be specified to 

be more (or less) restrictive. 
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Table A.1 Keywords and options for the HLM2 command file (continued) 

 

MLF 
Controls maximum 
likelihood estimation 

method 

N 
 
Y 

No 

Yes, full maximum likelihood.  

Produces standard errors of T and 
2

  

FIRC 
Controls fixed 

intercept, random 

coefficient feature 

N 
Y 

No 

Use feature as documented in [insert reference] 

RESFIL1 
Create level-1 residual 

file 

N 
 
Y/[vl1]/[vl2] 

No 
Yes – this may be followed by two ‘/'s denoting 

the two levels that can be in the residual file. 

By default, all the variables in the model will 

be present in the residual file, this can be added 

to put additional variables. Vl1 and vl2 are lists 

of comma-separated variables 

RESFIL2 Create a residual file 

Y 
 
N 
 
/VARLIST 

Yes 

 

No 

List after the slash additional level-2 variables 

to be included in the residual file. 

RESFIL1NAME, 
RESFIL2NAME 

Name of residual file FILENAME 
The names, respectively of the level-1 and level-

2 residual files. 

RESFILTYPE Type of residual file 

SYSTAT 
SAS 
SPSS 
STATA 
FREEFORMAT 

Selects program type to be used in subsequent 
analysis of residual file. SPSS and Stata residual 

files are written out as .sav and .dta files. Free 

format files are written out in ASCII format with 

the first line of the file being the variable names 

PRINTVARIANCE-
COVARIANCE 

Output files 

containing the 

variance-covariance 

matrices of Tau and 

Gammas 

N 
 
Y 
 
A 

No 

 

Yes 

 

Append the files in consecutive runs. 

TITLE   Program label up to 64 characters. 

OUTPUT 
Filename of file that 

contains output 
FILENAME 

Will be written to disk; output will overwrite a 

file of same name. 

FULLOUTPUT 
Amount of desired 

output 

Y 
 
N 

Full (traditional) output 

Reduced output only containing header page and 

final results 

 

The following keywords are specific to nonlinear, latent variable, and multiply imputed data analysis: 
 

NONLIN Selects a nonlinear analysis 

BERNOULLI 
POISSON 
BINOMIAL, COUNTVAR 
POISSON, COUNTVAR 
MULTINOMIAL, 
COUNTVAR 
ORDINAL, COUNTVAR 

These options are explained in detail 

in Chapter 8. 

MACROIT 
Maximum number of 

macro iterations 
POSITIVE INTEGER Used in non-linear models 

MICROIT 
Maximum number of micro 

iterations 
POSITIVE INTEGER Used in non-linear models 

STOPMACRO 
Convergence criterion for 

change in parameters 

across macro iterations 
POSITIVE INTEGER  
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Table A.1 Keywords and options for the HLM2 command file (continued) 

 

STOPMICRO 
Convergence criterion for 

micro iterations 
POSITIVE INTEGER 

Note same function as STOPVAL in a 

linear analysis. 

LAPLACE 
Requests Laplace-6 

iterations 

N 
 
Y,# where ‘#' is the 
maximum number of 
iterations desired 

No 

 

Yes, with # iterations; uses a sixth order 

approximation to the likelihood based on a 

Laplace transform for Bernoulli models. 

See Sections 7.6.3 and 8.8.2 for details. 

EMLAPLACE 
Requests EM-Laplace 
iterations 

N 
 
Y,# where ‘#' is the 
maximum number of 
iterations desired 

No 

 
Yes, with # iterations. Uses third order 

approximation. 

LVR 
Performs a latent variable 

regression 

N 
 
I 
 
P 
 
O 

No 

 

Ignore 

 

Predictor 

 

Outcome 

(See Section 11.1 for details) 

PLAUSVALS 
Selects a list of plausible 

values for multiple 

imputation application 
VARLIST See Section 11.2.1 for details. 

 

The following keywords are specific to multiple imputation 

 
Autoimpute Requests auto-imputation of missing 

data 

Positive integer Number of imputed 

datasets to create 

Autoimputeiter Controls behavior of the automatic 
imputation.   

 

Format like NUMIT:  

autoimputeriter:#,[y/n] 

# default number of 
joint model iterations 

N, stop at this number 
of joint model 

Y: continue until joint 

model converges 

Autoimputekeep 
3 choices here. Example 
autoimputkeep:y,y,y 

The first choice tells the program to 

keep the created mdm files 

The second choice 

tells the program to 

keep the imputed 

data files 

The third choice 

controls keeping the 

stats files of the 

generated mdm files 

Autoimputseed Not often used. Specifies the random 

number seed 

Positive integer  

Level1-Augvars List of level-1 variables used to 

augment the joint model.  Will not be 

used in user specified model 

  

Level2-Augvars List of level-2 variables used to 

augment the joint model.  Will not be 

used in user specified model 
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The following keywords are specific to multivariate models 

 
Mhlm Specifies the model will be 

multivariate.  Must be 

specified before the model 

itself. 

Y 
N 

Use the feature 

Regular univariate model 

Level2outcome Only used in multivariate 

models and tells the 

program to use a level-2 
variable as an outcome 

Specifies model.  The 
format is the same as 
LEVEL2 above 

 

 

A.3 Printing of variance and covariance matrices for fixed effects and 
level-2 variances 

The variance-covariance matrices of estimates of fixed effects and variance-covariance parameters 

based on HLM2 or HLM3 can be saved by checking the “print variance-covariance matrices“ in the 

Output Settings dialog box accessed via the Other Settings menu. The keyword PRINTVARIANCE-

COVARIANCE facilitates the same purpose in batch mode. 

 

The following gives a description of the files containing critical statistics and their variances that are 

provided by the program upon request. 

 

Let  r = number of random effects at level-1. 

f = number of fixed effects 

p = number of outcomes in a latent variable run 

pm = number of alphas in a latent variable run 

 

1. For HLM2:  

 

 TAUVC.DAT contains tau in r columns of r rows and then the inverse of the information 

matrix  (the standard errors of tau are the square roots of the diagonals). The dimensions of 

this matrix are *( 1) / 2 *( 1) / 2r r r r   . 

 GAMVC.DAT contains the gammas and the gamma variance-covariance matrix. After the 

gammas, there are f more rows of f entries containing the variance-covariance matrix. 

 GAMVCR.DAT contains the gamma and the gamma variance-covariance matrix used to 

compute the robust standard errors. After the gammas, there are f rows of f entries containing 

the variance-covariance matrix. 

 

2. For HGLM: 

 

 TAUVC.DAT contains tau for the final unit-specific results in r columns of r rows and then the 

inverse of the information matrix  (the standard errors of tau are the square roots of the 

diagonals). The dimensions of this matrix are *( 1) / 2 *( 1) / 2r r r r   . 

 GAMVCUS.DAT contains the final unit-specific gammas and the gamma variance-covariance 

matrix. The gammas are in the first line and this line has f entries. Then there are f more rows 

of f entries containing the variance and covariance matrix. 

 GAMVCPA.DAT contains the final unit-specific gammas and the gamma variance-covariance 

matrix. The gammas are in the first line and this line has f entries. Then there are f more rows 

of f entries containing the variance and covariance matrix. 

 GAMVCPAR.DAT contains the final unit-specific gammas and the gamma variance-covariance 
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matrix used to compute the population-averaged robust standard errors. The gammas are in 

the first line and this line has f entries. Then there are f more rows of f entries containing the 

variance and covariance matrix. 

 

3. For Bernoulli models, if Laplace iterations are requested: 
 

GAMVCL.DAT contains the gammas and the variance-covariance matrix used to compute the Laplace 

standard errors. There are f rows of f entries containing the variance and covariance matrix. 

 

4. For latent variable regression: 

 

LVRALPHA.DAT contains pm lines each containing an alpha and its standard error. The order is the 

same as in the output table. The final p lines of p columns contain the *( )Var u  matrix printed in the 

output. 

 

5. For plausible values analysis: 

 

GAMVC.DAT (and GAMVCR.DAT and TAUVC.DAT) are from the last run and TAUVCPC.DAT, 

GAMVCPV.DAT, and GAMVCPVR.DAT are the PV average files. 

 

All of the above files are created with an n(F15.7 1X) format. That is, each entry is fifteen characters 

wide with even decimal places, followed by a space (blank character). 

 

If the value of r  or *( 1) / 2r r   exceeds 60, the line is split into two or more pieces.  
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B Using HLM3 in Interactive and Batch Mode 

 

 

 

This appendix describes and illustrates how to use HLM3 in batch mode to construct MDM files, and 

to execute analyses based on the MDM file. It also lists and defines command keywords and options 

unique to HLM3. References are made to appropriate sections in the manual where the procedures are 

described in greater details.   

 

As in the case of HLM2, formulation, estimation, and testing of models using HLM3 in two ways: 

Windows mode (PC users only), or batch mode. However, batch mode can be considerably faster 

once the user becomes skilled in working with the program.. The degree to which the execution is 

automated (via batch mode) is controlled by the command file, as in the case of HLM2. 

B.1 Using HLM3 in batch mode 

The command file structure for HLM3 closely parallels that of HLM2. Each line begins with a 

keyword followed by a colon. After the colon is the option chosen by the user, i.e., 

 
 KEYWORD:OPTION 

 

As with HLM2, a pound sign (“#”) as the first character of a line can be used to introduce a comment 

into the command file. 

 

The following keywords have the same definitions and options in HLM3 as in HLM2 (Table A.1) 

 
ACCEL CONSTRAIN DEVIANCE DF FIXTAU FIXSIGMA2 
GAMMA# HYPOTH LAPLACE MACROIT NONLIN PRINTVARIANCE-

COVARIANCE 
NUMIT OUTPUT PLAUSVALS RESFIL1 RESFIL1 RESFIL1NAME 
TITLE RESFILTYPE FIXSIGMA2 STOPMACRO STOPMICRO LEVEL1DELETION 
OUTPUT FULLOUTPUT FIRC MICROIT STOPMACRO RESFIL2NAME 

 

The following keywords are available only for HLM2: 

 
LEV1OLS HOMVAR   HETERO1VAR  MLF  LVR 

 

Table of keywords and options 

Table B.1 presents the list of keywords and options unique to HLM3. 
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Table B.1  Keywords and options unique to the HLM3 command file  

Keyword Function Option Definition 

 
LEVEL1  

 

Level-1 model 

specification  

INTRCPT1 
 
+VARNAME 
 
+VARNAME,1 
 
+VARNAME, 2  
(Note: variable names 
may be specified in 
either upper or lower 
case.)  

Level-1 intercept  

 

Level-1 predictor (no centering) 
 

Level-1 predictor centered around unit mean 

a.jk 

 

Level-1 predictor centered around grand mean 

a... 

 

 
LEVEL2  

 
Level-2 model 

specification  

INTRCPT2 
 
+VARNAME 
 
+VARNAME,1 
 
 
+VARNAME, 2 
 
 
/VARLIST 

Level-2 intercept  

 

Level-2 predictor (no centering) 

 
Level-2 predictor centered around group mean, 

.kX
 

Level-2 predictor centered around grand mean, 

..X
 

 
Comma separated list after the slash level-2 

variables for exploratory analysis and “t-to-

enter” statistics on subsequent runs. A slash 

without a subsequent variable suppresses the 

interactive prompt. 

 
LEVEL3 

 

Level-3 model 

specification  

INTRCPT3 
 
+ VARNAME 
 
+ VARNAME, 2 
 
 
 
/VARLIST 

Level-3 intercept (must be included in the 

level-2 model)  

Level-3 predictor (no centering)  

 

Level-3 predictor centered around grand mean, 

W. 

List after the slash level-3 variables for 

exploratory analysis and “t-to-enter” statistics 
on subsequent runs. 

A slash without a subsequent variable 

suppresses the interactive prompt. 

 
RESFIL3 

 

Create a level-3 

residual file 

Y  
N  
/ VARLIST 

Yes 

No 

List after the slash additional level-3 variables 

to be included in the residual file. Works just 

like RESFIL2 

RESFIL3 
NAME  

Name of residual file  
FILENAME 

Changes the default 

 
FIXTAU2 

 

Method of correcting 

unacceptable starting 

values  for T  

1  
 
2 
 
3 
 
4 
 
5 

Set all off-diagonal elements to 0 

 

Manually reset starting values 

 
Automatic fix-up (default) 

 

Terminate run 

 

Stop program even if the starting values are 

acceptable; display starting values and then 

allow user to manually reset them. 

  1  Set all off-diagonal elements to 0 
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FIXTAU3 Method of correcting 

unacceptable starting 

values  for T  

 
2 
 
3 
 
4 
 
5  

 

Manually reset starting values 

 

Automatic fix-up (default) 

 

Terminate run 
 

Stop program even if the starting values are 

acceptable; display starting values and then 

allow user to manually reset them. 

LVR-BETA 
 

Performs a latent 

variable regression 

 
N 
 
P,O 

No 

 

P for predictor(s); O for outcomes (s) 

See Section 11.1 for details. 

DOFISHER 
Turns on/off Fisher 

estimation 

Y 
 
N 

Use Fisher 

 

Do not use Fisher 

FISHERTYPE 
Controls type of 

Fisher acceleration 

0 
 
1 
 
2 

Same as DOFISHER:N 

 

Use 1st derivate Fisher 

 
Use 2nd derivative Fisher(default) 

See section 4.5. 

 

B.3 Printing of variance and covariance matrices 

HLM3 can provide the following files upon request.  

 

Note that adding the command line  

 
PRINTVARIANCE-COVARIANCE:Y  

 

to the command file will request HLM3 to print out statistics for both tau(pi) as well as tau(beta). 

 

Let   r = number of random effects at level-1 

r2 = number of random effects at level-2  

 

1. For HLM3: 

 

 TAUVC.DAT contains tau (tau(pi)) in r columns of r rows, the next r2 lines are the tau(beta), 

and then the inverse of the information matrix (the standard errors of tau[s] are the square 

roots of the diagonals). The dimensions of this matrix are 

 ( ( 1) / 2 2 ( 2 1) / 2) ( ( 1) / 2 2 ( 2 1) / 2)r r r r r r r r           . 

 

2. For three-level HGLM: 

 

 TAUVC.DAT has the same format as the one for HLM3. The tau(s) are the final unit-specific 

results.  

 

The files for the gammas have the identical structure as those for two-level models.  

 

All files are created with an n(F15.7,1X) format. That is, each entry is fifteen characters wide with 

seven decimal places, followed by a space (blank character). 
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If the value of r  or f  or *( 1) / 2 2*( 2 1) / 2r r r r    exceeds 60, the line is split into two or more 

pieces.  
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C Using HLM4 in Batch Mode 

Unlike the older modules (HLM2, HLM3, etc.), HLM4 does not have interactive modes to create the 

MDM or specify a model. If the windows interface is not available, these file must be created with 

an ASCII editor and submit them to obtain results.   

C.1 Example: Creating an MDM file from raw data 

The first thing that needs creating is an MDM template file (usually suffixed with .mdmt),  which 

tells HLM4 how to read the raw data. Here is the MDMT file from section 6.1.1: 

 

#HLM4 MDM CREATION TEMPLATE 
mdmtype:3 
rawdattype:spss 
l1fname:C:\HLM\Examples\measure.sav 
l2fname:C:\HLM\Examples\occas.sav 
l3fname:C:\HLM\Examples\tchr.sav 
l4fname:C:\HLM\Examples\sch.sav 
l1missing:n 
timeofdeletion:now 
mdmname:literacy.mdm 
*begin l1vars 
level4id:SCHID 
level3id:TCHRID 
level2id:OCCASID 
EXPERTIS 
STDERR 
*end l1vars 
*begin l2vars 
level4id:SCHID 
level3id:TCHRID 
level2id:OCCASID 
OCCASION 
ARTIFACT 
*end l2vars 
*begin l3vars 
level4id:SCHLID 
level3id:TCHRID 
COACH 
NEWTCHR 
PDPART 
SCMT 
Y2ENT 
Y3ENT 
*end l3vars 
*begin l4vars 
level4id:SCHID 
CHGCOACH 
*end l4vars 

 

The file is broken into two sections. The first is to declare the filenames of the raw data and other 

characteristics of the MDM file to be made, the second chooses the variables to be included at the 

various levels. Below is the first part with explanation in parentheses: 

 

#HLM4 MDM CREATION TEMPLATE        (Required to be exactly like this.) 
mdmtype:3          (This declares the structure of the data, and only 
            affects the notation used in the output. Possible values are 
1             for cross sectional, 2 for longitudinal, 3 for cross sectional 
            with measurement model at level 1 and 4 for longitudinal 
                               with measurement model at level 1) 
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rawdattype:spss         (This declares the type of input data. Possible values are 
              spss, sas (version 5 transport file), stata, and ascii) 
l1fname:measure.sav        The next four lines declare the names and locations 
                   of the four input files.) 
l2fname:occas.sav 

l3fname:tchr.sav 

l4fname:sch.sav 

l1missing:n          (This declares whether or not there are missing data 
             at level-1. Possible values are n for not missing, or y 
                                for missing data present.) 
timeofdeletion:now      (This may be n[ow], where all level-1 cases with missing 
            data on selected variables will be deleted, or a[nalysis] 
            where the missing data will be left in and deleted at 
               run-time based on the model specified.) 
mdmname:literacy.mdm           (Specifies the name of the mdm file.) 

 

The second part of the mdmt file specifies which variables are ID variables, and which ones go 

into the mdm file as possible analysis variables. The structure looks like this: 

 

*begin l1vars 
level4id:SCHID 
level3id:TCHRID 
level2id:OCCASID 
[list of level-1 variables, one per line] 
*end l1vars 
*begin l2vars 
level4id:SCHID 
level3id:TCHRID 
level2id:OCCASID 
[list of level-2 variables, one per line] 
*end l2vars 
*begin l3vars 
level4id:SCHLID 
level3id:TCHRID 
[list of level-3 variables, one per line] 
*end l3vars 
*begin l4vars 
level4id:SCHID 
[list of level-4 variables, one per line] 
*end l4vars 

 

The IDs must be specified in the order shown, and must all be of the same type, either numeric 

(preferable) or alphanumeric(not advised). 

 

Once the mdmt file is created, the file must be submitted to HLM4: 

 
C:\HLM> HLM4 –r literacy.mdmt 

 

The results on the screen should then be examined to make sure the data were read correctly. 

These descriptive  statistics will  also be contained in a file named HLM4MDM.STS. 
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C.2 Example: Creating an HLM file and running the model 

 

The next step is to create a file that specifies the desired model. (This is usually suffixed with a 

.hlm) For example, we will use the model shown in section 6.2. 

 

nonlin:n 
numit:100 
stopval:0.0000010000 
level1:EXPERTIS=STDERR+RANDOM 
level2:STDERR=INTRCPT2+OCCASION+ARTIFACT+random 
level3:INTRCPT2=INTRCPT3+random 
level4:INTRCPT3=INTRCPT4+CHGCOACH+random 
level3:OCCASION=INTRCPT3+random 
level4:INTRCPT3=INTRCPT4+CHGCOACH+random 
level3:ARTIFACT=INTRCPT3 
level4:INTRCPT3=INTRCPT4+CHGCOACH+random 
fixsigma2:1.000000 
fixtaupi:3 
fixtaubeta:3 
fixtaugamma:3 
accel:5 
level1weight:none 
level2weight:none 
level3weight:none 
level4weight:none 
hypoth:n 
resfil1:n 
resfil2:n 
resfil3:n 
resfil4:n 
title:Unconditional model for literacy program 
output: literacy1.txt 
fulloutput:y 

 

The above is very similar to an HLM3 model file, with the exception of the model specification at 

the top where an extra level is shown. Here is the model part that better demonstrates the nested 

nature of the model specification (the shown indentation will not run): 

 
level1:EXPERTIS=STDERR+RANDOM 

level2:STDERR=INTRCPT2+OCCASION+ARTIFACT+random 

level3:INTRCPT2=INTRCPT3+random 

level4:INTRCPT3=INTRCPT4+CHGCOACH+random 

level3:OCCASION=INTRCPT3+random 

level4:INTRCPT3=INTRCPT4+CHGCOACH+random 

level3:ARTIFACT=INTRCPT3 

level4:INTRCPT3=INTRCPT4+CHGCOACH+random 

 

The basic rule here is that for each level-1 variable in the model, there needs to be a level2 

line, for each level-2 variable, a level3 file, and for each level-3 variable, a level4 line. The 

order is not arbitrary and must follow the pattern above. 

 

Assuming that the above file is named literacy1.hlm, then the following command should be run: 

 
C:\HLM> HLM4 LITERACY.MDM LITERACY1.HLM 
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Given the HLM file above the output would then be in literacy1.txt. Note that if html output is 

desired, a .html suffix should be specified on the output: line rather than .txt. 

 

Table C.1 presents the list of keywords and options unique to HLM4 relative to HLM3. 

 

Table C.1  Keywords and options unique to the HLM4 command file  

 

Keyword Function Option Definition 

 
LEVEL1  

 
Level-1 model 

specification  

 
INTRCPT1 
+VARNAME 
+VARNAME,2 
+VARNAME,3 
+VARNAME,4 
 
+VARNAME,G  

 
(Note: variable names may 
be specified in either upper 
or lower case.)  

 
Level-1 intercept  
Level-1 predictor (no centering) 
Level-1 predictor centered around level-2 mean 

Level-1 predictor centered around level-3 mean 

Level1 predictor centered around level-4 mean 

Level-1 predictor centered around grand mean a... 

 

 
LEVEL2  

 
Level-2 model 

specification  

INTRCPT2 
+VARNAME 
+VARNAME,3 
+VARNAME,4 
+VARNAME,G 

 
Level-2 intercept  
Level-2 predictor (no centering) 
Level-2 predictor centered around level-3 mean 
Level-2 predictor centered around level-4 mean 
Level-2 predictor centered around grand mean 

 
LEVEL3 

 
Level-3 model 
specification 

 
INTRCPT3 
+VARNAME 
+VARNAME,4 
+VARNAME,G 

Level-3 intercept (must be included in the level-2 model)  
Level-3 predictor (no centering) 

Level-3 predictor centered around level-4 mean  
Level-3 predictor centered around grand mean 

 
LEVEL4 

 
Level-4 model 
specification  

 
INTRCPT4 
+VARNAME 
+VARNAME,G 

 
Level-3 intercept (must be included in the level-2 model)  
Level-3 predictor (no centering)  
Level-3 predictor centered around grand mean 

 
RESFIL4 

 
Create a level-
3 residual file 

 
Y  
N  
/ VARLIST 

 
Yes 

No 
List after the slash additional level-4 variables to be 
included in the residual file. Works just like RESFIL2 

 
RESFIL4NAME  

 
Name of 
residual file  

 
FILENAME   

Changes the default 

 
FIXTAU4 

 
Method of 
correcting 

unacceptable 
starting values  

for T  

1  
 
 
2 
3 
4 
5 

 
Set all off-diagonal elements to 0 
Manually reset starting values 
Automatic fix-up (default) 
Terminate run 
Stop program even if the starting values are acceptable; 
display starting values and then allow user to manually 
reset them. 

 

The command file structure for HLM3 closely parallels that of HLM2. Each line begins with a 

keyword followed by a colon. After the colon is the option chosen by the user, i.e., 

 
 KEYWORD:OPTION 

 

As with HLM2, a pound sign (“#”) as the first character of a line can be used to introduce a 

comment into the command file. 
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The following keywords have the same definitions and options in HLM3 as in HLM2 (Table A.1) 

 
ACCEL  CONSTRAIN DEVIANCE  DF   MACROIT  MICROIT  NONLIN  NUMIT 
OUTPUT  RESFIL1  RESFIL1NAME RESFIL2  RESFIL2NAME   RESFILTYPE FIXSIGMA2 
STOPMACRO STOPMICRO STOPVAL   TITLE  LEVEL1DELETION   FULLOUTPUT   
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D Using HGLM in Interactive and Batch Mode 

 

 

This appendix describes and illustrates how to use HGLM in interactive and batch mode to 

execute analyses based on the MDM files. References are made to appropriate sections in the 

manual where the procedures are described in greater details.   

D.1 Example: Executing an analysis using THAIUGRP.MDM 

Here is an example of an HLM2 session in the interactive mode. At the system command line 

prompt, we first type the program name – HLM2 – followed by the name of the multivariate data 

matrix file – THAIUGRP.MDM. The program now takes the user directly into the model 

specification process. 

 

C:\HLM> HLM2 THAIUGRP.MDM 
 
Do you want to do a non-linear analysis? Y 
 
Enter type of non-linear analysis:         
 

See Chapter 5 for details regarding type of non-linear analysis. 

 
1) Bernoulli (0 or 1) 
2) Binomial (count) 
3) Poisson  (constant exposure) 
4) Poisson  (variable exposure) 
5) Multinomial 
6) Ordinal 
 

type of analysis: 1 
 

As mentioned, with one binary outcome per level-1 unit, the model choice is “1” (Bernoulli). 

 

If “2”(Binomial) is chosen, the user will be asked: 

 

For the non-linear analysis, which variable indicates the number of trials?  

 

If “4”(Poisson (variable exposure)) is chosen, the user will be asked: 

 

For the non-linear analysis, which variable indicates the exposure? 
 

If “5”(Multinomial) or “6”(Ordinal) is chosen, the user will be asked: 

 
How many categories does the “OUTCOME” have?  
 

Enter maximum number of macro iterations: 25 

Enter maximum number of micro iterations: 20 

 

Specifying 25 macro iterations sets an upper limit; if, after the 25th iteration the algorithm has 

not converged. The program will nonetheless terminate and print the results at that iteration. 

Similarly, setting 20 as the number of micro iterations insures that, after 20 micro iterations, the 
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current macro iteration will terminate even if the micro iteration convergence criterion has not 

been met. 

 

Do you wish to allow over-dispersion at level 1? N 
 

An answer of “Y” here allows a user to estimate a level-1 dispersion parameter 2 . If the 

assumption of no dispersion holds, 2  = 1.0. If the data are over-dispersed, 2  > 1.0; if the 

data are under-dispersed, 2  < 1.0.  

 

Do you want to do the Laplace-6 iterations? N 

Do you want to do the Laplace-8 iterations? N 
 

An answer of “Y” here allows us to obtain highly accurate Laplace approximation to maximum 

likelihood. See Sections 7.6.3 and 8.9.2. The user will be prompted to enter maximum number of 

Laplace macro iterations. 

 
                   SPECIFYING A LEVEL-1 OUTCOME VARIABLE 
 
Please specify a level-1 outcome variable 
 The choices are:  
 For     MALE enter  1    For     PPED enter  2    For     REP1 enter  3    
 

What is the outcome variable: 3 
 
Do you wish to: 
 
   Examine means,variances,chi-squared, etc? Enter 1  
   Specify an HLM model?                     Enter 2 
   Define a new outcome variable?            Enter 3 
   Exit?                                     Enter 4 

What do you want to do? 2 
 
                          SPECIFYING AN HLM MODEL 
Level-1 predictor variable specification 
 
Which level-1 predictors do you wish to use? 
 The choices are:  
 For     MALE enter  1    For     PPED enter  2    

 level-1 predictor? (Enter 0 to end)  1 

 level-1 predictor? (Enter 0 to end)  2 
 
 

Thus, we have set up a level-1 model with repetition (REP1) as the outcome and with gender 

(MALE) and pre-primary experience (PPED) as predictors.  

 

 Do you want to center any level-1 predictors? N 
 

Do you want to set the level-1 intercept to zero in this analysis? N 
 
Level-2 predictor variable specification 
 
Which level-2 variables do you wish to use? 
 
 The choices are:  
 For    MSESC enter  1    
 
 Which level-2 predictors to model INTRCPT1? 

  Level-2 predictor? (Enter 0 to end)  1 
 Which level-2 predictors to model     MALE slope? 
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  Level-2 predictor? (Enter 0 to end)  0 
 Which level-2 predictors to model     PPED slope? 

  Level-2 predictor? (Enter 0 to end)  0 
 

Thus we have modeled the level-1 intercept as depending on the mean SES (MSESC) of the 

school. The coefficients associated with gender and pre-primary experience are fixed. Mean SES 

has been centered around its grand mean.  

 
Do you want to constrain the variances in any of the level-2 random 

 effects to zero? Y 

 Do you want to fix INTRCPT1?  N 

 Do you want to fix     MALE?  Y 

 Do you want to fix     PPED?  Y 
 
 Do you want to center any level-2 predictors? Y 
 (Enter 0 for no centering, 2 for grand-mean) 

 How do you want to center    MSESC? 2 
 
                        ADDITIONAL PROGRAM FEATURES 
 
Select the level-2 variables that you might consider for 
inclusion as predictors in subsequent models. 
 The choices are:  
 For    MSESC enter  1    
 
Which level-2 variables to model INTRCPT1? 

 Level-2 variable? (Enter 0 to end)  0 

Do you want to constrain any (more) of the gammas? N 

Do you wish to use any of the optional hypothesis testing procedures? N 

Do you want to do a latent variable regression? Y 
Setting method of estimation to full. 
 
Enter o for outcome, p for predictor, or i to ignore 

How do you want to model INTRCPT1? P 
 
 
                      OUTPUT SPECIFICATION 
 

Do you want a level-1 residual file? Y 
 
Enter additional variables to go in residual file 
The choices are: 
For    MALE enter  1   For PPED enter  2   For REP1 enter 3 
 

Level-1 variable? (Enter 0 to end)  1 

Level-1 variable? (Enter 0 to end)  2 

Level-1 variable? (Enter 0 to end)  3 
 
Enter additional variables to go in residual file 
The choices are: 

Level-1 variable? (Enter 0 to end)  1 
For   MSESC enter 1 
 

Level-2 variable? (Enter 0 to end)   1 
 

Do you want a level-2 residual file? Y 
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Enter additional variables to go in residual file 
The choices are: 

Level-1 variable? (Enter 0 to end)  1 
For   MSESC enter 1 
 
Level-2 variable? (Enter 0 to end)   1 
 
Enter type of stat package you will use: 
   for SYSTAT       enter 1 
   for SAS          enter 2 
   for SPSS         enter 3 
   for Stata        enter 4 
   for Free Format  enter 5 

Type? 3 
 

Do you want to see OLS estimates for all of the level-2 units? N 
 Enter a problem title: Bernoulli output, Thailand data 
 Enter name of output file: THAIBERN.OUT 
 
                        MACRO ITERATION 1 
 
Starting values computed.  Iterations begun. 
Should you wish to terminate the iterations prior to convergence, enter cntl-c 
The value of the likelihood function at iteration 1 = -2.400265E+003 
The value of the likelihood function at iteration 2 = -2.399651E+003 
The value of the likelihood function at iteration 3 = -2.399620E+003 
The value of the likelihood function at iteration 4 = -2.399614E+003 
The value of the likelihood function at iteration 5 = -2.399612E+003 
The value of the likelihood function at iteration 6 = -2.399612E+003 
The value of the likelihood function at iteration 7 = -2.399612E+003 
 

Macro iteration number 1 has converged after six micro iterations. This macro iteration actually 

computes the linear-model estimates (using the identity link function as if the level-1 errors were 

assumed normal).  

 

These results are then transformed and input to start macro iteration 2, which is, in fact, the first 

non-linear iteration.  

 
MACRO ITERATION 2 
 
Starting values computed.  Iterations begun. 
Should you wish to terminate the iterations prior to convergence, enter cntl-c 
The value of the likelihood function at iteration 1 = -1.067218E+004 
The value of the likelihood function at iteration 2 = -1.013726E+004 
The value of the likelihood function at iteration 3 = -1.011008E+004 
The value of the likelihood function at iteration 4 = -1.010428E+004 
The value of the likelihood function at iteration 5 = -1.010265E+004 
The value of the likelihood function at iteration 6 = -1.010193E+004 
The value of the likelihood function at iteration 7 = -1.010188E+004 
The value of the likelihood function at iteration 8 = -1.010188E+004 
The value of the likelihood function at iteration 9 = -1.010187E+004 
The value of the likelihood function at iteration 10 = -1.010187E+004 
The value of the likelihood function at iteration 11 = -1.010187E+004 
The value of the likelihood function at iteration 12 = -1.010187E+004 
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 Macro interaction 2, the first non-linear macro iteration, converged after twelve micro 

iterations.  

 

                         MACRO ITERATION 3 
 
Starting values computed.  Iterations begun. 
Should you wish to terminate the iterations prior to convergence, enter cntl-c 
The value of the likelihood function at iteration 1 = -9.954836E+003 
The value of the likelihood function at iteration 2 = -9.954596E+003 
The value of the likelihood function at iteration 3 = -9.954567E+003 
The value of the likelihood function at iteration 4 = -9.954558E+003 
The value of the likelihood function at iteration 5 = -9.954555E+003 
The value of the likelihood function at iteration 6 = -9.954554E+003 
The value of the likelihood function at iteration 7 = -9.954553E+003 
 
                         MACRO ITERATION 4 
 
Starting values computed.  Iterations begun. 
Should you wish to terminate the iterations prior to convergence, enter cntl-c 
The value of the likelihood function at iteration 1 = -1.000019E+004 
The value of the likelihood function at iteration 2 = -1.000018E+004 
The value of the likelihood function at iteration 3 = -1.000018E+004 
The value of the likelihood function at iteration 4 = -1.000017E+004 
The value of the likelihood function at iteration 5 = -1.000017E+004 
The value of the likelihood function at iteration 6 = -1.000017E+004 
The value of the likelihood function at iteration 7 = -1.000017E+004 
 
                         MACRO ITERATION 5 
 
Starting values computed.  Iterations begun. 
Should you wish to terminate the iterations prior to convergence, enter cntl-c 
The value of the likelihood function at iteration 1 = -1.000347E+004 
The value of the likelihood function at iteration 2 = -1.000347E+004 
The value of the likelihood function at iteration 3 = -1.000347E+004 
 
                         MACRO ITERATION 6 
 
Starting values computed.  Iterations begun. 
Should you wish to terminate the iterations prior to convergence, enter cntl-c 
The value of the likelihood function at iteration 1 = -1.000375E+004 
The value of the likelihood function at iteration 2 = -1.000375E+004 
                        
        MACRO ITERATION 7 
 
Starting values computed.  Iterations begun. 
Should you wish to terminate the iterations prior to convergence, enter cntl-c 
The value of the likelihood function at iteration 1 = -1.000375E+004 
The value of the likelihood function at iteration 2 = -1.000375E+004 
 

Note that macro iteration 7 converged with just 2 micro iterations. Also, the change in 

parameter estimates between macro iterations 6 and 7 was found negligible (less than the 

criterion for convergence) so that macro iteration 8 was the final “unit-specific“ macro 

iteration. One final “population average” iteration is computed, and screen output for that is 

given below.  

 
                         MACRO ITERATION 8 
 
Starting values computed.  Iterations begun. 
Should you wish to terminate the iterations prior to convergence, enter cntl-c 
The value of the likelihood function at iteration 1 = -1.000374E+004 
The value of the likelihood function at iteration 2 = -1.000374E+004 
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Thus concludes the interactive terminal session. See Section 8.2 for an annotated output for this 

run. 

 

The interactive session annotated above produced the following command file (NEWCMD.HLM).  
 

#This command file was run with thaiugr.mdm 
STOPMICRO:0.0000010000 
STOPMACRO:0.0001000000 
MACROIT:25 
MICROIT:20 
NONLIN:BERNOULLI 
LAPLACE:n,50 
LAPLACE8:n,50 
LEVEL1:REP1=INTRCPT1+MALE+PPED+RANDOM 
LEVEL2:INTRCPT1=INTRCPT2+MSESC,2+RANDOM/ 
LEVEL2:MALE=INTRCPT2/ 
LEVEL2:PPED=INTRCPT2/ 
LEVEL1WEIGHT:NONE 
LEVEL2WEIGHT:NONE 
RESFILTYPE:SPSS 
RESFIL1:Y/MALE,PPED,REP1/MSESC 
RESFIL1NAME:resfil1.sav 
RESFIL2:Y/MSESC 
RESFIL2NAME:resfil2.sav 
HETEROL1VAR:n 
ACCEL:5 
LVR:P 
LEV1OLS:10 
MLF:y 
HYPOTH:n 
FIXSIGMA2:1.000000 
FIXTAU:3 
CONSTRAIN:N 
OUTPUT:n 
FULLOUTPUT:Y 
TITLE:Bernoulli output, Thailand data 

 

If one types at the system prompt:  
 

HLM2 THAIUGRP.MDM NEWCMD.HLM 
 

the output above would be reproduced. It is a good idea to rename the NEWCMD.HLM file if it is 

to be edited and re-used. Each execution of the program will produce a NEWCMD.MLM file that 

will overwrite the old one.  

 

Note that the “NEWCMD.HLM” file above is similar to the same file produced by a linear-model 

analysis, with the addition of the following lines:  
 

STOPMICRO:0.000010                   (default convergence criterion for micro iterations) 
STOPMACRO:0.000100                   (default convergence criterion for micro iterations) 
MACROIT:25                                         (maximum number if macro iterations) 
MICROIT:20                       (maximum number if micro iterations per macro iteration) 
NONLIN:BERNOULLI                                                (type of non-linear model) 
 

See Tables A.1 and B.1 for a description of the keywords and options. 
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E Using HMLM in Interactive and Batch Mode 

 

 

 

This appendix describes prompts and commands for creating MDM files and executing analyses 

based on the MDM files. References are made to appropriate sections in the manual where the 

procedures are described in greater details. To start HMLM or HMLM2, type HMLM or HMLM2 at 

the system prompt.  

E.1 Constructing an MDM file 

The procedure for MDM creation is similar to the one for MDM for HLM2. The only difference is 

that the user will be prompted with questions regarding the number of occasions contained in the 

data and which the indicator variables. To create a MDM file using the NYS data sets described in 

Section 10.1.1, for example, HMLM will display the following prompts to request the needed 

information: 

 
How many occasions are contained in the data? 5 
 
Please select the 5 indicator variables: 
Is    ATTIT     an indicator variable?  N 
Is      AGE     an indicator variable?  N 
Is    AGE11     an indicator variable?  N 
Is    AGE13     an indicator variable?  N 
Is   AGE11S     an indicator variable?  N 
Is   AGE13S     an indicator variable?  N 
Is     IND1     an indicator variable?  Y 
Is     IND2     an indicator variable?  Y 
Is     IND3     an indicator variable?  Y 
Is     IND4     an indicator variable?  Y 
Is     IND5     an indicator variable?  Y 
 

E.2 Executing analyses based on MDM files 

The procedure for executing analyses based on MDM files is similar to the one based on MDM 

files. A major difference is that only coefficients associate with variables that are invariant 

across all level-1 units, i.e., their values do not vary across the units, can be specified as random. 

Otherwise, the coefficients will be automatically set as non-random by the program. The 

following displays prompts unique to HMLM and HMLM2 for the NYS example described in 

Section 10.2. 

 
C:\HLM> HMLM NYS.MDM 
 
Enter type HMLM analysis:                                               

 

See Chapter 9 for details regarding type of HMLM analysis. 

 
  1) Unrestricted 
  2) Random effects model with homogeneous level-1 variance 
  3) Random effects model with heterogeneous level-1 variance 
  4) Random effects model with log-linear model for level-1 variance 
  5) Random effects model with first-order autoregressive level-1 variance 
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type of analysis: 3 
 

For choices 2 to 5, the user will be prompted. 

 

Do you want to skip the unrestricted iterations? N 
 

If “4”(log-linear model for level-1 variance) is chosen, HMLM will ask the user to enter variables 

to model 2sigma , for example: 

 
Should VAR1 be in C? 
 

An interactive session will output a command file NEWCMD.MLM. An example for one of the 

analyses discussed in Section 10.2 is given below. 

 
#This command file was run with nys.mdm 
LEVEL1:ATTIT=INTRCPT1+AGE13+AGE13S+RANDOM 
LEVEL2:INTRCPT1=INTRCPT2+RANDOM 
LEVEL2:AGE13=INTRCPT2+RANDOM 
LEVEL2:AGE13S=INTRCPT2+RANDOM 
NUMIT:50 
STOPVAL:0.0000010000 
FIXTAU:3 
OUTPUT:nys1.out 
FULLOUTPUT:Y 
TITLE:HMLM OUPUT, NYS DATA 
ACCEL:5 
R_E_MODEL:UNRESTRICTED 
LVR:N 

 

If one types at the system prompt: 

 
HMLM NYS.MDM NEWCMD.MLM 
 

the result will be the output for a model with an unrestricted covariance structure given in 

Section 10.3. It is a good idea to rename the NEWCMD.MLM file if it is to be edited and re-used. 

Each execution of the program will produce a NEWCMD.MLM file that will overwrite the old one.  

 

The following keywords have the same definitions and options in HMLM as in HLM2 (Table A.1) 

 
ACCEL  DEVIANCE  DF    FIXTAU 
LEVEL1  LEVEL2   GAMMA#   HYPOTH  
NUMIT  OUTPUT   PRINTVARIANCE-COVARIANCE 
STOPVAL TITLE    FULLOUTPUT  LVR  
 

The following keywords are not available in HMLM: 

 
LEV1OLS HOMVAR  HETERO1VAR MLF  LEVEL1DELETION  CONSTRAIN 
FIXSIGMA2   HYPOTH    LAPLACE    MACROIT 
MICROIT NONLIN  PLAUSVALS   RESFIL1    RESFIL1NAME 
RESFIL2    RESFIL2NAME  RESFILTYPE   STOPMACRO  
STOPMICRO 
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11 E.2.1 Table of keywords and options 

Table E.1  Keywords and options unique to the HMLM command file  

 

Keyword Function Option Definition 

 
R_E_MODEL 

Choose type of model 

UNRESTRICTED 
 
HOMOL1VAR 
 
HETL1VAR 
 
 
AUTOREG 
 
LOGLIN/var  

 
Do only unrestricted iterations 

Do homogeneous model 

Do homogeneous and 
heterogeneous model 

Do homogeneous and auto-
regressive model 

Do homogeneous and log-linear 
model 

UNRESTRICTED 
Possible suppression of 
unrestricted 

Y 
N 

Do unrestricted iterations 
Don't do unrestricted iterations. 
Only possible it R_E_MODEL is 

not UNRESTRICTED 

 

The following keywords have the same definitions and options in HMLM2 as in HLM3 (Table B.1) 

 
ACCEL  DEVIANCE  DF   FIXTAU2  FIXTAU3 
LEVEL1  LEVEL2   LEVEL3  GAMMA#  HYPOTH  
NUMIT  OUTPUT   PRINTVARIANCE-COVARIANCE 
STOPVAL TITLE    FULLOUTPUT    LVR  
RESFIL3 

 

The following HLM3 keywords are not available in HMLM2: 

 
LEV1OLS  HOMVAR   LEVEL1DELETION  CONSTRAIN FIXSIGMA2 
HYPOTH  LAPLACE   MACROIT    MICROIT  NONLIN 
PLAUSVALS RESFIL1   RESFIL1NAME  RESFIL2  RESFIL2NAME 
RESFIL3  RESFIL3NAME RESFILTYPE   STOPMACRO STOPMICRO 
LVR-BETA 

12 E.2.2 Table of HMLM2 keywords and options 

Table E.1  Keywords and options unique to the HMLM2 command file  

 

Keyword Function Option Definition 

 
R_E_MODEL 

Choose type of model 

UNRESTRICTED 
 
HOMOL1VAR 
 
HETL1VAR 
 
 
AUTOREG 
 
LOGLIN/var  

 
Do only unrestricted iterations 
Do homogeneous model 
 

Do homogeneous and 
heterogeneous model 

Do homogeneous and auto-
regressive model 

Do homogeneous and log-linear 
model 

UNRESTRICTED 
Possible suppression of 

unrestricted 

Y 
N 

Do unrestricted iterations 
Don't do unrestricted iterations. 
Only possible it R_E_MODEL is 

not UNRESTRICTED 
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Note that HMLM and HMLM2 do not allow non-linear outcomes, use of plausible values and 

multiply-imputed values, constraints of gammas, and they do not write out any residual files.   
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F Using Special Features in Interactive and Batch Mode 

 

 

 

This appendix describes and illustrates how to use the special features in interactive and batch 

mode to execute analyses. References are made to appropriate sections in the manual where the 

procedures are described in greater details.   

F.1 Example: Latent variable analysis using the National Youth Study 
data sets 

The following interactive session illustrates a latent variable analysis example using the National 

Youth Study (NYS) data sets. A description of the data files and the model specification can be 

found in Sections 10.1.1 and 11.1.1.  

 

C:\HLM> HMLM NYS.MDM 
Enter type HMLM analysis: 
 
  1) Unrestricted 
  2) Random effects model with homogeneous level-1 variance 
  3) Random effects model with heterogeneous level-1 variance 
  4) Random effects model with log-linear model for level-1 variance 
  5) Random effects model with first-order autoregressive level-1 variance 
 

type of analysis: 2  
 

We select the homogeneous level-1 variance option for this model. Thus, using HLM2 will yield 

identical results in this case. 

 
Do you want to skip the unrestricted iterations? Y 
 
                   SPECIFYING A LEVEL-1 OUTCOME VARIABLE 
 
Please specify a level-1 outcome variable 
 The choices are:  
 For    ATTIT enter  1    For      AGE enter  2    For    AGE11 enter  3    
 For    AGE13 enter  4    For   AGE11S enter  5    For   AGE13S enter  6    
 For     IND1 enter  7    For     IND2 enter  8    For     IND3 enter  9    
 For     IND4 enter 10    For     IND5 enter 11    

What is the outcome variable: 1 
 

The outcome is tolerance towards deviant behavior.  

 
                         SPECIFYING AN HMLM MODEL 
Level-1 predictor variable specification 
 
Which level-1 predictors do you wish to use? 
 The choices are:  
                          For      AGE enter  2    For    AGE11 enter  3    
 For    AGE13 enter  4    For   AGE11S enter  5    For   AGE13S enter  6    
 For     IND1 enter  7    For     IND2 enter  8    For     IND3 enter  9    
 For     IND4 enter 10    For     IND5 enter 11    
 

 level-1 predictor? (Enter 0 to end)  3 

 level-1 predictor? (Enter 0 to end)  0 
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AGE11 is the age of participant at a specific time minus 11.   

 

Do you want to center any level-1 predictors? N 
 

Do you want to set the level-1 intercept to zero in this analysis? N 
 
Level-2 predictor variable specification 
 
Which level-2 variables do you wish to use? 
 
 The choices are:  
 For   FEMALE enter  1    For MINORITY enter  2    For   INCOME enter  3    
 
 Which level-2 predictors to model INTRCPT1? 

  Level-2 predictor? (Enter 0 to end)  1 

  Level-2 predictor? (Enter 0 to end)  0 
 
 Which level-2 predictors to model    AGE11 slope? 

  Level-2 predictor? (Enter 0 to end)  1 

  Level-2 predictor? (Enter 0 to end)  0 
 
Do you want to constrain the variances in any of the level-2 random 
 effects to zero? N 
 

Do you want to center any level-2 predictors? N 
 
                        ADDITIONAL PROGRAM FEATURES 

Do you want to do a latent variable regression? Y 
 
Enter o for outcome, p for predictor, or i to ignore 

How do you want to handle INTRCPT1? P 

How do you want to handle    AGE11? 0 
 

INTRCPT1, the level of tolerance at age 11, is used as a predictor to model the outcome, AGE11, 

the linear growth rate. Note that INTRCPT1 and AGE11 are latent variables, that is, they are free 

of measurement error.  

Do you want to specify a multivariate hypothesis for the fixed effects? N 
 
                           OUTPUT SPECIFICATION 

How many iterations do you want to do? 50 

Enter a problem title: Latent variable regression, NYS Data 

Enter name of output file: NYS2.OUT 
 
Computing . . ., please wait 
 

Partial output for this analysis is given in Section 11.1.1. 

F.2 A latent variable analysis to run regression with missing data 

The following interactive session illustrates a latent variable analysis to run regression with 

missing data with an artificial data set. A description of the data files and the model specification 

can be found in Section 11.1.2.  

 

C:\HLM> HMLM MISSING.MDM 
Enter type HMLM analysis: 
 
  1) Unrestricted 
  2) Random effects model with homogeneous level-1 variance 
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  3) Random effects model with heterogeneous level-1 variance 
  4) Random effects model with log-linear model for level-1 variance 
  5) Random effects model with first-order autoregressive level-1 variance 
 

type of analysis: 1 
 
                   SPECIFYING A LEVEL-1 OUTCOME VARIABLE 
 
Please specify a level-1 outcome variable 
 
 The choices are:  
 For MEASURES enter  1    For     IND1 enter  2    For     IND2 enter  3    
 For     IND3 enter  4    
 

What is the outcome variable: 1 
 
                         SPECIFYING AN HMLM MODEL 
 
Level-1 predictor variable specification 
 
Which level-1 predictors do you wish to use? 
 
 The choices are:  
 For     IND1 enter  2    For     IND2 enter  3    For     IND3 enter  4    
 

 level-1 predictor? (Enter 0 to end)  1 
 That is the outcome variable! 
 level-1 predictor? (Enter 0 to end)  2 

 level-1 predictor? (Enter 0 to end)  3 

 level-1 predictor? (Enter 0 to end)  4 
 

Do you want to center any level-1 predictors? N 
 

Do you want to set the level-1 intercept to zero in this analysis? Y  
 

Note that a no-intercept model is formulated (see Section 2.9.6).  

 
Level-2 predictor variable specification 
 
Which level-2 variables do you wish to use? 
 
 The choices are:  
 For    DUMMY enter  1    
 
 Which level-2 predictors to model     IND1 slope? 
  Level-2 predictor? (Enter 0 to end)  0 
 Which level-2 predictors to model     IND2 slope? 

  Level-2 predictor? (Enter 0 to end)  0 
 
 Which level-2 predictors to model     IND3 slope? 

  Level-2 predictor? (Enter 0 to end)  0 
 

IND2 and IND3 are selected to predict IND1. 

 
Do you want to constrain the variances in any of the level-2 random 

 effects to zero? N 
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ADDITIONAL PROGRAM FEATURES 
 

Do you want to do a latent variable regression? Y 
 
Enter o for outcome, p for predictor, or i to ignore 
How do you want to handle     IND1? O 

How do you want to handle     IND2? P 

How do you want to handle     IND3? P 
 

Do you want to specify a multivariate hypothesis for the fixed effects? N 
 
                           OUTPUT SPECIFICATION 

How many iterations do you want to do? 50 
 Enter a problem title: Latent variable analysis, Missing data example 
 Enter name of output file: MISSING1.OUT 
 

Partial output for this analysis is given in Section 11.1.2. 

F.3 Commands to apply HLM to multiply-imputed data 

To analyze data with multiply-imputed values for the outcome variable or only one covariate, the 

user needs to manually add the following line into the command file: 

 

PLAUSVALS: VARLIST 

 

where VARLIST lists variables containing the multiply-imputed values. 

 

To analyze data with multiply-imputed values for the outcome and/or covariates, the user needs 

to prepare multiple MDM files. After setting up the multiple MDM files, the user have to submit 

the command files to HLM2 and HLM3 as many times as the number of multiple MDM files with 

an extra flag, -MI#, where # is the sequence number, starting from 0. On the last run, you also 

need the -E flag, (E for estimate).   

 

Suppose there are 4 sets of multiply-imputed data for a two-level model, called MDATA1.MDM, 

MDATA2.MDM, MDATA3.MDM, and MDATA4.MDM and the command file is ANALYSE.MLM; the 

following commands need to be typed in at the system prompt: 

 

HLM2 -MI0 MDATA1.MDM ANALYSE.MLM 
HLM2 -MI1 MDATA2.MDM ANALYSE.MLM 
HLM2 -MI2 MDATA3.MDM ANALYSE.MLM 
HLM2 -MI3 -E MDATA.4MDM ANALYSE.MLM 

F.4 Commands to apply HLM2 to create a Spatial model 

This option can only be invoked if the spatial dependence information was added when the mdm 

file was created. Then, add the following command line to the HLM file to accommodate spatial 

dependence: 

 

dospatialcorrelation:y  
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G Using HCM2 in Interactive and Batch Mode 

 

 

 

This appendix describes and illustrates how to use HCM2 in interactive construct MDM files, and 

in  both interactive and batch mode to execute analyses based on the MDM file. It also lists and 

defines command keywords and options unique to HCM2. References are made to appropriate 

sections in the manual where the procedures are described in greater details. In the next Section, 

we show the construction of an MDM file using the educational attainment data as described in 

Chapter 13.  

G.1 Using HCM2 in interactive mode 

13 G.1.1 Example: constructing an MDM file for the educational 
attainment data using SPSS file input 

C:\HLM>HCM2                    (type the program name at the system prompt to start) 

 

Will you be starting with raw data? Y 
Enter type of raw data: 
   for ASCII input                  enter 1 
   for SYSTAT .SYS file             enter 2 
   for SAS V5 transport file        enter 3 
   for SPSS file (UNIX or windows)  enter 4 
   for STATA .dta file              enter 5 
   for anything DBMSCOPY reads      enter 6 
   for anything Stat/Transfer reads enter 7 
Type? 4 

 
The “anything DBMSCOPY reads” prompt is only present on PC versions. 

 
Input name of level-1 file: ATTAINW.SAV      

Input name of row file: ATTAINR.SAV 

Input name of column file: ATTAINCO.SAV  

 

See Section 13.1.2 for a description of variables in the data files. 

 
 The available level-1 variables are: 
 For  NEIGHID  enter  1    For    SCHID  enter  2    For   ATTAIN  enter  3 
 For    P7VRQ  enter  4    For   P7READ  enter  5    For   DADOCC  enter  6 
 For DADUNEMP  enter  7    For    DADED  enter  8    For    MOMED  enter  9 
 For     MALE  enter 10 

 What variable is the row ID? 1 

 What variable is the column ID? 2 
 

Note there are two linking ID's in the level-1 or within-cell file. 

 

 Please specify level-1 variable # 1 (enter 0 to end): 3 

 Please specify level-1 variable # 2 (enter 0 to end): 4 

 Please specify level-1 variable # 3 (enter 0 to end): 5 

 Please specify level-1 variable # 4 (enter 0 to end): 6 

 Please specify level-1 variable # 5 (enter 0 to end): 7 
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 Please specify level-1 variable # 6 (enter 0 to end): 8 

 Please specify level-1 variable # 7 (enter 0 to end): 9 

 Please specify level-1 variable # 8 (enter 0 to end): 10 
  
The available row-level variables are: 
 
 For  NEIGHID  enter  1    For  DEPRIVE  enter  2 

 What variable is the row ID? 1 

 

Note there is one row ID the level-2 row factor file. 

 

 Please specify row-level variable # 1 (enter 0 to end): 2 
 
 The available column-level variables are: 
 For    SCHID  enter  1    For    DUMMY  enter  2 

 What variable is the column ID? 1 
 

Note there is one column ID the level-2 column factor file. 

 

 Please specify column-level variable # 1 (enter 0 to end): 2 
 

Are there missing data in the level-1 file? y 
 

Enter name of MDM file: ATTAIN.MDM 
 

HCM2 save send the descriptive statistics of variables for each file to the screen. It is important 

to examine these carefully to ensure that no errors were made. The program will save these 

statistics in a file name HCM2MDM.STS.  

 
                         LEVEL-1 DESCRIPTIVE STATISTICS 
 
 VARIABLE NAME       N       MEAN         SD         MINIMUM      MAXIMUM 
    ATTAIN          2310       0.09       1.00        -1.33         2.42 
     P7VRQ          2310       0.51      10.65       -27.03        42.97 
    P7READ          2310      -0.04      13.89       -31.87        28.13 
    DADOCC          2310      -0.46      11.78       -23.45        29.23 
  DADUNEMP          2310       0.11       0.31         0.00         1.00 
     DADED          2310       0.22       0.41         0.00         1.00 
     MOMED          2310       0.25       0.43         0.00         1.00 
      MALE          2310       0.48       0.50         0.00         1.00 
 
                       ROW LEVEL DESCRIPTIVE STATISTICS 

 
 VARIABLE NAME       N       MEAN         SD         MINIMUM      MAXIMUM 
   DEPRIVE           524       0.04       0.62        -1.08         2.96 
 
                    COLUMN LEVEL DESCRIPTIVE STATISTICS 
 
 VARIABLE NAME       N       MEAN         SD         MINIMUM      MAXIMUM 
     DUMMY           17       2.41       1.18         1.00         4.00 
 
 2310 level-1 records have been processed 
 524 row-level records have been processed 
 17 column-level records have been processed 
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14 G.1.2 Example: Executing an unconditional model analysis using 
ATTAIN.MDM 

C:\HLM> HCM2 ATTAIN.MDM 
 

Do you want to do a non-linear analysis? N 
 
                   SPECIFYING A LEVEL-1 OUTCOME VARIABLE 
 
Please specify a level-1 outcome variable 
 The choices are:  
 For   ATTAIN enter  1    For    P7VRQ enter  2    For   P7READ enter  3    
 For   DADOCC enter  4    For DADUNEMP enter  5    For    DADED enter  6    
 For    MOMED enter  7    For     MALE enter  8    

What is the outcome variable: 1 
 

We shall model educational attainment with an unconditional model and specific the residual 

row, column, and cell-specific effects as random. See Section 13.2 . 

 
                         SPECIFYING AN HCM2 MODEL 
 
Level-1 predictor variable specification 
 
Which level-1 predictors do you wish to use? 
 The choices are:  
                          For    P7VRQ enter  2    For   P7READ enter  3    
 For   DADOCC enter  4    For DADUNEMP enter  5    For    DADED enter  6    
 For    MOMED enter  7    For     MALE enter  8    

level-1 predictor? (Enter 0 to end)  0 
 

Do you want to set the level-1 intercept to zero in this analysis? N 
 
 
Level-1/row predictor variable specification 
 
Which row variables do you wish to use? 
 
 
 The choices are:  
 For  DEPRIVE enter  1    
 
Which row-level predictor to model INTRCPT1, P0? 

 Row-level predictor? (Enter 0 to end)  0 
 
 
Column-level predictor variable specification 
 
Which column-level variables do you wish to use? 
 
 The choices are:  
 For    DUMMY enter  1    
 
Which column-level predictor to model INTRCPT1, P0? 
 Column-level predictor? (Enter 0 to end)  0 

 
 
Do you want to constrain the variances in any of the row-level random 

 effect to zero? N 
 
 
Do you want to constrain the variances in any of the column-level random 

 effect to zero? N 
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Enter type of deflection: 
 for independent(default) enter 1 
 for cumulative           enter 2 

Type? 1 
 

Select 2 if to define a cumulative effect model.  

 
                           OUTPUT SPECIFICATION 
 

Do you want a row-level residual file? N 

Do you want a column-level residual file? N 

How many iterations do you want to do? 100 

Enter a problem title: UNCONDITIONAL MODEL 

Enter name of output file: ATTAIN1.TXT 
 
Computing . . ., please wait 
The value of the likelihood function at iteration 1 = -3.208601E+003 
The value of the likelihood function at iteration 2 = -3.207263E+003 
The value of the likelihood function at iteration 3 = -3.205187E+003 
The value of the likelihood function at iteration 4 = -3.201693E+003 
The value of the likelihood function at iteration 5 = -3.196031E+003 
The value of the likelihood function at iteration 6 = -3.188714E+003 
The value of the likelihood function at iteration 7 = -3.182922E+003 
The value of the likelihood function at iteration 8 = -3.180439E+003 
The value of the likelihood function at iteration 9 = -3.179676E+003 
The value of the likelihood function at iteration 10 = -3.179379E+003 
The value of the likelihood function at iteration 11 = -3.179212E+003 
The value of the likelihood function at iteration 12 = -3.179104E+003 
The value of the likelihood function at iteration 13 = -3.179032E+003 
The value of the likelihood function at iteration 14 = -3.178984E+003 
The value of the likelihood function at iteration 15 = -3.178881E+003 
The value of the likelihood function at iteration 16 = -3.178879E+003 
The value of the likelihood function at iteration 17 = -3.178878E+003 
The value of the likelihood function at iteration 18 = -3.178877E+003 
The value of the likelihood function at iteration 19 = -3.178876E+003 
The value of the likelihood function at iteration 20 = -3.178874E+003 
The value of the likelihood function at iteration 21 = -3.178874E+003 

 
See Section 13.2 for a discussion of the results of this unconditional model. 

15 G.1.3 Example: Executing a conditional model analysis using 
ATTAIN.MDM 

C:\HLM> HCM2 ATTAIN.MDM  
 

Do you want to do a non-linear analysis? N 
 
                   SPECIFYING A LEVEL-1 OUTCOME VARIABLE 
 
Please specify a level-1 outcome variable 
 The choices are:  
 For   ATTAIN enter  1    For    P7VRQ enter  2    For   P7READ enter  3    
 For   DADOCC enter  4    For DADUNEMP enter  5    For    DADED enter  6    
 For    MOMED enter  7    For     MALE enter  8    

What is the outcome variable: 1 

 
We shall model educational attainment with all the level-1 predictor variables. All the level-1 

coefficients associated with the predictors are fixed. See Section 13.3. 
                      



350 
 

 

SPECIFYING AN HCM2 MODEL 
 
Level-1 predictor variable specification 
 
Which level-1 predictors do you wish to use? 
 The choices are:  
                          For    P7VRQ enter  2    For   P7READ enter  3    
 For   DADOCC enter  4    For DADUNEMP enter  5    For    DADED enter  6    
 For    MOMED enter  7    For     MALE enter  8    

level-1 predictor? (Enter 0 to end)  2 

level-1 predictor? (Enter 0 to end)  3 

level-1 predictor? (Enter 0 to end)  4 

level-1 predictor? (Enter 0 to end)  5 

level-1 predictor? (Enter 0 to end)  6 

level-1 predictor? (Enter 0 to end)  7 

level-1 predictor? (Enter 0 to end)  8 

level-1 predictor? (Enter 0 to end)  0 
 

Do you want to center any level-1 predictors? y 
 Enter 0 for no centering, 2 for grand-mean 

How do you want to center    P7VRQ? 2 

How do you want to center   P7READ? 2 

How do you want to center   DADOCC? 2 

How do you want to center DADUNEMP? 2 

How do you want to center    DADED? 2 

How do you want to center    MOMED? 2 

How do you want to center     MALE? 2 
 

Do you want to set the level-1 intercept to zero in this analysis? N 
 
Level-1/row predictor variable specification 
 
Which row variables do you wish to use? 
 
 The choices are:  
 For  DEPRIVE enter  1    

 
We shall use DEPRIVE to model the level-1 intercept.  

 
Which row-level predictor to model INTRCPT1, P0? 

 Row-level predictor? (Enter 0 to end)  1 
Which row-level predictor to model    P7VRQ, P2 slope? 

 Row-level predictor? (Enter 0 to end)  0 
Which row-level predictor to model   P7READ, P3 slope? 

 Row-level predictor? (Enter 0 to end)  0 
Which row-level predictor to model   DADOCC, P4 slope? 

 Row-level predictor? (Enter 0 to end)  0 
Which row-level predictor to model DADUNEMP, P5 slope? 

 Row-level predictor? (Enter 0 to end)  0 
Which row-level predictor to model    DADED, P6 slope? 

 Row-level predictor? (Enter 0 to end)  0 
Which row-level predictor to model    MOMED, P7 slope? 

 Row-level predictor? (Enter 0 to end)  0 
Which row-level predictor to model     MALE, P8 slope? 

 Row-level predictor? (Enter 0 to end)  0 
 
 
Column-level predictor variable specification 
 
Which column-level variables do you wish to use? 
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 The choices are:  
 
 
 For    DUMMY enter  1    
 
Which column-level predictor to model INTRCPT1, P0? 

 Column-level predictor? (Enter 0 to end)  0 
Which column-level predictor to model    P7VRQ, P2 slope? 

 Column-level predictor? (Enter 0 to end)  0 
Which column-level predictor to model   P7READ, P3 slope? 
 Column-level predictor? (Enter 0 to end)  0 
Which column-level predictor to model   DADOCC, P4 slope? 

 Column-level predictor? (Enter 0 to end)  0 
Which column-level predictor to model DADUNEMP, P5 slope? 

 Column-level predictor? (Enter 0 to end)  0 
Which column-level predictor to model    DADED, P6 slope? 

 Column-level predictor? (Enter 0 to end)  0 
Which column-level predictor to model    MOMED, P7 slope? 

 Column-level predictor? (Enter 0 to end)  0 
Which column-level predictor to model     MALE, P8 slope? 

 Column-level predictor? (Enter 0 to end)  0 
 
Do you want to center any row-level predictors? y 
 Enter 0 for no centering, 2 for grand-mean 

How do you want to center  DEPRIVE? 2 

 
Do you want to constrain the variances in any of the row-level random 
 effect to zero? y 

Do you want to fix INTRCPT1/ICPTROW? N 

Do you want to fix P7VRQ/ICPTROW? Y 

Do you want to fix P7READ/ICPTROW? Y 

Do you want to fix DADOCC/ICPTROW? Y 

Do you want to fix DADUNEMP/ICPTROW? Y 

Do you want to fix DADED/ICPTROW? Y 

Do you want to fix MOMED/ICPTROW? Y 

Do you want to fix MALE/ICPTROW? Y 
 
 
Do you want to constrain the variances in any of the column-level random 

 effect to zero? Y 
 

We shall treat the association between social deprivation and educational attainment as fixed 

across all schools. See Section 13.2. 

 
Do you want to fix INTRCPT1/DEPRIVE? Y 

Do you want to fix INTRCPT1/ICPTCOL? N 

Do you want to fix P7VRQ/ICPTCOL? Y 

Do you want to fix P7READ/ICPTCOL? Y 

Do you want to fix DADOCC/ICPTCOL? Y 

Do you want to fix DADUNEMP/ICPTCOL? Y 

Do you want to fix DADED/ICPTCOL? Y 

Do you want to fix MOMED/ICPTCOL? Y 

Do you want to fix MALE/ICPTCOL? Y 
 Enter type of deflection: 
 for independent(default) enter 1 
 for cumulative           enter 2 

Type? 1 
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                           OUTPUT SPECIFICATION 
 

Do you want a row-level residual file? N 
 
Do you want a column-level residual file? N 
 

How many iterations do you want to do? 100 
Enter a problem title: CONDITIONAL MODEL WITH THE EFFECT ASSOCIATED WITH A ROW-SPECIFIC 
PREDICTOR FIXED 

Enter name of output file: ATTAIN2.TXT 
 
Computing . . ., please wait 
 
The value of the likelihood function at iteration 1 = -2.391226E+003 
The value of the likelihood function at iteration 2 = -2.390450E+003 
The value of the likelihood function at iteration 3 = -2.390158E+003 
The value of the likelihood function at iteration 4 = -2.389892E+003 
The value of the likelihood function at iteration 5 = -2.389646E+003 
… 
The value of the likelihood function at iteration 28 = -2.384804E+003 
The value of the likelihood function at iteration 29 = -2.384803E+003 
The value of the likelihood function at iteration 30 = -2.384803E+003 
The value of the likelihood function at iteration 31 = -2.384802E+003 
The value of the likelihood function at iteration 32 = -2.384802E+003 
The value of the likelihood function at iteration 33 = -2.384802E+003 
The value of the likelihood function at iteration 34 = -2.384802E+003 

 
See Section 13.2 for a discussion of the results of this conditional model. 

G.2 Using HCM2 in batch mode 

The interactive session in G.1.1 produced the following command file, NEWCMD.HLM. 

 
#WHLM CMD FILE FOR C:\HLM\ATTAIN.MDM 
NUMIT:100 
STOPVAL:0.0000010000 
LEVEL1:ATTAIN=INTRCPT1+RANDOM 
ROWCOL:INTRCPT1=THETA+RANDOMB+RANDOMC 
FIXTAU:3 
FIXDELTA:3 
ACCEL:5 
DEFLECTION:INDEPENDENT 
TITLE:UNCONDITIONAL MODEL 
OUTPUT:C:\HLM\ATTAIN1.TXT 
FULLOUTPUT:N 

 

If one types at the system prompt: 

 
HCM2 ATTAIN.MDM NEWCMD.HLM 

 

the result will be the output for the unconditional model. Note that each execution of the 

program will produce a NEWCMD.HLM file that will overwrite the old one. 

 

For the conditional model, the command file is 

#WHLM CMD FILE FOR C:\HLM\ATTAIN.MDM 
NUMIT:100 
STOPVAL:0.0000010000 
LEVEL1:ATTAIN=INTRCPT1+P7VRQ,2+P7READ,2+DADOCC,2+DADUNEMP,2+DADED,2+MOMED,2+ 
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MALE,2+RANDOM 
ROWCOL:INTRCPT1=THETA+DEPRIVE(FIXED),2+RANDOMB+RANDOMC 
ROWCOL:P7VRQ=THETA 
ROWCOL:P7READ=THETA 
ROWCOL:DADOCC=THETA 
ROWCOL:DADUNEMP=THETA 
ROWCOL:DADED=THETA 
ROWCOL:MOMED=THETA 
ROWCOL:MALE=THETA 
FIXTAU:3 
FIXDELTA:3 
ACCEL:5 
DEFLECTION:INDEPENDENT 
TITLE:CONDITIONAL MODEL, WITH SOCIAL DEPRIVATION EFFECT FIXED 
OUTPUT:C:\HLM\ATTAIN2.TXT 
FULLOUTPUT:N 

 

The following keywords in the above command files have the same definition and options in 

HCM2 as in the other modules (e.g. Tables A.1 and B.1) 

 
ACCEL  FULLOUTPUT  FIXTAU   NONLIN  NUMIT  OUTPUT  STOPVAL  TITLE 
FIXSIGMA2 STOPMICRO  STOPMACRO  DEVIANCE  DF    GAMMA 

 

Had we requested residual level-1, and row and column files during the interaction session, the 

command files would contain the following additional command lines specifying the type (SPSS 

system file) and the names for each of the files (RESFIL1.SAV, RESROW.SAV, and RESCOL.SAV): 

 

RESFILTYPE:SPSS 
RESFIL1NAME:RESFIL1.SAV 
RESFIL1:Y 
 
RESROWNAME:RESROW.SAV 
RESROW:Y 
RESCOLNAME:RESCOL.SAV 
RESCOL:Y 
 

Table G.1 Keywords and options unique for HCM2 command file 

 

Keyword Function Option Definition 

 
LEVEL1 

Level-1 or 

within-cell model 
specification 

INTRCPT1 
+VARNAME  
+VARNAME,1 
+VARNAME,2 

Level-1 intercept 
Level-1 predictor (no centering) 
Level-1 predictor (group-mean centering) 
Level-1 predictor (grand-mean centering) 

 
ROWCOL: 
INTRCPT1 or 
L-1 VARNAME 

Level-2 or 
between-cell 
model 

specification 

THETA 
+VARNAME(FIXED) 
 
+VARNAME(FIXED),2 
+VARNAME(RANDOM),2 
 
+VARNAME(RANDOM) 
+RANDOMB 
+RANDOMC 

Level-2 intercept 

+ Level-2 predictor (fixed and grand-mean 
centering) 
+ Level-2 predictor (fixed and no centering) 
+ Level-2 predictor (random and grand-mean 
centering) 
+ Level-2 predictor (random and no centering) 
+ Random main effect of the row factor 
+ Random main effect of the column factor 

 
DEFLECTION 

Define the use of 
a cumulative 

effect model 

1 
 
2 

Independent 
 

Cumulative 
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H Using HCM3 in Batch Mode 

Unlike the older modules (HLM2, HLM3, etc.), HCM3 does not have interactive modes to create 

the MDM or specify a model. If the windows interface is not available, these file must be created 

with an ASCII editor and submit them to obtain results.   

H.1 Example: Creating an HCM3 MDM file from raw data 

The first thing that needs creating is an mdm template file (usually suffixed with .mdmt),  which 

tells HCM3 how to read the raw data. Here is the MDMT file from section 15.1.1: 

 
#HCM3 MDM CREATION TEMPLATE 
rawdattype:spss 
l1fname:growth.sav 
rowfname:student.sav 
colfname:teacher.sav 
clusfname:school.sav 
l1missing:n 
timeofdeletion:now 
mdmname:growth.mdm 
*begin l1vars 
rowid:STUDID 
colid:TCHRID 
clusid:SCHLID 
MATH 
YEAR 
G4D1 
G4D21 
G5D22 
TWOWAY 
*end l1vars 
*begin rowvars 
rowid:STUDID 
DUMMY 
*end rowvars 
*begin colvars 
colid:TCHRID 
clusid:SCHLID 
DUMMY 
*end colvars 
*begin clusvars 
clusid:SCHLID 
DUMMY 
*end clusvars 

 

The file is broken into two sections. The first is to declare the filenames of the raw data and other 

characteristics of the MDM file to be made, the second chooses the variables to be included at the 

various levels. Below is the first part with explanation in parentheses: 

 

rawdattype:spss      (This declares the type of input data. Possible values 
are             spss, sas (version 5 transport file), stata, and ascii) 
l1fname:growth.sav        (The next four lines declare the names and locations of 
           the four input files; level-1, row, column, and cluster, 
                      respectively.) 
rowfname:student.sav 
colfname:teacher.sav 
clusfname:school.sav 
l1missing:n     (This declares whether or not there are missing data at level-
         1. Possible values are n for not missing, or y for missing  
                                                        data present.) 
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timeofdeletion:now    (This may be n[ow] , where all level-1 cases with missing data 
          on selected variables will be deleted, or a[nalysis] where 
             the missing data will be left in and deleted at run-time 
                     based on the model specified.)
     

mdmname:growth.mdm             (Specifies the name of the mdm file.) 

 

The second part of the mdmt file specifies which variables are ID variables, and which ones go 

into the mdm file as possible analysis variables. The structure looks like this: 

 

*begin l1vars 
rowid:STUDID 
colid:TCHRID 
clusid:SCHLID 
MATH 
YEAR 
G4D1 
G4D21 
G5D22 
TWOWAY 
*end l1vars 
*begin rowvars 
rowid:STUDID 
DUMMY 
*end rowvars 
*begin colvars 
colid:TCHRID 
clusid:SCHLID 
DUMMY 
*end colvars 
*begin clusvars 
clusid:SCHLID 
DUMMY 
*end clusvars 

 

The ID s must be specified in the order shown, and must all be of the same type, either numeric 

(preferable) or alphanumeric(not advised). The level-1 file needs to be sorted primarily by row 

ID, secondarily by cluster ID, and thirdly and the column level. The row file should be sorted by 

row ID. The column file should be sorted by column ID within cluster ID, and the cluster file 

sorted by cluster  ID. 

Once the mdmt file is created, the file must be submitted to HCM3: 

 
C:\HLM> HCM3 –r growth.mdmt 

 

The results on the screen should then be examined to make sure the data were read correctly. 

These descriptive  statistics will  also be contained in a file named HCM3MDM.STS. 

H.2 Example: Creating an HCM3 HLM file and running the model 

The next step is to create a file that specifies the desired model. (This is usually suffixed with a 

.hlm) For example, we will use the model shown in section 15.2. 

 
nonlin:n 
numit:100 
stopval:0.0000010000 
level1:MATH=INTRCPT1+YEAR+G4D1+G4D21+G5D22+TWOWAY+RANDOM 
rowcol:INTRCPT1=theta+randomb+randomc 
clus:theta=ICPTCLUS+randomd 
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rowcol:YEAR=theta+randomb+randomc 
clus:theta=ICPTCLUS+randomd 
rowcol:G4D1=theta 
clus:theta=ICPTCLUS 
rowcol:G4D21=theta 
clus:theta=ICPTCLUS 
rowcol:G5D22=theta 
clus:theta=ICPTCLUS 
rowcol:TWOWAY=theta 
clus:theta=ICPTCLUS 
fixtau:3 
fixdelta1:3 
fixdelta2:3 
accel:5 
level1weight:none 
rowweight:none 
clusterweight:none 
hypoth:n 
resfiltype:spss 
resfil1:n 
resfil1fname:resfil1.sav 
resrow:n 
resrowfname:resrow.sav 
rescol:n 
rescolfname:rescol.sav 
resclus:n 
resclusfname:resclus.sav 
deflection:cumulative 
title:Unweighted model 
output:docdef1.html 
fulloutput:n 

 

The above is very similar to an HCM2 model file, with the exception of the model specification at 

the top where an extra level is shown. Here is the model part that better demonstrates the nested 

nature of the model specification (the shown indentation will not run): 

 

level1:MATH=INTRCPT1+YEAR+G4D1+G4D21+G5D22+TWOWAY+RANDOM 
rowcol:INTRCPT1=theta+randomb+randomc 
clus:theta=ICPTCLUS+randomd 
rowcol:YEAR=theta+randomb+randomc 
clus:theta=ICPTCLUS+randomd 
rowcol:G4D1=theta 
clus:theta=ICPTCLUS 
rowcol:G4D21=theta 
clus:theta=ICPTCLUS 
rowcol:G5D22=theta 
clus:theta=ICPTCLUS 
rowcol:TWOWAY=theta 

 

The rule here is that for every variable in the level1: line, there needs to be a rowcol: line in the 

same order as the variables are declared in the level1: line. For each variable in a rowcol: line, 

there must be clus: line. Also, note that instead of some form of INTRCPT, HCM3 uses the special 

name theta to denote the intercept in the rowcol: lines. 

 

Note that a level-1 variable may vary at the row (randomb), column(randomc), or cluster(randomd) 

level. A row variable may vary at either the column or cluster levels. A column variable may 

vary at the row or cluster level, and cluster variable may vary at the row level. This can make for 

a very complicated model specification. For example, consider this skeleton section for just the 

level-1 intercept where rowvar, colvar and clusvar are arbitrary row, column, and cluster  level 

variables: 
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level1:outcome=intrcpt1+random 
      rowcol:intrcpt1=intrcpt1+rowvar(random)+colvar(random)+rvar*colvar+randomb+randomc 
        clus:intrcpt1=theta+clusvar(randomb)+randomd 
        clus:rowvar=theta+clusvar(randomb) 
        clus:colvar=theta+clusvar(fixed)+randomd 
        clus:rowvar*colvar=icptclus+clusvar[norandom]+randomd 
 

In the rowcol: line, there are four variables:  the intercept, an  arbitrary row variable (rowvar) an 

arbitrary column variable (colvar), and a row by column interaction term rowvar*colvar. The 

random in parentheses tells the program let the variables vary. If  the variable should be  fixed, 

substitute the word fixed instead. The interaction term cannot vary, so there is no way to specify 

this. Finally, the randomb and randomc at the end of the line tells the program to let the level-1 

intercept vary across rows and columns respectively. Either +randomb and +randomc can be 

omitted if the level-1 variable should not be allowed to vary across rows or columns 

respectively. 

 

The clus: lines all take on the same basic form. In this example, all the variables are modeled 

with a cluster intercept, which is random at level-3 except for the variable rowvar, where the 

+randomd is omitted. In the clus:colvar line, clusvar is fixed at the row level, where in the previous 

two lines it is allowed to vary. In the row/column interaction line, clusvar has no random/fixed 

declaration because this term cannot vary at any level. 

 

Assuming that the above file is named growth.hlm, then the following command should be run: 

 
C:\HLM> HCM3 GROWTH.MDM GROWTH.HLM 

 

The following keywords in the above command files have the same definition and options in 

HCM2 as in the other modules (e.g. Tables A.1 and B.1) 

 
ACCEL   FULLOUTPUT  FIXTAU  NONLIN  NUMIT  OUTPUT  STOPVAL  TITLE  
FIXSIGMA2 STOPMICRO   STOPMACRO  DEVIANCE  DF    TITLE   GAMMA   RESFILTYPE 

 

Table H.1 Keywords and options unique for HCM3 command file 

 

Keyword Function Option Definition 

 
LEVEL1 

Level-1 or 
within-cell model 
specification 

INTRCPT1 
+VARNAME  
+VARNAME,2 

Level-1 intercept 
Level-1 predictor (no centering) 
Level-1 predictor (grand-mean centering) 

 
ROWCOL: 
INTRCPT1 or 
ROW/COLUMN 
VARNAME 

Level-2 or 
between-cell 
model 
specification 

+VARNAME(FIXED),2 
 
+VARNAME(FIXED) 
+VARNAME(RANDOM),2 
 
+VARNAME(RANDOM) 
+RANDOMB 
+RANDOMC 

+ Level-2 predictor (fixed and grand-mean 
centering) 
+ Level-2 predictor (fixed and no centering) 
+ Level-2 predictor (random and grand-mean 
centering) 
+ Level-2 predictor (random and no centering) 
+ Random main effect of the row factor 

+ Random main effect of the column factor 
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Table H.1 Keywords and options unique for HCM3 command file (continued) 

 

Keyword Function Option Definition 

CLUS: 
Level-3 model 
specification 

THETA 
+VARNAME(FIXED) 
+VARNAME(RANDOM) 
+VARNAME(FIXED),2 

 

Level-2 intercept 
+cluster-level predictor (fixed and no centering) 

+cluster-level predictor(random and no centering) 
+cluster-level predictor(fixed and grand-mean 
centering) 
 

 
DEFLECTION 

Define the use of 
a cumulative 
effect model 

independent 
 
cumulative 

Independent 
 
Cumulative 

 
 

 



359 
 

 

I Using HLMHCM in Batch Mode 

Unlike the older modules (HLM2, HLM3, etc.), HLMHCM does not have interactive modes to create 

the MDM or specify a model. If the windows interface is not available, these file must be created 

with an ASCII editor and submit them to obtain results.   

I.1 Example: Creating an HLMHCM MDM file from raw data 

The first thing that needs creating is an mdm template file (usually suffixed with .mdmt),  which 

tells HLMHCM how to read the raw data. Here is the MDMT file from section 17.1.1: 

 

#HLMHCM MDM CREATION TEMPLATE 
rawdattype:spss 
l1fname:growth.sav 
l2fname:student.sav 
rowfname:school.sav 
colfname:neigh.sav 
l1missing:n 
timeofdeletion:now 
mdmname:growth.mdm 
*begin l1vars 
level2id:STUDID 
AGE8 
MATH 
*end l1vars 
*begin l2vars 
level2id:STUDID 
rowid:SCHID 
colid:NEIGHID 
FEMALE 
BLACK  
HISPANIC 
*end l2vars 
*begin rowvars 
rowid:SCHID 
SCHPOV 
*end rowvars 
*begin colvars 
colid:NEIGHID 
DISADV 
*end colvars 
 

The file is broken into two sections. The first is to declare the filenames of the raw data and other 

characteristics of the MDM file to be made, the second chooses the variables to be included at the 

various levels. Below is the first part with explanation in parentheses: 

 

rawdattype:spss       (This declares the type of input data. Possible values 
              are spss, sas (version 5 transport file), stata, and 
                          ascii) 
l1fname:growth.sav        (The next four lines declare the names and locations 
            of the four input files; level-1, row, column, and 
                    cluster, respectively.) 
l2fname:student.sav 
rowfname:school.sav 
colfname:neigh.sav 
l1missing:n          (This declares whether or not there are missing data 
            at level-1. Possible values are n for not missing, 
                  or y for missing data present.) 
timeofdeletion:now         (This may be n[ow] , where all level-1 cases with 
                 missing data on selected variables will be 
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          deleted, or a[nalysis] where the missing data will be left 
           in and deleted at run-time based on the model specified.)
     

mdmname:growth.mdm             (Specifies the name of the mdm file.) 

 

The second part of the mdmt file specifies which variables are ID variables, and which ones go 

into the mdm file as possible analysis variables. The structure looks like this: 

 

*begin l1vars 
level2id:STUDID 
(list of level-1 variables, one per line) 
*end l1vars 
*begin l2vars 
level2id:STUDID 
rowid:SCHID 
colid:NEIGHID 
(list of level-2 variables, one per line) 
*end l2vars 
*begin rowvars 
rowid:SCHID 
(list of row variables, one per line) 
*end rowvars 
*begin colvars 
colid:NEIGHID 
(list of column variables, one per line) 
*end colvars 

 

The IDs must be specified in the order shown, and must all be of the same type, either numeric 

(preferable) or alphanumeric(not advised).   

 

Once the MDMT file is created, the file must be submitted to HLMHCM: 

 
C:\HLM> HLMHCM –r growth.mdmt 
 

The results on the screen should then be examined to make sure the data were read correctly. 

These descriptive  statistics will  also be contained in a file named HLMHCMMDM.STS. 

 

I.2 Example: Creating an HLMHCM HLM file and running the model 

The next step is to create a file that specifies the desired model. (This is usually suffixed with a 

.hlm) For example, we will use the model shown in section 15.2. 

 

nonlin:n 
numit:100000 
stopval:0.0000010000 
level1:MATH=INTRCPT1+AGE8+RANDOM 
level2:INTRCPT1=INTRCPT2+BLACK+HISPANIC+random 
rowcol:INTRCPT2=theta+DISADV(RANDOM)+randomb+randomc 
rowcol:BLACK=theta 
rowcol:HISPANIC=theta 
level2:AGE8=INTRCPT2+BLACK+HISPANIC+random 
rowcol:INTRCPT2=theta+DISADV(RANDOM)+randomb+randomc 
rowcol:BLACK=theta 
rowcol:HISPANIC=theta 
fixtau:3 
fixdelta:3 
fixomega:3 
accel:5 
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deviance:3800.651318 
df:18 
hypoth:n 
resfiltype:spss 
resfil1:n 
resfil1fname:resfil1.sav 
resfil2:n 
resfil2fname:resfil2.sav 
resrow:n 
resrowfname:resrow.sav 
rescol:n 
rescolfname:rescol.sav 
title:CONDITIONAL LINEAR GROWTH MODEL,WITH NEIGHBORHOOD DISADVANTAGE EFFECT RANDOM 
output:growth3.html 
fulloutput:n 

 

 

The above is very similar to an HCM2 model file, with the exception of the model specification at 

the top where an extra level is shown. Here is the model part that better demonstrates the nested 

nature of the model specification (the shown indentation will not run): 

 

level1:MATH=INTRCPT1+AGE8+RANDOM 
 level2:INTRCPT1=INTRCPT2+BLACK+HISPANIC+random 

rowcol:INTRCPT2=theta+DISADV(RANDOM)+randomb+randomc 
rowcol:BLACK=theta 
rowcol:HISPANIC=theta 

level2:AGE8=INTRCPT2+BLACK+HISPANIC+random 
rowcol:INTRCPT2=theta+DISADV(RANDOM)+randomb+randomc 
rowcol:BLACK=theta 
rowcol:HISPANIC=theta 
 

Assuming that the above file is named growth.hlm, then the following command should be run: 

 
C:\HLM> HLMHCM GROWTH.MDM GROWTH.HLM 

 

The following keywords in the above command files have the same definition and options in 

HCM2 as in the other modules (e.g. Tables A.1 and B.1). 

 
ACCEL   FULLOUTPUT FIXTAU  NONLIN  NUMIT  OUTPUT  STOPVAL  TITLE 
FIXSIGMA2 STOPMICRO  STOPMACRO  DEVIANCE  DF    TITLE   GAMMA   RESFILTYPE 
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unit-specific results, 169 

Original coefficient 
latent variable analysis, 218 

OUT file, 223 

Outcome 

specifying, 36, 248 
Outcome variable 

selecting, 36, 248 

Output 
annotated example, 41 

file 
name, 40 

viewing, 41 

Output file 
viewing, 41 
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Sorting of data, 22, 85, 282 
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T-to-enter statistic 

for potential predictor, 75, 97 

t-to-enter statistics for potential predictors, 75 

U 

Under-dispersion, 144, 173, 384 
Unit-specific 

iteration, 388 

models, 142 

Unit-specific model, 114, 142, 143, 144, 151, 153, 
156, 160, 164, 167, 169, 172, 176, 264, 278, 

314, 371, 376, 388 

and multinomial outcome, 169 
and ordinal outcome, 169 

differences from population-average, 143 

Unrestricted model, 178 

V 
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